JPH07256099A - Catalyst for treating organochlorine compound - Google Patents

Catalyst for treating organochlorine compound

Info

Publication number
JPH07256099A
JPH07256099A JP6053424A JP5342494A JPH07256099A JP H07256099 A JPH07256099 A JP H07256099A JP 6053424 A JP6053424 A JP 6053424A JP 5342494 A JP5342494 A JP 5342494A JP H07256099 A JPH07256099 A JP H07256099A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
metal
boria
active metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6053424A
Other languages
Japanese (ja)
Inventor
Toshio Yamaguchi
敏男 山口
Masao Wakabayashi
正男 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6053424A priority Critical patent/JPH07256099A/en
Publication of JPH07256099A publication Critical patent/JPH07256099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To provide a catalyst capable of efficiently decomposing an organochlorine compd. in the presence of air and water and capable of keeping activity for a long period of time. CONSTITUTION:A boria-alumina compsn. wherein boria content is 5-15wt.% as B2O3 and a specific surface area calculated by a nitrogen gas adsorbing method is 50m<2>/g or more and a crystal structure due to X-ray diffraction is an aluminum borate structure is used as a carrier. A catalyst for treating an organochlorine compd. is mainly constituted of this carrier and a noble metal being an active metal or a noble metal and a transition metal and contains the active metal in an amt. of 0.1-5% by wt. of the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機塩素化合物を処理す
るための触媒に関し、具体的には、有機塩素化合物を接
触分解処理するために使用する触媒に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for treating an organic chlorine compound, and more particularly to a catalyst used for catalytically cracking an organic chlorine compound.

【0002】[0002]

【従来の技術】トリクロロエチレンやテトラクロロエチ
レン等の有機塩素化合物は、金属の脱脂工程やドライク
リーニング工程等に巾広く用いられてきている。しか
し、有機塩素化合物に発癌作用が見いだされて以来、こ
れらの大気中への排出、あるいは埋め立て処分や投棄に
よる土壌汚染や地下水の汚染が問題化してきている。そ
して、環境衛生上の見地から、各地において法規制が実
施されてきている。このように、有機塩素化合物、及び
これを含む廃液等は厳しい管理が望まれているものであ
り、これらの無害化処理技術の開発は強く望まれている
ものである。
2. Description of the Related Art Organochlorine compounds such as trichlorethylene and tetrachloroethylene have been widely used in metal degreasing processes and dry cleaning processes. However, since the carcinogenic action of organochlorine compounds was discovered, soil pollution and groundwater pollution due to their discharge into the atmosphere, landfill disposal and dumping have become a problem. From the standpoint of environmental hygiene, laws and regulations have been implemented in various places. As described above, strict control is required for organic chlorine compounds and waste liquids containing them, and development of detoxification treatment techniques for these is strongly desired.

【0003】現在のところ、これら有機塩素化合物は、
主として活性炭あるいはゼオライトに吸着させ大気や排
水より除去しているが、吸着した有機塩素化合物を無害
化処理する方法に関してまでは考慮がなされていない。
これらの有機塩素化合物を活性炭などから脱離し、これ
らを800℃以上の高温で燃焼させる熱分解法や、これ
らに紫外線を照射して光分解させるプラズマ分解法など
が提案されているが、いずれも問題がある。例えば、熱
分解法やプラズマ分解法では装置が大掛かりであり、処
理コストが高い。
At present, these organochlorine compounds are
Although it is mainly adsorbed on activated carbon or zeolite and removed from the atmosphere or wastewater, no consideration has been given to a method for detoxifying the adsorbed organic chlorine compound.
A thermal decomposition method of desorbing these organic chlorine compounds from activated carbon and burning them at a high temperature of 800 ° C or higher, and a plasma decomposition method of irradiating them with ultraviolet rays to perform photolysis have been proposed. There's a problem. For example, in the thermal decomposition method and the plasma decomposition method, the equipment is large and the processing cost is high.

