JPH0851164A - Non-volatile semiconductor storage device and manufacture thereof - Google Patents

Non-volatile semiconductor storage device and manufacture thereof

Info

Publication number
JPH0851164A
JPH0851164A JP6185887A JP18588794A JPH0851164A JP H0851164 A JPH0851164 A JP H0851164A JP 6185887 A JP6185887 A JP 6185887A JP 18588794 A JP18588794 A JP 18588794A JP H0851164 A JPH0851164 A JP H0851164A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
source region
region
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6185887A
Other languages
Japanese (ja)
Inventor
Michio Morita
倫生 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP6185887A priority Critical patent/JPH0851164A/en
Publication of JPH0851164A publication Critical patent/JPH0851164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Abstract

PURPOSE:To provide a non-volatile semiconductor storage device having a structure being easily manufactured. CONSTITUTION:A source region 13 and a drain region 12 are formed into one conductivity type semiconductor substrate 11, and active regions isolated by element isolation insulating films 14 are formed onto the semiconductor substrate 11. A gate insulating film 15 is shaped onto a specified channel region held by the source region 13 and the drain region 12 and brought into contact with the source region 13, and a floating gate electrode 16 is formed onto the gate insulating film 15. A simultaneously formed control gate electrode 20 and an erasing gate electrode 21 are arranged onto the floating gate electrode 16 through an inter-layer insulating film 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、浮遊ゲート型の不揮発
性半導体記憶装置およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floating gate type nonvolatile semiconductor memory device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来の電気的に書き込み可能な不揮発性
メモリ(EPROM)は、ソース領域とドレイン領域と
の間にあって、半導体基板内のチャネル領域から絶縁さ
れ、このチャネル領域を覆って配置された電気的に浮動
している導電性ゲート電極(浮遊ゲート電極)を有し、
さらに、浮遊ゲート電極を覆って制御ゲート電極が配置
されている。ただし、制御ゲート電極は浮遊ゲート電極
から絶縁されている。
2. Description of the Related Art A conventional electrically writable non-volatile memory (EPROM) is located between a source region and a drain region, insulated from a channel region in a semiconductor substrate, and arranged so as to cover the channel region. Has an electrically floating conductive gate electrode (floating gate electrode),
Further, a control gate electrode is arranged so as to cover the floating gate electrode. However, the control gate electrode is insulated from the floating gate electrode.

【0003】このような電気的に書き込みが可能な不揮
発性メモリトランジスタのしきい値電圧は、浮遊ゲート
電極中に保持されている電荷量によって制御される。す
なわち、チャネル領域から薄いゲート絶縁膜を介して浮
遊ゲート電極へ電子を注入することにより、トランジス
タは書き込み状態となる。
The threshold voltage of such an electrically writable nonvolatile memory transistor is controlled by the amount of charge held in the floating gate electrode. That is, by injecting electrons from the channel region into the floating gate electrode through the thin gate insulating film, the transistor is in a writing state.

【0004】トランジスタの状態を読み出す方法は、ト
ランジスタのソース領域とドレイン領域との間と制御ゲ
ート電極に動作電圧を印加し、そのときのソース領域と
ドレイン領域との間に流れる電流のレベルを検出するこ
とにより行われる。
The method of reading the state of the transistor is to apply an operating voltage between the source region and the drain region of the transistor and to the control gate electrode, and detect the level of the current flowing between the source region and the drain region at that time. It is done by doing.

