JPH0852353A - Catalyst for decomposing volatile organochlorine compound - Google Patents

Catalyst for decomposing volatile organochlorine compound

Info

Publication number
JPH0852353A
JPH0852353A JP6189197A JP18919794A JPH0852353A JP H0852353 A JPH0852353 A JP H0852353A JP 6189197 A JP6189197 A JP 6189197A JP 18919794 A JP18919794 A JP 18919794A JP H0852353 A JPH0852353 A JP H0852353A
Authority
JP
Japan
Prior art keywords
catalyst
component
active metal
catalytically active
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6189197A
Other languages
Japanese (ja)
Inventor
Toshio Yamaguchi
敏男 山口
Miki Masuda
幹 増田
Akiko Kitagawa
明子 北川
Itaru Hayakawa
至 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6189197A priority Critical patent/JPH0852353A/en
Publication of JPH0852353A publication Critical patent/JPH0852353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst capable of efficiently decomposing a volatile organochlorine compd. in the coexistence of steam and oxygen and keeping activity over a long period of time by supporting a cocatalyst component and a main catalytically active metal component on the surface layer of a carrier. CONSTITUTION:A catalyst is obtained by supporting at least one of a component selected from the group consisting of platinum, palladium and ruthenium on the surface layer of a carrier based on titania as a main catalytically active metal component and further supporting a boron oxide thereon as a cocatalyst component and the supporting amt. of the main catalytically active metal component is 0.1-2wt.% of the catalyst in terms of metal and that of the cocatalyst component is 1-3wt.% of the catalyst as diboron trioxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は揮発性有機塩素化合物を
接触分解処理するために用いる触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used for catalytically cracking volatile organic chlorine compounds.

【0002】[0002]

【従来の技術】揮発性有機ハロゲン化合物にはフロン、
トリクロロエチレン、テトラクロロエチレン等の有機塩
素化合物を始め種々の化合物がある。これらの揮発性有
機ハロゲン化合物の中にはその化学的安定性、取扱い易
さより産業用のみならず、一般家庭用としても多用され
ている物がある。
Freon is a volatile organic halogen compound,
There are various compounds including organic chlorine compounds such as trichlorethylene and tetrachloroethylene. Some of these volatile organic halogen compounds are widely used not only for industrial use but also for general household use because of their chemical stability and ease of handling.

【0003】例えば、フロンは液化し易くかつ気化し易
いという性質より噴射剤や冷媒等としてクーラー、冷蔵
庫などに用いられている。また、例えば、トリクロロエ
チレンやテトラクロロエチレン等は金属への鍍金時の脱
脂工程やドライクリーニングなどに巾広く用いられてい
る。
For example, chlorofluorocarbon is used as a propellant, a refrigerant, etc. in a cooler, a refrigerator, etc. because it is easily liquefied and vaporized. Further, for example, trichloroethylene, tetrachloroethylene and the like are widely used in a degreasing process at the time of plating a metal, a dry cleaning and the like.

【0004】しかし、フロンはオゾン層の破壊をもたら
すことが指摘され、地球環境保護の観点からその使用が
問題視されてきている。そして、特定フロンの使用は今
や禁止され、フロンを大気中に放出する場合には何等か
の無害化処理を施すことが求められている。また、トリ
クロロエチレンやテトラクロロエチレンには発癌作用が
あることが見いだされている。このため、これらの大気
中への排出、あるいは埋め立て処分や不法投棄による土
壌汚染や地下水の汚染が問題となってきている。
However, it has been pointed out that CFC causes the destruction of the ozone layer, and its use has been regarded as a problem from the viewpoint of protecting the global environment. The use of specific CFCs is now prohibited, and some kind of detoxification treatment is required when CFCs are released into the atmosphere. In addition, it has been found that trichlorethylene and tetrachloroethylene have a carcinogenic effect. For this reason, discharge into the atmosphere, soil contamination due to landfill disposal or illegal dumping, and groundwater contamination have become problems.

【0005】環境衛生上の見地から、各地においてこれ
らの化合物の使用や廃棄に関して法規制が実施されてき
ている。これに伴い揮発性有機塩素化合物の無害化処理
技術の開発が強く望まれている。
From the standpoint of environmental hygiene, legal regulations have been implemented in various places regarding the use and disposal of these compounds. Along with this, development of a detoxifying treatment technique for volatile organic chlorine compounds is strongly desired.

【0006】従来、排気中、あるいは排水中のフロン、
トリクロロエチレン、テトラクロロエチレン等は活性炭
やゼオライト等で吸着し除去している。しかし、吸着し
たこれらの化合物を無害化する方法は確立されていな
い。
[0006] Conventionally, CFCs in exhaust gas or drainage,
Trichloroethylene, tetrachloroethylene, etc. are adsorbed and removed by activated carbon, zeolite, etc. However, a method for detoxifying these adsorbed compounds has not been established.