【0004】これらの問題点が比較的少ない方法として
触媒の存在下で分解・燃焼を行う接触分解法があり、最
近特に注目されている。例えば、アルミナ、シリカ、ゼ
オライト、チタニア、ジルコニアなどの無機酸化物を単
独、あるいは組み合わせて得た担体に、銅、クロム、
鉄、白金、パラジウムなどを活性金属として担持させて
得た触媒を用いるものである。すなわち、これらの触媒
とトリクロロエチレン等の有機塩素化合物とを水蒸気と
酸素または空気の存在下で、400〜500℃で接触さ
せものである(特開昭55−30891号、特開平3−
12221号、特開平3−47516号)。
A catalytic cracking method in which decomposition and combustion are carried out in the presence of a catalyst is one of the methods with relatively few problems, and has recently attracted particular attention. For example, alumina, silica, zeolite, titania, a carrier obtained by combining inorganic oxides such as zirconia, copper, chromium,
A catalyst obtained by supporting iron, platinum, palladium or the like as an active metal is used. That is, these catalysts are contacted with an organic chlorine compound such as trichlorethylene in the presence of water vapor and oxygen or air at 400 to 500 ° C. (JP-A-55-30891, JP-A-3-30891).
12221, JP-A-3-47516).

【0005】一般に触媒を用いたガスの接触反応では、
高いSV(単位時間当りのガス流量/触媒の体積)、速
いLV(線速度)といった条件下で反応を行わせること
が求められている。このためには、該反応に用いる触媒
の比表面積は大きいことが望ましい。また、有機塩素化
合物を接触分解する場合、触媒は耐酸性、特に塩化水素
に対して優れていることが重要となる。これらの点より
上記触媒を観ると、耐酸性に対して優れているチタニア
やジルコニアは比表面積が小さく、初期活性が高くても
長期間活性を維持することはできない。
Generally, in the catalytic reaction of gas using a catalyst,
It is required to carry out the reaction under the conditions of high SV (gas flow rate per unit time / catalyst volume) and fast LV (linear velocity). For this purpose, it is desirable that the catalyst used in the reaction has a large specific surface area. Further, when catalytically decomposing organic chlorine compounds, it is important that the catalyst is acid resistant, especially excellent in hydrogen chloride. From these points of view, looking at the above-mentioned catalyst, titania and zirconia, which are excellent in acid resistance, have a small specific surface area and cannot maintain their activity for a long period of time even if their initial activity is high.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記状況を考
慮してなされたものであり、その課題は、有機塩素化合
物を空気と水の存在下で、効率よく有機塩素化合物を分
解でき、かつ長期間活性を維持することのできる触媒の
提供である。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above situation, and its object is to decompose an organic chlorine compound efficiently in the presence of air and water, and The purpose of the present invention is to provide a catalyst that can maintain activity for a long period of time.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明者は塩化水素に対する耐酸性を持ち、且つ高
比表面積を持つ担体と活性金属成分から成る触媒を得る
べく鋭意研究した。その結果、結晶形態がホウ酸アルミ
ニウム構造から成るボリア−アルミナ複合酸化物が優れ
た耐酸性と高比表面積を有すること、そして該複合酸化
物担体に従来から提案されていた貴金属及び/または貴
金属と遷移金属とを担持さると、得られた触媒は有機塩
素化合物をきわめて効率よく分解することを見出だして
本発明に到達した。
In order to achieve the above object, the present inventor has earnestly studied to obtain a catalyst composed of a carrier and an active metal component, which has acid resistance to hydrogen chloride and has a high specific surface area. As a result, the boria-alumina composite oxide having a crystal form of an aluminum borate structure has excellent acid resistance and a high specific surface area, and a noble metal and / or a noble metal conventionally proposed for the composite oxide carrier. The present invention has been completed by discovering that the obtained catalyst decomposes an organochlorine compound very efficiently when it is loaded with a transition metal.