【0005】初期のEPROMデバイスは、紫外線を照
射することにより、蓄積された電荷の消去を行う。最近
では、トランジスタセルは電気的に消去することが可能
なEEPROM(Electrically Erasable and Programa
ble ROM)が広く用いられている。初期のEEPRO
Mは、非常に薄いトンネル現象を有する誘電体層を介し
てトランジスタの浮遊ゲート電極からソース領域へ電荷
を転送することにより、電気的に消去させる構造であ
る。さらに最近では、EEPROMメモリセルが独立し
た消去用の第3のゲート電極を備えて構成されている。
たとえば、特公平1−50116号公報で提案されてい
る。この消去用のゲート電極は浮遊ゲート電極の表面
に、トンネリング媒体となり得る薄い絶縁膜を介し、隣
接した複数のメモリトランジスタにまで渡るように配置
されている。そのため、適切な電圧を消去ゲート電極に
印加すると、複数のメモリトランジスタが同時に消去さ
れる。このようなEEPROMよりなるセルアレイは一
般にフラッシュ型EEPROMセルアレイといわれる。
Early EPROM devices erase the accumulated charge by irradiating them with ultraviolet light. Recently, a transistor cell is an electrically erasable EEPROM (Electrically Erasable and Programmable EEPROM).
ble ROM) is widely used. Early EEPRO
M has a structure in which electric charges are transferred from the floating gate electrode of the transistor to the source region through a dielectric layer having a very thin tunnel phenomenon, thereby electrically erasing. More recently, EEPROM memory cells have been configured with an independent third erasing gate electrode.
For example, it is proposed in Japanese Patent Publication No. 1-50116. The erasing gate electrode is arranged on the surface of the floating gate electrode so as to extend to a plurality of adjacent memory transistors via a thin insulating film that can serve as a tunneling medium. Therefore, when an appropriate voltage is applied to the erase gate electrode, a plurality of memory transistors are erased at the same time. A cell array composed of such an EEPROM is generally called a flash type EEPROM cell array.

【0006】図6は従来のEEPROMセルの断面図で
ある。図7(A)は従来のEEPROMセルの平面図、
(B)は(A)のA−A’断面図、(C)は(A)のB
−B’断面図である。
FIG. 6 is a sectional view of a conventional EEPROM cell. FIG. 7A is a plan view of a conventional EEPROM cell,
(B) is a cross-sectional view taken along the line AA 'of (A), (C) is B of (A).
It is a -B 'sectional view.

【0007】図6および図7において、1は半導体基
板、2はドレイン領域、3はソース領域、4はゲート絶
縁膜、5は浮遊ゲート電極、6は層間絶縁膜、7は制御
ゲート電極、8は素子分離に用いる酸化シリコン膜、9
は消去ゲート電極である。
In FIGS. 6 and 7, 1 is a semiconductor substrate, 2 is a drain region, 3 is a source region, 4 is a gate insulating film, 5 is a floating gate electrode, 6 is an interlayer insulating film, 7 is a control gate electrode, 8 Is a silicon oxide film used for element isolation, 9
Is an erase gate electrode.

【0008】図6のEEPROMでは、ドレイン領域2
に電圧を印加して、ドレイン領域2とソース領域3との
間の電界によりホットエレクトロン(高エネルギーの電
子)を発生させる。このホットエレクトロンを制御ゲー
ト電極7に電圧を印加することにより、電子を浮遊ゲー
ト電極5に効率よく注入させる。これより、メモリトラ
ンジスタの書き込みを行う。一方、消去はソース領域3
に電圧を印加することにより、浮遊ゲート電極5に蓄積
されている電子をソース領域3にトンネリングさせて行
う。また、トランジスタの状態を読み出す方法は、トラ
ンジスタのソース領域3とドレイン領域2との間と制御
ゲート電極7に動作電圧を印加する。そのときのソース
領域3とドレイン領域2との間に流れる電流のレベルを
検出することにより行う。図6の構造のEEPROMを
スタックゲート型EEPROMと呼ぶ。
In the EEPROM of FIG. 6, the drain region 2
Is applied to generate hot electrons (high energy electrons) by the electric field between the drain region 2 and the source region 3. By applying a voltage to the control gate electrode 7 with the hot electrons, electrons are efficiently injected into the floating gate electrode 5. From this, writing to the memory transistor is performed. On the other hand, erasing is performed in the source region 3
Electrons stored in the floating gate electrode 5 are tunneled to the source region 3 by applying a voltage to the source region 3. As a method of reading the state of the transistor, an operating voltage is applied between the source region 3 and the drain region 2 of the transistor and the control gate electrode 7. It is performed by detecting the level of the current flowing between the source region 3 and the drain region 2 at that time. The EEPROM having the structure of FIG. 6 is called a stack gate type EEPROM.