【0007】最近提案されている揮発性有機塩素化合物
の分解方法には熱分解法、光分解法、接触分解法などが
ある。熱分解法は高温、高圧下で揮発性有機塩素化合物
を燃焼させるものであり、光分解法は揮発性有機塩素化
合物にそのまま、あるいはオゾンを共存させ紫外線を照
射するものである。そして、接触分解法は触媒を用いて
分解させるものである。
Recently proposed decomposition methods for volatile organochlorine compounds include thermal decomposition method, photodecomposition method and catalytic decomposition method. The thermal decomposition method is to burn a volatile organic chlorine compound at high temperature and high pressure, and the photolysis method is to irradiate ultraviolet rays with the volatile organic chlorine compound as it is or in the presence of ozone. Then, the catalytic cracking method is to decompose by using a catalyst.

【0008】熱分解法は用いる装置が大掛かりであった
り、処理コストが高いなどの問題がある。また光分解法
は揮発性有機塩素化合物が処理気体中に低濃度で含まれ
る場合に有効であるものの、高濃度で含まれる場合には
適していない。これに対して接触分解法は簡便な方法で
あり、高濃度で揮発性有機塩素化合物を含む気体に対し
ても有効であり、最近特に注目されている。この接触分
解法では、アルミナ、シリカ、ゼオライト、チタニア、
ジルコニア等の無機酸化物を単独、あるいは組み合わせ
て担体を作成し、得た担体に銅、クロム、鉄、白金、パ
ラジウム等の金属を触媒活性金属成分として担持させた
触媒を用いる。この触媒と揮発性有機塩素化合物とを水
蒸気と酸素との共存下で400〜500℃で接触させる
(特開昭50−2669号、特開平3−12221号、
特開平3−47516号等)。なお、これら開示された
提案には助触媒成分の使用に付いては何等開示されてい
ない。
The thermal decomposition method has problems that the apparatus used is large-scale and the processing cost is high. The photolysis method is effective when the volatile organic chlorine compound is contained in the treated gas at a low concentration, but is not suitable when it is contained at a high concentration. On the other hand, the catalytic decomposition method is a simple method, is effective even for a gas containing a volatile organic chlorine compound at a high concentration, and has recently attracted particular attention. In this catalytic cracking method, alumina, silica, zeolite, titania,
A catalyst in which an inorganic oxide such as zirconia is used alone or in combination to prepare a carrier and a metal such as copper, chromium, iron, platinum or palladium is supported as a catalytically active metal component on the obtained carrier is used. This catalyst is contacted with a volatile organic chlorine compound at 400 to 500 ° C. in the presence of water vapor and oxygen (Japanese Patent Laid-Open No. 50-2669, Japanese Patent Laid-Open No. 3-12221).
JP-A-3-47516). It should be noted that these disclosed proposals do not disclose the use of the promoter component.

【0009】一般に触媒を用いたガスの接触反応では、
高SV(単位時間当りのガス流量/触媒の体積)、高L
V(線速度)といった条件下での反応が求められてい
る。このためには、反応に用いる触媒は固体酸性が高
く、活性点の数が多いことが望まれる。特に、揮発性有
機塩素化合物を接触分解する触媒には優れた耐塩化水素
性が望まれる。上記従来の触媒の中で耐酸性より考えれ
ば、ジルコニアやチタニアを用いた担体で触媒を構成す
ることが好ましい。確かにこれらの担体に白金やパラジ
ウム等の金属を触媒活性金属成分として担持した触媒の
初期活性は高い。しかし、長期間活性を維持するものは
未だ見いだされていない。
Generally, in the catalytic reaction of gas using a catalyst,
High SV (gas flow rate per unit time / catalyst volume), high L
A reaction under conditions such as V (linear velocity) is required. For this purpose, it is desired that the catalyst used in the reaction has a high solid acidity and a large number of active sites. In particular, a catalyst that catalytically decomposes a volatile organic chlorine compound is desired to have excellent hydrogen chloride resistance. Considering acid resistance among the above conventional catalysts, it is preferable to configure the catalyst with a carrier using zirconia or titania. Certainly, the initial activity of a catalyst in which a metal such as platinum or palladium is carried as a catalytically active metal component on these carriers is high. However, the one which maintains the activity for a long time has not been found yet.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記状況を考
慮してなされたものであり、その課題は、揮発性有機塩
素化合物を水蒸気と酸素との共存下で効率よく分解で
き、且つ長期間活性を維持する触媒の提供である。
The present invention has been made in consideration of the above situation, and its object is to decompose a volatile organic chlorine compound efficiently in the presence of water vapor and oxygen, and for a long period of time. The purpose is to provide a catalyst that maintains the activity.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、本発明者らは耐塩化水素性に優れたチタニアを用い
て担体を作成し、この担体に種々の主触媒活性金属成分
と助触媒成分とを担持してその触媒活性を測定した。そ
の結果、貴金属金属を主触媒活性金属成分とし、ほう酸
を助触媒成分として用いると、得られた触媒は揮発性有
機塩素化合物をきわめて効率よく分解することを見出だ
し本発明に到達した。
In order to solve the above-mentioned problems, the present inventors have prepared a carrier using titania having excellent resistance to hydrogen chloride, and prepared various carriers with various main catalytically active metal components on this carrier. The catalyst component was loaded and the catalyst activity was measured. As a result, they have found that when a noble metal is used as a main catalytically active metal component and boric acid is used as a cocatalyst component, the obtained catalyst decomposes a volatile organochlorine compound very efficiently, and has reached the present invention.