【0008】すなわち、上記課題を解決する本発明の触
媒は、ボリア含有量がB23として5〜15重量%の範
囲であり、窒素ガス吸着法で求めた比表面積が50m2
/g以上を有し、且つ該担体のX線回折による結晶構造
がホウ酸アルミニウム構造を持つボリア−アルミナ組成
物を担体とし、この担体と活性金属としての貴金属、ま
たは貴金属と遷移金属とから主として構成されるもので
あり、活性金属の量が触媒重量の0.1〜5重量%相当
量であるものである。また、本発明に用いる活性金属と
しての貴金属は、白金、パラジウム、ルテニウム等であ
り、遷移金属は銅、クロム、コバルト等である。
That is, the catalyst of the present invention for solving the above-mentioned problems has a boria content of 5 to 15% by weight as B 2 O 3 and a specific surface area of 50 m 2 obtained by a nitrogen gas adsorption method.
/ G or more and the carrier has a boria-alumina composition whose crystal structure by X-ray diffraction has an aluminum borate structure, and is mainly composed of this carrier and a noble metal as an active metal, or a noble metal and a transition metal. The amount of the active metal is equivalent to 0.1 to 5% by weight of the catalyst weight. The noble metal as an active metal used in the present invention is platinum, palladium, ruthenium, etc., and the transition metal is copper, chromium, cobalt, etc.

【0009】[0009]

【作用】触媒担体として用いるボリア−アルミナ組成物
中のB23量を5〜15重量%とするのは、この範囲外
では、ホウ酸アルミニウム構造が形成されないからであ
り、かつ、窒素ガス吸着によるBET法で測定した比表
面積が減少するからである。また、前記担体の窒素ガス
吸着法で求めた比表面積を50m2/g以上とするの
は、この範囲ではじめて十分な触媒活性が得られるから
である。
The amount of B 2 O 3 in the boria-alumina composition used as the catalyst carrier is set to 5 to 15% by weight because the aluminum borate structure is not formed outside this range, and the nitrogen gas is not used. This is because the specific surface area measured by the BET method due to adsorption decreases. The reason why the specific surface area of the carrier determined by the nitrogen gas adsorption method is 50 m 2 / g or more is that sufficient catalytic activity can be obtained only in this range.

【0010】このような結晶構造と比表面積とを持つ担
体を得るためには、例えば、硫酸アルミニウム水溶液と
アルミ酸ナトリウム水溶液を混合し、加水分解し、濾過
・洗浄して得たアルミナ水和物に所定量のホウ酸水溶液
を添加し、成型可能な水分まで捏和して可塑化物とし、
所望の形状に成型した後、乾燥し、そのまま900〜1
100℃で焼成して得る。また、あるいは前記可塑化物
を乾燥し、所望の粒度に破砕し、次いで同様の温度で焼
成して得る。
In order to obtain a carrier having such a crystal structure and a specific surface area, for example, an alumina hydrate obtained by mixing an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate, hydrolyzing, filtering and washing. Add a predetermined amount of boric acid aqueous solution to knead the moldable water to make a plasticized product,
After molding into the desired shape, dry it and leave it at 900-1
It is obtained by firing at 100 ° C. Alternatively or alternatively, the plasticized product is dried, crushed to a desired particle size, and then calcined at the same temperature.

【0011】本発明の触媒担体は、後述する耐酸テスト
結果より分かる通り、塩化水素に対して優れた耐酸性を
有する。この理由として、本発明者らは以下のように考
えている。すなわち、この担体を構成するアルミナとホ
ウ素は共に3価の陽イオンであり、配位数も共に4配位
である。この結果、アルミナの骨格にホウ素が均一に配
置されて、ホウ酸アルミニウム相が形成されて耐酸性が
発現される。
The catalyst carrier of the present invention has excellent acid resistance to hydrogen chloride, as can be seen from the acid resistance test results described later. The reason for this is as follows. That is, both alumina and boron constituting the carrier are trivalent cations, and the coordination numbers are both tetracoordinate. As a result, boron is uniformly arranged in the skeleton of alumina, an aluminum borate phase is formed, and acid resistance is exhibited.