【0009】図7のEEPROMでは、書き込み方法お
よび読み出し方法は図6のEEPROMと同様である
が、消去は、消去ゲート電極9に電圧を印加することに
より行う。図7の構造のEEPROMを3層PS型EE
PROMと呼ぶ。
The writing and reading methods of the EEPROM of FIG. 7 are similar to those of the EEPROM of FIG. 6, but erasing is performed by applying a voltage to the erase gate electrode 9. The EEPROM having the structure shown in FIG. 7 is a three-layer PS type EE.
Called PROM.

【0010】このような多層電極をもつスタックゲート
型EEPROMは、セル構造が簡単でセル面積が小さく
大容量化には適している。しかし、消去にトンネリング
現象を利用するため、ゲート絶縁膜4を薄くしなければ
ならない。また、書き込み時も同一のゲート絶縁膜4を
使用しているため、ゲート絶縁膜4の信頼性が劣化し、
書き換え回数が少なくなる。また、複数のメモリトラン
ジスタを同時に消去する時に、各メモリトランジスタに
よって消去の状態が異なる。このため、あるメモリトラ
ンジスタが消去し過ぎた状態でノーマリーオン型のトラ
ンジスタとなる(オーバーイレーズ)ことがあり、誤読
み出しの原因となる。そこで、近年、書き換え回数を増
加させるために消去専用の消去ゲート電極9を備え、オ
ーバーイレーズの問題を解決するために、スプリットゲ
ートを備えた図7のごとき構造の3層PS型EEPRO
Mが考案されている。
A stack gate type EEPROM having such a multi-layer electrode has a simple cell structure, a small cell area, and is suitable for a large capacity. However, since the tunneling phenomenon is used for erasing, the gate insulating film 4 must be thin. In addition, since the same gate insulating film 4 is used during writing, the reliability of the gate insulating film 4 deteriorates,
The number of rewrites decreases. Further, when erasing a plurality of memory transistors simultaneously, the erasing state differs depending on each memory transistor. Therefore, a certain memory transistor may become a normally-on type transistor (overerased) in a state where it is erased too much, which causes erroneous reading. Therefore, in recent years, a three-layer PS type EEPRO having a structure as shown in FIG. 7 is provided with an erase gate electrode 9 exclusively for erasing in order to increase the number of times of rewriting, and a split gate in order to solve the problem of overerase.
M is invented.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上述した
ような従来の3層PS型EEPROMでは、3層のゲー
ト電極5,7,9を別々に形成する必要があり、工程数
が多くなり、解決すべき課題が残されていた。また、構
造が複雑であることから、段差が非常に大きくなり、製
造することもむずかしいという課題もあった。
However, in the conventional three-layer PS type EEPROM as described above, it is necessary to separately form the three-layer gate electrodes 5, 7, 9 and the number of steps increases, which is a solution. There were some issues to be solved. Further, since the structure is complicated, there is a problem that the step becomes very large and it is difficult to manufacture.

【0012】本発明は上記従来の課題を解決するもの
で、制御ゲート電極と消去ゲート電極を同時に形成する
ことにより、製造方法の簡略化を図ることのできる不揮
発性半導体記憶装置およびその製造方法を提供すること
を目的とする。
The present invention solves the above-mentioned conventional problems, and provides a nonvolatile semiconductor memory device and its manufacturing method which can simplify the manufacturing method by simultaneously forming a control gate electrode and an erase gate electrode. The purpose is to provide.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明の半導体記憶装置は、一導電型半導体基板中に
ソース領域およびドレイン領域が設けられ、ソース領域
およびドレイン領域に挟まれ、ソース領域に接する所定
のチャネル領域上にゲート絶縁膜が形成されており、ゲ
ート絶縁膜上に浮遊ゲート電極を備え、浮遊ゲート電極
上に層間絶縁膜を介して、制御ゲート電極と消去ゲート
電極を少なくとも備えている。
To achieve this object, a semiconductor memory device according to the present invention has a source region and a drain region provided in a semiconductor substrate of one conductivity type, and is sandwiched between the source region and the drain region. A gate insulating film is formed on a predetermined channel region in contact with the region, a floating gate electrode is provided on the gate insulating film, and at least a control gate electrode and an erase gate electrode are provided on the floating gate electrode via an interlayer insulating film. I have it.