【0012】すなわち、上記課題を解決する本発明の触
媒は、チタニアを主成分とする担体の表面層に主触媒活
性金属成分と助触媒成分とが担持され、主触媒活性金属
成分が白金、パラジウム、ルテニウムからなる群より選
ばれた少なくとも1種であり、助触媒成分が酸化ほう素
である触媒である。そして、主触媒活性金属成分の担持
量が触媒に対して金属換算で0.1〜2重量%相当量、
助触媒成分の担持量が触媒に対して三酸化二ほう素とし
て1〜3重量%相当量であるものである。
That is, in the catalyst of the present invention for solving the above problems, a main catalytically active metal component and a cocatalyst component are supported on the surface layer of a carrier containing titania as a main component, and the main catalytically active metal component is platinum or palladium. , Ruthenium, and at least one selected from the group consisting of ruthenium, and the co-catalyst component is boron oxide. And, the supported amount of the main catalytically active metal component is equivalent to 0.1 to 2% by weight in terms of metal relative to the catalyst,
The amount of the cocatalyst component supported is 1 to 3% by weight as diboron trioxide with respect to the catalyst.

【0013】[0013]

【作用】本発明に係る触媒の構成において、チタニアを
主成分とする担体とし、触媒活性金属成分を白金、パラ
ジウム、ロジウムなどとすることにより、分解活性の高
い触媒が得られることはすでに公知のものでありこの範
囲については新規なものでない。
It is already known that a catalyst having a high decomposition activity can be obtained by using a carrier containing titania as a main component and a catalytically active metal component such as platinum, palladium or rhodium in the structure of the catalyst according to the present invention. However, this range is not new.

【0014】本発明としてならしめるところのものは、
これらの触媒活性金属成分に加えて助触媒成分としての
酸化ほう素を用いること、及び触媒活性金属成分と助触
媒成分とをチタニアを主成分とする担体の表面層に選択
的に担持したことである。このようにして初めて高活性
と長寿命とを併せ持つ揮発性有機塩素化合物の分解触媒
を得たものである。
What the present invention can provide is as follows:
By using boron oxide as a co-catalyst component in addition to these catalytically active metal components, and by selectively supporting the catalytically active metal component and the co-catalyst component on the surface layer of a carrier containing titania as a main component. is there. Thus, for the first time, a catalyst for decomposing a volatile organic chlorine compound having both high activity and long life is obtained.

【0015】本発明において用いられる担体を得るには
以下のようにする。まず、チタニウム塩を加水分解し、
チタニア水和物を得る。次いでこの水和物と成型助剤と
を混合し、十分捏和して可塑化し、成型し、乾燥し、焼
成する。ここで使用できるチタニウム塩は硫酸チタニウ
ム、三塩化チタニウム、四塩化チタニウム、チタニウム
イソプロコキシド等であり、アンモニア水、水酸化ナト
リウム、炭酸アンモニウム等の溶液を用いて加水分解す
る。用いる成型助剤は触媒担体を製造するのに用いられ
る通例のものでよく、特に限定されるものではないが焼
成後に何も残留させないような有機成型助剤であれば好
都合である。
The carrier used in the present invention is obtained as follows. First, hydrolyze the titanium salt,
Obtain titania hydrate. Next, the hydrate and a molding aid are mixed, kneaded sufficiently to be plasticized, molded, dried and fired. Titanium salts that can be used here are titanium sulfate, titanium trichloride, titanium tetrachloride, titanium isoprocoxide, etc., which are hydrolyzed using a solution of aqueous ammonia, sodium hydroxide, ammonium carbonate or the like. The molding aid used may be a conventional one used for producing a catalyst carrier, and is not particularly limited, but it is convenient if it is an organic molding aid that does not leave any residue after firing.