【0012】本発明の触媒は、この触媒担体に活性金属
として貴金属または貴金属と遷移金属とを担持し、次い
で80〜110℃の温度で乾燥し、400〜600℃で
焼成して製造する。本発明の触媒において、活性金属の
担持量を0.1〜5重量%とするのは、この範囲より活
性金属の担持量が少ないと十分な活性が得られず、この
範囲より多くても活性向上に対する一層の増加効果が得
られないからであり、経済性を考慮すると前記の範囲以
上に担持する必要はないからである。
The catalyst of the present invention is manufactured by supporting a noble metal or a noble metal and a transition metal as an active metal on this catalyst carrier, then drying at a temperature of 80 to 110 ° C. and calcining at 400 to 600 ° C. In the catalyst of the present invention, the amount of the active metal supported is set to 0.1 to 5% by weight because sufficient activity cannot be obtained when the amount of the active metal supported is less than this range, and the amount of active metal is more than this range. This is because it is not possible to obtain a further increasing effect on the improvement, and it is not necessary to support above the above range in consideration of economical efficiency.

【0013】このようにして製造された本発明の有機塩
素化合物処理用触媒は、金属の脱脂工程やドライクリー
ニング工程等から排出される排ガス、廃液等の有機塩素
化合物を酸化分解して無害化するための有効な触媒であ
る。
The catalyst for treating an organochlorine compound of the present invention produced as described above oxidizes and decomposes an organochlorine compound such as exhaust gas or waste liquid discharged from a metal degreasing process or a dry cleaning process to render it harmless. Is an effective catalyst for.

【0014】[0014]

【実施例】以下、本発明の実施例及び比較例を示す。 (実施例及び比較例) (1)担体の製造と評価 内容積100リットルの攪拌機付きステンレス反応槽に水4
9.5リットルを入れ、70℃まで加温し、70℃に保持
し、攪拌しながら硫酸アルミニウム水溶液((株)島田
商店販売の8%硫酸バンド)9540gとアルミン酸ナ
トリウム水溶液(住友化学工業株式会社製 NA−17
0)7080gとを反応槽に入れ、pHが8.3のアル
ミナ水和物スラリーを得た。次にこのスラリーを30分
間熟成した後、濾過し、洗浄してアルミナ水和物ケーキ
を得た。次に、このアルミナ水和物ケーキの内の250
0g(Al23として450g)に試薬1級のホウ酸1
42g(B23として80g)を加えて加温ジャケット
付き双腕型ニーダー中で加熱捏和し、B23+Al23
濃度として38重量%の可塑性のある捏和物を得た。
EXAMPLES Examples and comparative examples of the present invention will be shown below. (Examples and Comparative Examples) (1) Production and Evaluation of Carrier Water 4 in a stainless steel reaction tank with an agitator having an internal volume of 100 liters.
Add 9.5 liters, heat to 70 ° C., hold at 70 ° C., and with stirring, 9540 g of aluminum sulfate aqueous solution (8% sulfuric acid band sold by Shimada Shoten Co., Ltd.) and sodium aluminate aqueous solution (Sumitomo Chemical Co., Ltd. stock) Company-made NA-17
0) 7080 g was put into a reaction tank to obtain an alumina hydrate slurry having a pH of 8.3. Next, this slurry was aged for 30 minutes, then filtered and washed to obtain an alumina hydrate cake. Next, 250 of this alumina hydrate cake
0 g (450 g as Al 2 O 3 ) of boric acid 1 of primary reagent
42 g (80 g as B 2 O 3 ) was added and kneaded by heating in a double-arm kneader with a heating jacket, and B 2 O 3 + Al 2 O 3
A kneaded product having a plasticity of 38% by weight was obtained.