【0014】この目的を達成するために本発明の半導体
記憶装置の製造方法は、一導電型半導体基板中にソース
領域およびドレイン領域を形成する工程と、ソース領域
およびドレイン領域に挟まれ、ソース領域に接する所定
のチャネル領域上にゲート酸化膜を形成する工程と、ゲ
ート絶縁膜上に浮遊ゲート電極を形成する工程と、浮遊
ゲート電極上に層間絶縁膜を形成する工程と、層間絶縁
膜上に制御ゲート電極と消去ゲート電極を同時に形成す
る工程を少なくとも備えている。
In order to achieve this object, a method of manufacturing a semiconductor memory device according to the present invention comprises a step of forming a source region and a drain region in one conductivity type semiconductor substrate, and a step of sandwiching the source region and the drain region between the source region and the drain region. A step of forming a gate oxide film on a predetermined channel region in contact with the gate insulating film, a step of forming a floating gate electrode on the gate insulating film, a step of forming an interlayer insulating film on the floating gate electrode, and a step of forming an interlayer insulating film on the interlayer insulating film. The method further includes at least a step of simultaneously forming a control gate electrode and an erase gate electrode.

【0015】[0015]

【作用】本発明のごとき製造方法によれば、制御ゲート
電極と消去ゲート電極を同時に形成しているため、工程
を簡略化することができる。また、段差を小さくするこ
とができ、製造することが容易となる。
According to the manufacturing method of the present invention, since the control gate electrode and the erase gate electrode are formed at the same time, the process can be simplified. In addition, the step can be reduced, which facilitates manufacturing.

【0016】[0016]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0017】図1(A)は本実施例の平面図、(B)は
(A)のA−A’断面図、(C)は(A)のB−B’断
面図である。
FIG. 1A is a plan view of this embodiment, FIG. 1B is a sectional view taken along the line AA 'of FIG. 1A, and FIG. 1C is a sectional view taken along the line BB' of FIG.

【0018】半導体基板11は低濃度でP型に不純物を
添加したシリコン基板である。半導体基板11中には、
ドレイン領域12およびソース領域13が形成されてい
る。ドレイン領域12およびソース領域13に挟まれ、
ソース領域13に接する所定のチャネル領域上に、ゲー
ト絶縁膜となり得る酸化シリコン膜15を介して、ポリ
シリコン膜よりなる浮遊ゲート電極16が形成されてい
る。浮遊ゲート電極16上には層間絶縁膜17を介して
制御ゲート電極20が形成されている。消去ゲート電極
21は、制御ゲート電極20と同時に形成し、層間絶縁
膜17を介して、隣接する浮遊ゲート電極16を跨いで
形成されている。
The semiconductor substrate 11 is a P-type impurity-doped silicon substrate having a low concentration. In the semiconductor substrate 11,
A drain region 12 and a source region 13 are formed. Sandwiched between the drain region 12 and the source region 13,
A floating gate electrode 16 made of a polysilicon film is formed on a predetermined channel region in contact with the source region 13 with a silicon oxide film 15 which can be a gate insulating film interposed therebetween. A control gate electrode 20 is formed on the floating gate electrode 16 via an interlayer insulating film 17. The erase gate electrode 21 is formed simultaneously with the control gate electrode 20, and is formed so as to straddle the adjacent floating gate electrodes 16 with the interlayer insulating film 17 interposed therebetween.

【0019】次に、本発明の具体的な製造方法の一実施
例について、図2(A)〜図5(A)、図2(B)〜図
5(B)の工程断面図を参照しながら説明する。図2
(A)〜図5(A)はそれぞれ図1におけるA−A’断
面部分の工程断面図、図2(B)〜図5(B)は図1に
おけるB−B’断面部分の工程断面図である。
Next, referring to the process sectional views of FIGS. 2 (A) to 5 (A) and 2 (B) to 5 (B), regarding one embodiment of a specific manufacturing method of the present invention. While explaining. Figure 2
(A) to FIG. 5 (A) are process cross-sectional views of the AA ′ cross-section part in FIG. 1, and FIG. 2 (B) to FIG. 5 (B) are process cross-sectional views of the BB ′ cross-section part in FIG. 1. Is.