【0016】成型体の形状は一般に触媒担体として用い
られている円筒状、球状、ハニカム状でよく、触媒反応
に適した形状を選択すれば良い。よって、粉状担体に触
媒活性金属成分と助触媒成分とを担持させた触媒を耐火
性基体に付着させて用いることも可能である。また、成
型体を焼成して担体を得るが、この時の焼成温度は50
0〜600℃とすることが望ましい。焼成温度が低いと
十分な担体強度が得られず、高すぎると結晶構造がアナ
ターゼ型からルチル型に熱転移し、得られるチタニア担
体の比表面積が減少するからである。
The shape of the molded body may be a cylindrical shape, a spherical shape, or a honeycomb shape generally used as a catalyst carrier, and a shape suitable for the catalytic reaction may be selected. Therefore, it is also possible to use a catalyst in which a catalytically active metal component and a co-catalyst component are supported on a powdery carrier by adhering it to a refractory substrate. Also, the molded body is fired to obtain a carrier, and the firing temperature at this time is 50
The temperature is preferably 0 to 600 ° C. This is because if the calcination temperature is low, sufficient carrier strength cannot be obtained, and if it is too high, the crystal structure undergoes thermal transition from anatase type to rutile type, and the specific surface area of the resulting titania carrier decreases.

【0017】このようにして得た担体に白金、パラジウ
ム、ルテニウム等の金属を主触媒活性金属成分とし、ほ
う酸等を助触媒成分として担持させ、次いで80〜11
0℃で乾燥し、400〜600℃の温度で焼成して本発
明の触媒を製造する。この際、主触媒活性金属成分の担
持量を金属換算で触媒量に対して0.1〜2重量%相当
量とするのは、この範囲より担持量が少ないと十分な触
媒活性が得られないからである。そして、この範囲より
多くても活性向上に対する更なる効果が得られず、経済
性を損なうのみであるからである。
On the carrier thus obtained, metals such as platinum, palladium and ruthenium are loaded as a main catalytically active metal component, and boric acid and the like are loaded as a cocatalyst component.
The catalyst of the present invention is manufactured by drying at 0 ° C. and calcining at a temperature of 400 to 600 ° C. At this time, the amount of the main catalytically active metal component supported is set to an amount equivalent to 0.1 to 2% by weight based on the amount of the catalyst in terms of metal, when the supported amount is less than this range, sufficient catalytic activity cannot be obtained. Because. Further, even if it exceeds this range, the further effect on the activity improvement cannot be obtained, and the economical efficiency is only impaired.

【0018】助触媒成分の担持量を酸化物換算で触媒量
に対して1〜3重量%相当量とするのは、この範囲外の
担持量では長時間安定した分解活性を維持することがで
きないからである。
When the amount of the cocatalyst component supported is equivalent to 1 to 3% by weight based on the amount of the catalyst in terms of oxide, it is impossible to maintain stable decomposition activity for a long time when the amount supported is outside this range. Because.

【0019】本発明の触媒は高SV、高LVといった条
件下で使用される。このため、揮発性有機塩素化合物が
触媒担体内部に拡散し反応することは期待されない。本
発明の触媒において、主触媒活性金属成分と助触媒成分
とを選択的に担体表面層に担持させるのはこの点を考慮
したものである。担体表面層に主触媒活性金属成分と助
触媒成分とを担持させるには、チタニア担体を水酸化ナ
トリウム溶液、アンモニア水等でアルカリ処理した後、
主触媒活性成分と助触媒成分との混合溶液を含浸するこ
とで得られる。
The catalyst of the present invention is used under conditions of high SV and high LV. Therefore, it is not expected that the volatile organic chlorine compound diffuses inside the catalyst carrier and reacts therewith. In the catalyst of the present invention, it is in consideration of this point that the main catalytically active metal component and the co-catalyst component are selectively supported on the carrier surface layer. In order to support the main catalytically active metal component and the co-catalyst component on the carrier surface layer, after the alkali treatment of the titania carrier with sodium hydroxide solution, aqueous ammonia, etc.,
It can be obtained by impregnating a mixed solution of a main catalytically active component and a cocatalyst component.

【0020】本発明の触媒反応は、触媒中の固体酸の酸
性点に水分子が吸着してブレンステッド酸型の活性を発
揮し、揮発性有機塩素化合物分子から塩素原子を引き抜
くことにより当該化合物分子を分解するものである。本
発明の触媒が揮発性有機塩素化合物をきわめて効率よく
分解できるのは、酸化ほう素を助触媒成分として添加す
ることで主触媒活性金属成分と助触媒成分とが相乗効果
を示し、活性点の数が大幅に増加するためと思われる。
In the catalytic reaction of the present invention, water molecules are adsorbed at the acidic points of the solid acid in the catalyst to exhibit Bronsted acid type activity, and the chlorine atom is extracted from the molecule of the volatile organochlorine compound. It decomposes molecules. The catalyst of the present invention can decompose volatile organochlorine compounds extremely efficiently because the addition of boron oxide as a co-catalyst component shows a synergistic effect between the main catalytically active metal component and the co-catalyst component. It seems that the number will increase significantly.