【0015】次ぎに、この捏和物を直径1.5mmのダ
イスを持つ押出し成型機を用い、円柱状に成型し、得た
成型体を110℃で18時間乾燥し、得た乾燥物の一部
を900℃(実施例1)、1000℃(実施例2)及び
1100℃(実施例3)で、電気炉を用いてそれぞれ5
時間焼成してホウ素をB23として15重量%含むボリ
ア−アルミナ触媒担体a(実施例1)、b(実施例
2)、c(実施例3)を得た。
Next, this kneaded product was molded into a cylindrical shape using an extrusion molding machine having a die with a diameter of 1.5 mm, and the obtained molded product was dried at 110 ° C. for 18 hours, and one of the dried products obtained was used. Parts at 900 ° C. (Example 1), 1000 ° C. (Example 2) and 1100 ° C. (Example 3) using an electric furnace for 5 parts each.
After time calcination, boria-alumina catalyst carriers a (Example 1), b (Example 2), and c (Example 3) containing 15% by weight of boron as B 2 O 3 were obtained.

【0016】次ぎに、アルミナ水和物ケーキに添加する
ホウ酸量を43g(B23として24g)(実施例4)
及び89g(B23として50g)(実施例5)と変化
させた以外は前記と同様にして乾燥物を得、これらの乾
燥物を1000℃で5時間電気炉を用いて焼成し、ホウ
素をそれぞれ、B23として5重量%、10重量%含む
ボリア−アルミナ触媒担体d(実施例4)とe(実施例
5)を得た。
Next, the amount of boric acid added to the alumina hydrate cake was 43 g (24 g as B 2 O 3 ) (Example 4).
And 89 g (50 g as B 2 O 3 ) (Example 5) except that the dried products were obtained in the same manner as above, and the dried products were fired at 1000 ° C. for 5 hours in an electric furnace to obtain boron. To obtain boria-alumina catalyst supports d (Example 4) and e (Example 5) containing 5% by weight and 10% by weight as B 2 O 3 , respectively.

【0017】次ぎに、加えるホウ酸の量を9g(B23
として5g)(比較例1)及び204g(B23として
115g)(比較例2)と変えたこと以外実施例1と同
様にしてB2O3として1重量%そして20重量%を含む
ボリア−アルミナ触媒担体f(比較例1)とg(比較例
2)とを得た。
Next, the amount of boric acid added was 9 g (B 2 O 3
5 g) (Comparative Example 1) and 204 g (115 g as B 2 O 3 ) (Comparative Example 2), but in the same manner as in Example 1 containing 1 wt% and 20 wt% of B 2 O 3 as a boria-alumina catalyst. Carriers f (Comparative Example 1) and g (Comparative Example 2) were obtained.

【0018】これらの担体の比表面積を窒素ガス吸着法
で測定し、結晶形態をX線回折で調べたところ、表1の
ようになった。
The specific surface areas of these carriers were measured by the nitrogen gas adsorption method, and the crystal morphology was examined by X-ray diffraction.

【0019】次ぎにこれらの担体を用い、以下の条件に
従い耐酸テストを行い比表面積の変化を調査した。得ら
れた結果を表1に合わせ示した。
Next, using these carriers, an acid resistance test was conducted under the following conditions to investigate the change in specific surface area. The obtained results are also shown in Table 1.

【0020】(耐酸テスト条件)500mlのビーカー
に純水400mlを加え、80℃に加温し、保持し、攪
拌しながら100メッシュ以下に粉砕した担体粉体60
gと濃度36%の塩酸27mlとを加えてpH0.1の
スラリーとし、10時間攪拌した。その後冷却し、濾過
し、純水で塩素分が完全に除去されるまで洗浄し、11
0℃で15時間乾燥し、500℃で2時間焼成し担体粉
末を得る。
(Acid resistance test condition) 400 ml of pure water was added to a 500 ml beaker, heated to 80 ° C., held, and crushed to 100 mesh or less carrier powder 60 with stirring.
g and 27 ml of hydrochloric acid having a concentration of 36% were added to form a slurry having a pH of 0.1, and the mixture was stirred for 10 hours. Then, cool, filter, and wash with pure water until chlorine is completely removed.
It is dried at 0 ° C for 15 hours and calcined at 500 ° C for 2 hours to obtain a carrier powder.