【0021】[0021]

【実施例】【Example】

(実施例1、2) (1) 担体の作成 内容積100リットルの撹拌機付ステンレス製反応槽に
水45リットルを入れ、70℃まで加温し、この温度に
保持した。次に濃度14%のアンモニア水190gを加
え、溶液のpHを9.5とした。次いでTiO2として
2400gの硫酸チタニウムを含む水溶液20Kgと濃
度14%のアンモニア水18.2Kgとを、反応液のp
Hが9.0〜9.5になるように調整しつつ15分間で
全量を同時に滴下した。滴下終了後、さらに30分間撹
拌を続け、TiO2として2.85重量%濃度のチタニ
ア水和物スラリーを得た。得られたスラリーを濾過して
チタニア水和物ケーキを得、これを温度50℃の温水8
0リットルに投入し、撹拌して再分散し、次いで濾過し
た。このリパルプ洗浄操作を全部で3回繰り返し、アン
モニア分を除去したチタニア水和物ケーキを得た。
(Examples 1 and 2) (1) Preparation of carrier 45 liters of water was placed in a reaction vessel made of stainless steel with an agitator and having an internal volume of 100 liters, heated to 70 ° C, and kept at this temperature. Next, 190 g of 14% concentration aqueous ammonia was added to adjust the pH of the solution to 9.5. Next, 20 kg of an aqueous solution containing 2400 g of titanium sulfate as TiO 2 and 18.2 kg of 14% -concentrated ammonia water were added to
The entire amount was dropped at the same time in 15 minutes while adjusting the H to be 9.0 to 9.5. After the dropping was completed, stirring was continued for another 30 minutes to obtain a titania hydrate slurry having a concentration of 2.85% by weight as TiO 2 . The obtained slurry was filtered to obtain a titania hydrate cake, which was heated with hot water at a temperature of 50 ° C.
Pour into 0 liters, stir to redisperse and then filter. This repulp washing operation was repeated three times in total to obtain a titania hydrate cake from which the ammonia content was removed.

【0022】次いで、得られた水和物ケーキの内の9.
0Kg(TiO2として1260g)と有機成型助剤と
してアビセル(商品名 旭化成工業株式会社製)45g
メトロース(商品名 信越化学株式会社製)15gとを
加え、加温ジャケット付ニーダー中で十分可塑化するま
で捏和した。なお、捏和物の500℃での強熱減量は5
5%であった。
Then, in the hydrate cake obtained, 9.
0 kg (1260 g as TiO 2 ) and 45 g Avicel (trade name, manufactured by Asahi Kasei Co., Ltd.) as an organic molding aid
15 g of Metroose (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was added and kneaded in a kneader with a heating jacket until it was sufficiently plasticized. The loss on ignition of the kneaded material at 500 ° C is 5
5%.

【0023】次に、得られた捏和物を製丸機にて直径約
2.0mmのビードに造粒し、100℃の温度で15時
間乾燥した後、500℃で2時間焼成した。このように
して触媒担体を得た。窒素ガス吸着によるBET法によ
り求めたこの担体の比表面積は108m2/gであっ
た。
Next, the kneaded material obtained was granulated into beads having a diameter of about 2.0 mm by a rounding machine, dried at a temperature of 100 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours. In this way, a catalyst carrier was obtained. The specific surface area of this carrier as determined by the BET method by nitrogen gas adsorption was 108 m 2 / g.

【0024】(2) 触媒の作成 前記担体200gに濃度14%のアンモニア水65ミリ
リットルを含浸させ、表面を乾燥させた。次いで塩化白
金酸2.13gを水10ミリリットルに溶解して得た溶
液と、ほう酸3.59gを温水35ミリリットルで溶解
して得た液とを混合し、含浸液を得た。この含浸液の全
量を前記アンモニア処理した担体の全量に含浸させ、含
浸物を110℃で15時間乾燥し、次いで500℃で2
時間焼成して触媒A(実施例1)を得た。
(2) Preparation of catalyst 200 g of the carrier was impregnated with 65 ml of 14% ammonia water, and the surface was dried. Then, a solution obtained by dissolving 2.13 g of chloroplatinic acid in 10 ml of water and a solution obtained by dissolving 3.59 g of boric acid in 35 ml of warm water were mixed to obtain an impregnating liquid. The entire amount of the impregnating solution was impregnated with the entire amount of the ammonia-treated carrier, the impregnated product was dried at 110 ° C for 15 hours, and then at 500 ° C for 2 hours.
It was calcined for a time to obtain catalyst A (Example 1).

【0025】次に含浸液作成時の塩化白金酸量を2.1
8gとし、ほう酸量を11.0gとしたこと以外前記の
方法とほぼ同様の方法で触媒B(実施例2)を得た。得
られた触媒A、触媒Bの白金とほう酸の担持量を表1に
示した。
Next, the amount of chloroplatinic acid at the time of preparing the impregnating liquid was 2.1.
Catalyst B (Example 2) was obtained in the same manner as in the above method except that the amount of boric acid was 8 g and the amount of boric acid was 11.0 g. Table 1 shows the amounts of platinum and boric acid supported on the obtained catalysts A and B.

【0026】また、触媒A、Bの白金とほう酸の担持状
態を株式会社島津製作所製EPMA−2300型のX線
マイクロアナライザーで測定した。触媒Aの測定結果を
図1に示したが、触媒Bも同様の担持状態であった。
The supported states of platinum and boric acid on the catalysts A and B were measured with an EPMA-2300 type X-ray microanalyzer manufactured by Shimadzu Corporation. The measurement result of the catalyst A is shown in FIG. 1, and the catalyst B was also in the same loaded state.

【0027】(3) 触媒活性の評価 触媒充填量50ミリリットルの固定床流通型反応装置に
得られた触媒A、Bをそれぞれ充填して触媒層を形成し
た。次いで、反応温度が500℃となるようにしつつ下
記組成の試料ガスをSV=5000hr-1で触媒層を通
過させた。試料ガスを通過させた後50時間後と300
時間後に排気ガス中のトリクロロエチレンの量を株式会
社島津製作所製のガスクロマトグラフを用いて分析し、
トリクロロエチレンの分解率を求めた。得られた結果を
表1に併せて示した。
(3) Evaluation of catalytic activity A catalyst bed was formed by filling each of the obtained catalysts A and B in a fixed bed flow type reactor having a catalyst filling amount of 50 ml. Then, a sample gas having the following composition was passed through the catalyst layer at SV = 5000 hr −1 while keeping the reaction temperature at 500 ° C. 50 hours and 300 after passing the sample gas
After a period of time, the amount of trichlorethylene in the exhaust gas was analyzed using a gas chromatograph manufactured by Shimadzu Corporation,
The decomposition rate of trichlorethylene was determined. The obtained results are also shown in Table 1.

【0028】 (試料ガス組成) トリクロロエチレン : 0.23 ミリリットル/分 水 : 0.33 ミリリットル/分 空気 : 3704.2 ミリリットル/分 (比較例1、2)塩化白金酸を2.12gとし、ほう酸
を1.79gとした以外は実施例1と同様にして触媒C
(比較例1)を得た。
(Sample Gas Composition) Trichlorethylene: 0.23 ml / min Water: 0.33 ml / min Air: 3704.2 ml / min (Comparative Examples 1 and 2) Chloroplatinic acid was 2.12 g, and boric acid was added. Catalyst C as in Example 1 except that 1.79 g was used.
(Comparative example 1) was obtained.

【0029】また、塩化白金酸を2.22g、ほう酸を
18.73gとした以外は実施例1と同様にして触媒D
(比較例2)を得た。得られた触媒C、触媒Dの白金と
ほう酸の担持量を表1に示した。
Also, catalyst D was prepared in the same manner as in Example 1 except that 2.22 g of chloroplatinic acid and 18.73 g of boric acid were used.
(Comparative example 2) was obtained. Table 1 shows the amounts of platinum and boric acid supported on the obtained catalysts C and D.

【0030】次いで実施例1と同様にしてこれらの触媒
の活性を評価した。得られた結果を表1に併せ示した。
Then, the activity of these catalysts was evaluated in the same manner as in Example 1. The obtained results are also shown in Table 1.

【0031】(実施例3、4)塩化白金酸を0.85g
とし、ほう酸を3.58gとした以外は実施例1と同様
にして触媒E(実施例3)を得た。
(Examples 3 and 4) 0.85 g of chloroplatinic acid
Then, a catalyst E (Example 3) was obtained in the same manner as in Example 1 except that boric acid was changed to 3.58 g.

【0032】また、塩化白金酸を4.34g、ほう酸を
7.3gとした以外は実施例1と同様にして触媒F(実
施例4)を得た。得られた触媒E、触媒Fの白金とほう
酸の担持量を表1に示した。
A catalyst F (Example 4) was obtained in the same manner as in Example 1 except that 4.34 g of chloroplatinic acid and 7.3 g of boric acid were used. Table 1 shows the amounts of platinum and boric acid supported on the obtained catalysts E and F.