【0021】 [0021]

【0022】表1の結果から明らかなように、本発明の
範囲のボリア−アルミナ組成比と結晶構造を満足してい
る触媒担体a、b、c、d、eは酸に対して十分耐える
ことが判る。そして、本発明の条件を満たしていない担
体f、gは耐酸性に劣ることが分かる。
As is clear from the results shown in Table 1, the catalyst carriers a, b, c, d and e satisfying the boria-alumina composition ratio and the crystal structure within the range of the present invention are sufficiently resistant to acid. I understand. Further, it is understood that the carriers f and g which do not satisfy the conditions of the present invention have poor acid resistance.

【0023】(2)触媒の製造とその評価 次に、前記触媒担体a、b、c、d、e、fそしてgの
各100gを用い、以下に示した方法で触媒A(実施例
6)、B(実施例7)、C(実施例8)、D(実施例
9)、E(実施例10)、F(比較例3)、G(比較例
4)を作製した。
(2) Production of catalyst and its evaluation Next, using 100 g of each of the catalyst carriers a, b, c, d, e, f and g, a catalyst A (Example 6) was prepared in the following manner. , B (Example 7), C (Example 8), D (Example 9), E (Example 10), F (Comparative Example 3), and G (Comparative Example 4) were produced.

【0024】(触媒の調整方法)前記各担体100gに
シス−ジニトロジアミン白金(II)塩(Ptとして6
0.7重量%)1.7gを水60mlに溶解して得た溶
液を含浸させ、110℃で15時間乾燥し、次いで50
0℃で2時間焼成する。
(Catalyst Preparation Method) A cis-dinitrodiamine platinum (II) salt (6 as Pt was added to 100 g of each of the above carriers).
0.7% by weight) was impregnated with a solution obtained by dissolving 1.7 g in 60 ml of water and dried at 110 ° C. for 15 hours, then 50
Bake at 0 ° C. for 2 hours.

【0025】次ぎに、担体b100gに硝酸コバルト六
水和物1.2gとシス−ジニトロジアミン白金(II)塩
(Ptとして60.7重量%)1.2gとを水60ml
に溶解して得た溶液を含浸させ、110℃で15時間乾
燥し、次いで500℃で2時間焼成して触媒H(実施例
11)を得た。その後、各触媒の比表面積を測定し、そ
の結果を表2に示した。
Next, 1.2 g of cobalt nitrate hexahydrate and 1.2 g of cis-dinitrodiamine platinum (II) salt (60.7 wt% as Pt) were added to 100 g of carrier b in 60 ml of water.
Was impregnated with the resulting solution, dried at 110 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours to obtain a catalyst H (Example 11). Then, the specific surface area of each catalyst was measured, and the results are shown in Table 2.

【0026】次ぎに、得られた触媒A〜Hをそれぞれ破
砕して500〜840ミクロンの範囲の粒度に調製し、
触媒充填量10mlの固定床流通反応装置に充填し、反
応温度500℃で以下の試料ガスをSV=5,000h
-1で触媒層を通過させてトリクロロエチレンを分解させ
た。反応を開始し50時間後の各触媒の性能評価結果を
表2に合わせ示した。
Next, the resulting catalysts A to H were crushed to prepare particles having a particle size in the range of 500 to 840 microns,
The catalyst was packed in a fixed bed flow reactor of 10 ml, and the following sample gas was added at a reaction temperature of 500 ° C. to SV = 5,000 h.
-1 was passed through the catalyst layer to decompose trichlorethylene. The performance evaluation results of each catalyst 50 hours after the start of the reaction are also shown in Table 2.