【0033】次いで実施例1と同様にしてこれらの触媒
の活性を評価した。得られた結果を表1に併せ示した。
Then, the activity of these catalysts was evaluated in the same manner as in Example 1. The obtained results are also shown in Table 1.

【0034】(比較例3)塩化白金酸を2.13g、ほ
う酸を3.59gとし、アルカリ処理をしないこと以外
は実施例1と同様にして触媒Gを得た。
(Comparative Example 3) A catalyst G was obtained in the same manner as in Example 1 except that chloroplatinic acid was 2.13 g and boric acid was 3.59 g, and no alkali treatment was performed.

【0035】次いで実施例1と同様にしてこれらの触媒
の活性を評価した。得られた結果を表1に併せ示した。
Then, the activity of these catalysts was evaluated in the same manner as in Example 1. The obtained results are also shown in Table 1.

【0036】(比較例4)実施例1で得た担体200g
を、アンモニア水でアルカリ処理することなく塩化白金
酸4.25gを水70ミリリットルに溶解した溶液を含
浸させ、110℃で15時間乾燥し、次いで500℃で
2時間焼成して触媒Hを得た。得られた触媒Hの白金と
酸化ほう素との担持量と担持状態を表1に示す。
Comparative Example 4 200 g of the carrier obtained in Example 1
Was impregnated with a solution of 4.25 g of chloroplatinic acid dissolved in 70 ml of water without alkali treatment with ammonia water, dried at 110 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours to obtain a catalyst H. . Table 1 shows the loading amounts and loading states of platinum and boron oxide of the obtained catalyst H.

【0037】 表1の結果から見ると触媒A、B、E、Fは本発明の範
囲の触媒であり、トリクロロエチレンを長時間効率良く
分解し無害化できることが判る。
[0037] From the results shown in Table 1, it can be seen that the catalysts A, B, E and F are catalysts within the scope of the present invention and can decompose trichlorethylene efficiently for a long time to render it harmless.

【0038】触媒CとDは助触媒成分である酸化ほう素
の担持量が本発明の範囲外のものであり、初期活性は高
いものの、長時間使用すると触媒の劣化が起こりトリク
ロロエチレン分解効率が低下する。助触媒成分である酸
化ほう素の担持量が三酸化二ほう素換算で1〜3重量%
範囲において主触媒活性金属成分と助触媒成分の相乗効
果による活性点の数を増やす効果を発揮し、さらに酸化
ほう素の担持量を増やすとその効果は逆に低下するため
である。
The catalysts C and D had a supported amount of boron oxide as a co-catalyst component outside the range of the present invention and had high initial activity, but when used for a long time, the catalyst deteriorated and the trichloroethylene decomposition efficiency decreased. To do. The supported amount of boron oxide that is a promoter component is 1 to 3% by weight in terms of diboron trioxide.
This is because the effect of increasing the number of active sites due to the synergistic effect of the main catalytically active metal component and the cocatalyst component is exerted within the range, and the effect is decreased when the amount of boron oxide supported is further increased.

【0039】触媒Gは主触媒活性金属成分と助触媒成分
は本発明の範囲にはいるものの白金とホウ酸を触媒の内
部まで均一に担持した触媒であり、初期活性は高いもの
の、長時間使用すると触媒の劣化が起こりトリクロロエ
チレン分解効率が低下することが判る。
The catalyst G is a catalyst in which the main catalytically active metal component and the cocatalyst component are within the scope of the present invention, but platinum and boric acid are evenly supported inside the catalyst. Then, it is understood that the catalyst deteriorates and the trichlorethylene decomposition efficiency decreases.

【0040】触媒Hは助触媒成分である酸化ほう素を無
担持とし、白金を触媒の内部まで均一に担持した触媒で
あり、初期活性は高いものの、長時間使用すると触媒の
劣化が起こりトリクロロエチレン分解効率が低下するこ
とが判る。
The catalyst H is a catalyst in which boron oxide, which is a co-catalyst component, is not supported, and platinum is evenly supported inside the catalyst. Although the initial activity is high, the catalyst deteriorates when used for a long time and decomposes trichloroethylene. It can be seen that the efficiency decreases.

【0041】このように担体の表面層に主触媒活性金属
成分の白金と助触媒成分の酸化ほう素を担持すること
で、触媒成分の担持量を低減化することができ、且つ触
媒寿命も長いためトリクロロエチレンの分解処理が効率
良くできることが明らかである。
By thus supporting platinum as the main catalytically active metal component and boron oxide as the cocatalyst component on the surface layer of the carrier, the amount of the catalyst component supported can be reduced and the catalyst life is long. Therefore, it is clear that the decomposition treatment of trichlorethylene can be performed efficiently.

【0042】[0042]

【発明の効果】本発明の触媒では助触媒成分として加え
た酸化ほう素が主触媒活性金属成分と相乗効果をなす。
そして、担体表面層に集中的に主触媒活性金属成分と助
触媒成分とが担持されている。その結果、揮発性有機塩
素化合物を効率良く、長時間処理することができ、実用
的である。
In the catalyst of the present invention, boron oxide added as a cocatalyst component has a synergistic effect with the main catalytically active metal component.
Then, the main catalytically active metal component and the co-catalyst component are concentratedly carried on the carrier surface layer. As a result, the volatile organic chlorine compound can be efficiently treated for a long time, which is practical.

【0043】よって、本発明の触媒は金属の脱脂工程や
ドライクリーニング等から排出される排ガス、廃液等の
揮発性有機塩素化合物の無害化に使用でき、環境汚染防
止対策上きわめて有効である。
Therefore, the catalyst of the present invention can be used for detoxifying volatile organic chlorine compounds such as exhaust gas discharged from a metal degreasing process and dry cleaning, waste liquid, etc., and is extremely effective in preventing environmental pollution.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/46 301 A (72)発明者 早川 至 千葉県 市川市 中国分 3−18−5 住 友金属鉱山株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B01J 23/46 301 A (72) Inventor Toru Hayakawa Ichikawa, Chiba Chugoku 3-18-5 Residence Central Research Laboratory, Tomo Metal Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタニアを主成分とする担体の表面層
に主触媒活性金属成分と助触媒成分とが担持され、主触
媒活性金属成分が白金、パラジウム、ルテニウムからな
る群より選ばれた少なくとも1種であり、助触媒成分が
酸化ほう素である揮発性有機塩素化合物分解用触媒。
1. A main catalyst-active metal component and a co-catalyst component are carried on the surface layer of a carrier containing titania as a main component, and the main catalyst-active metal component is at least one selected from the group consisting of platinum, palladium and ruthenium. A catalyst for decomposing volatile organic chlorine compounds, which is a seed and whose promoter component is boron oxide.
【請求項2】 主触媒活性金属成分の担持量が触媒に
対して金属換算で0.1〜2重量%相当量、助触媒成分
の担持量が触媒に対して三酸化二ほう素換算で1〜3重
量%相当量である請求項1記載の触媒。
2. A supported amount of the main catalytically active metal component is 0.1 to 2% by weight in terms of metal with respect to the catalyst, and a supported amount of the cocatalyst component is 1 in terms of diboron trioxide based on the catalyst. The catalyst according to claim 1, which is equivalent to about 3% by weight.
JP6189197A 1994-08-11 1994-08-11 Catalyst for decomposing volatile organochlorine compound Pending JPH0852353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6189197A JPH0852353A (en) 1994-08-11 1994-08-11 Catalyst for decomposing volatile organochlorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6189197A JPH0852353A (en) 1994-08-11 1994-08-11 Catalyst for decomposing volatile organochlorine compound

Publications (1)

Publication Number Publication Date
JPH0852353A true JPH0852353A (en) 1996-02-27

Family

ID=16237151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6189197A Pending JPH0852353A (en) 1994-08-11 1994-08-11 Catalyst for decomposing volatile organochlorine compound

Country Status (1)

Country Link
JP (1) JPH0852353A (en)

Similar Documents

Publication Publication Date Title
EP1029580B1 (en) Method for removing nitrogen oxides in exhaust gas
JP3021420B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP3598539B2 (en) Catalyst for decomposition of volatile organic chlorine compounds
EP1236510A1 (en) Catalyst for decomposing organic hazardous material and method for decomposing organic halides using the same
JPH0838896A (en) Catalyst for decomposing volatile organochlorine compound
JPH0852360A (en) Catalyst for decomposition of volatile organic chlorine compound
JPH0852353A (en) Catalyst for decomposing volatile organochlorine compound
JPH0852361A (en) Catalyst for decomposition of volatile organic chlorine compound
JP3457917B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP3212577B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2903960B2 (en) Method for producing catalyst carrier for treating organochlorine compound, catalyst using obtained carrier, and method for producing the same
JP3510541B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JPH0852354A (en) Catalyst for decomposing volatile organohalogen compound
JP2000024500A (en) Catalyst for exhaust gas treatment, exhaust gas treatment and treatment apparatus
JPH07256099A (en) Catalyst for treating organochlorine compound
JPH0857322A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
JP3790943B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JP3332024B2 (en) Organic compound combustion removal catalyst and combustion removal method
JP2000061305A (en) Catalyst and method for treating exhaust gas
JPH06218232A (en) Purifying method for nitrous oxide containing waste gas
JP3505751B2 (en) Decomposition method of chlorinated organic compounds
JPH05212389A (en) Treatment of waste water containing organo halogen compound
JPS6335298B2 (en)
JP2602337B2 (en) Decomposition and combustion treatment method for organic chlorine compounds