【0027】尚、処理ガスの分析は(株)島津製作所製
ガスクロマトグラフを用いてガスクロマト法により分析
した。
The treated gas was analyzed by gas chromatography using a gas chromatograph manufactured by Shimadzu Corporation.

【0028】(試料ガスの組成) トリクロロエチレン:0.03 ミリリットル/min 水 :0.043 ミリリットル/min 空気 :500 ミリリットル/min(Composition of sample gas) Trichlorethylene: 0.03 ml / min Water: 0.043 ml / min Air: 500 ml / min

【0029】 [0029]

【0030】表2の結果から見ると触媒A〜D、Hはト
リクロロエチレンの処理効率が高いことが分かる。これ
は、これらに用いた担体が、その組成比、比表面積及び
結晶構造が本発明の担体条件を満足するもので、かつ担
体の耐酸性も優れているためと言える。
From the results shown in Table 2, it can be seen that the catalysts A to D and H have high treatment efficiency for trichlorethylene. This is because the carrier used for them satisfies the carrier conditions of the present invention in terms of composition ratio, specific surface area and crystal structure, and is also excellent in acid resistance of the carrier.

【0031】触媒FとGとは用いた担体の比表面積に関
しては本発明の担体条件の範囲に入るものの、ボリア−
アルミナ組成比及び結晶構造に関しては範囲外であり、
触媒担体の耐酸性も劣るため、トリクロロエチレンの処
理効率が低くなったものと思われる。
The catalysts F and G are within the range of the carrier conditions of the present invention with respect to the specific surface area of the carrier used, but the boria-
Alumina composition ratio and crystal structure are out of range,
It is considered that the treatment efficiency of trichlorethylene was low because the acid resistance of the catalyst carrier was poor.

【0032】なお、触媒Hは活性金属として白金とニッ
ケルを担持した触媒であるが、活性金属として貴金属と
遷移金属を組合わせて用いてもトリクロロエチレンの処
理効率が高いことは明らかである。
The catalyst H is a catalyst supporting platinum and nickel as active metals, but it is clear that the treatment efficiency of trichlorethylene is high even when a noble metal and a transition metal are used in combination as active metals.

【0033】[0033]

【発明の効果】本発明の触媒を有機塩素化合物と水蒸気
及び空気共存下で接触させることにより効率良く有機塩
素化合物を処理できる。そして、本発明の触媒の寿命は
長く、実用的である。よって、本発明の触媒は金属の脱
脂工程やドライクリーニング工程等から排出される排ガ
ス、廃液等の有機塩素化合物の無害化に使用でき、環境
汚染防止対策上きわめて有効である。
The organochlorine compound can be efficiently treated by bringing the catalyst of the present invention into contact with the organochlorine compound in the presence of water vapor and air. The catalyst of the present invention has a long life and is practical. Therefore, the catalyst of the present invention can be used for detoxifying organic chlorine compounds such as exhaust gas and waste liquid discharged from a metal degreasing process, a dry cleaning process, etc., and is extremely effective in preventing environmental pollution.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ボリア含有量がB23として5〜15
重量%の範囲であり、窒素ガス吸着法で求めた比表面積
が50m2/g以上を有し、且つ該担体のX線回折によ
る結晶構造がホウ酸アルミニウム構造を持つボリア−ア
ルミナ組成物を担体とし、この担体と活性金属としての
貴金属、または貴金属と遷移金属とから主として構成さ
れるものであり、活性金属の担持量が触媒重量の0.1
〜5重量%相当量であることを特徴とする有機塩素化合
物処理用触媒。
1. A boria content of 5 to 15 as B 2 O 3.
The boria-alumina composition having a specific surface area of 50 m 2 / g or more determined by a nitrogen gas adsorption method and having a crystal structure by X-ray diffraction of an aluminum borate structure is a carrier. And is mainly composed of this carrier and a noble metal as an active metal, or a noble metal and a transition metal, and the amount of the active metal supported is 0.1% by weight of the catalyst.
A catalyst for treating an organic chlorine compound, characterized in that the amount is equivalent to 5% by weight.
【請求項2】 活性金属としての貴金属が、白金、パ
ラジウム、ルテニウムからなる群より選ばれた少なくと
も1種である請求項1記載の有機塩素化合物処理用触
媒。
2. The catalyst for treating an organochlorine compound according to claim 1, wherein the noble metal as an active metal is at least one selected from the group consisting of platinum, palladium and ruthenium.
【請求項3】 活性金属としての遷移金属が、銅、ク
ロム、コバルトからなる群より選ばれた少なくとも1種
である請求項1または2記載の有機塩素化合物処理用触
媒。
3. The catalyst for treating an organochlorine compound according to claim 1, wherein the transition metal as an active metal is at least one selected from the group consisting of copper, chromium and cobalt.
JP6053424A 1994-03-24 1994-03-24 Catalyst for treating organochlorine compound Pending JPH07256099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6053424A JPH07256099A (en) 1994-03-24 1994-03-24 Catalyst for treating organochlorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6053424A JPH07256099A (en) 1994-03-24 1994-03-24 Catalyst for treating organochlorine compound

Publications (1)

Publication Number Publication Date
JPH07256099A true JPH07256099A (en) 1995-10-09

Family

ID=12942464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6053424A Pending JPH07256099A (en) 1994-03-24 1994-03-24 Catalyst for treating organochlorine compound

Country Status (1)

Country Link
JP (1) JPH07256099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075286A (en) * 2011-09-14 2013-04-25 Mitsui Mining & Smelting Co Ltd Exhaust gas purification catalyst, and exhaust gas purification catalyst structure
US10478805B2 (en) 2015-08-06 2019-11-19 National University Corporation Kumamoto University Method for producing ammonia combustion catalyst and method for utilizing heat generated by ammonia catalyst combustion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075286A (en) * 2011-09-14 2013-04-25 Mitsui Mining & Smelting Co Ltd Exhaust gas purification catalyst, and exhaust gas purification catalyst structure
US10478805B2 (en) 2015-08-06 2019-11-19 National University Corporation Kumamoto University Method for producing ammonia combustion catalyst and method for utilizing heat generated by ammonia catalyst combustion

Similar Documents

Publication Publication Date Title
US3658724A (en) Adsorbent oxidation catalyst
EP0275620B1 (en) Method and catalyst for purification of gas
KR940006404B1 (en) Catalyst for treatment of water
CN108607583A (en) A kind of carbon-based oxyhalogen bismuth composite catalyst of photocatalytic degradation volatile organic matter and its preparation method and application
KR100372202B1 (en) Catalyst for removing the volatile organic compounds and it&#39;s preparation method
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JP2691643B2 (en) Exhaust gas purification method
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP2903960B2 (en) Method for producing catalyst carrier for treating organochlorine compound, catalyst using obtained carrier, and method for producing the same
JPH07256099A (en) Catalyst for treating organochlorine compound
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
JPH0857323A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
JP3598539B2 (en) Catalyst for decomposition of volatile organic chlorine compounds
JP3475204B2 (en) Combustion decomposition remover for hydrocarbons and halogen-containing organic substances
JPH0852360A (en) Catalyst for decomposition of volatile organic chlorine compound
JPH0852361A (en) Catalyst for decomposition of volatile organic chlorine compound
JPH0838896A (en) Catalyst for decomposing volatile organochlorine compound
JPS60220148A (en) Honeycomb shaped deodorizing catalyst
JP3559858B2 (en) Organic compound combustion removal catalyst and combustion removal method
EP0732145A1 (en) Oxidizing catalyst and process for producing the same
JPH06218233A (en) Purifying method for waste gas containing nitrous oxide
JPH0852353A (en) Catalyst for decomposing volatile organochlorine compound
CN114749178B (en) Method for preparing catering oil smoke purifying catalyst by using crab shells and application of catalyst
JPH0857322A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
TWI293036B (en) Catalyst, method for producing the same and method for treating volatile organic compounds