【0020】まず、図2(A),(B)に示すように、
半導体基板11中に、フォトレジストをマスクとして、
砒素イオンを打ち込み、ドレイン領域12およびソース
領域13を形成する。次に、気相成長法により酸化シリ
コン膜を約500nmの厚さに堆積形成し、フォトレジ
ストを用いた公知のフォトエッチング技術により、パタ
ーンニングを行って、素子分離に用いる酸化シリコン膜
14を形成する。
First, as shown in FIGS. 2 (A) and 2 (B),
In the semiconductor substrate 11, using the photoresist as a mask,
Arsenic ions are implanted to form the drain region 12 and the source region 13. Next, a silicon oxide film is deposited and formed to a thickness of about 500 nm by a vapor phase growth method, and patterning is performed by a known photoetching technique using a photoresist to form a silicon oxide film 14 used for element isolation. To do.

【0021】次に、図3(A),(B)に示すように、
半導体基板11を30nm酸化して、ゲート絶縁膜とな
り得る酸化シリコン膜15を形成する。次に、半導体基
板11全面に、公知の気相成長法により、燐をドープし
たポリシリコン膜を300nm堆積する。これに、フォ
トレジストを用いた公知のエッチング技術を用いて、パ
ターニングを行い、浮遊ゲート電極16を形成する。
Next, as shown in FIGS. 3 (A) and 3 (B),
The semiconductor substrate 11 is oxidized by 30 nm to form a silicon oxide film 15 that can serve as a gate insulating film. Next, a phosphorus-doped polysilicon film is deposited to a thickness of 300 nm on the entire surface of the semiconductor substrate 11 by a known vapor deposition method. The floating gate electrode 16 is formed by patterning this using a known etching technique using a photoresist.

【0022】次に、図4(A),(B)のように、浮遊
ゲート電極16上に、公知の気相成長法により、酸化シ
リコン膜を20nmの厚さに堆積形成し、層間絶縁膜1
7を形成する。次に、全面に公知の気相成長法により燐
をドープしたポリシリコン膜18を300nm堆積す
る。次に、制御ゲートおよび消去ゲート形成用のレジス
トマスクパターン19を形成する。
Next, as shown in FIGS. 4A and 4B, a silicon oxide film is deposited to a thickness of 20 nm on the floating gate electrode 16 by a known vapor phase growth method to form an interlayer insulating film. 1
Form 7. Next, a phosphorus-doped polysilicon film 18 of 300 nm is deposited on the entire surface by a known vapor phase growth method. Next, a resist mask pattern 19 for forming a control gate and an erase gate is formed.

【0023】次に、図5(A),(B)のように、公知
のフォトエッチング技術を用いて、制御ゲート電極20
および消去ゲート電極21を同時に形成する。これによ
り、図5(A),(B)に示すごとき不揮発性半導体記
憶装置が完成する。
Next, as shown in FIGS. 5A and 5B, the control gate electrode 20 is formed by using a known photoetching technique.
And the erase gate electrode 21 is formed at the same time. As a result, the nonvolatile semiconductor memory device as shown in FIGS. 5A and 5B is completed.

【0024】以上のごとく本実施例では、制御ゲート電
極20と消去ゲート電極21を同時に形成することによ
り、工程を簡略化することができる。また、段差を小さ
くすることができ、製造することが容易である。
As described above, in this embodiment, the process can be simplified by forming the control gate electrode 20 and the erase gate electrode 21 at the same time. Further, the step can be reduced, and the manufacturing is easy.

【0025】[0025]

【発明の効果】本発明によれば、消去ゲートを備えた不
揮発性半導体記憶装置において、製造工程を簡略化する
ことができ、また、段差を小さくすることが可能なた
め、その製造が容易となる。
According to the present invention, in the nonvolatile semiconductor memory device having the erase gate, the manufacturing process can be simplified and the step can be reduced, so that the manufacturing is facilitated. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の不揮発性半導体記憶装置にお
ける一実施例の平面図 (B)は(A)のA−A’断面図 (C)は(A)のB−B’断面図
1A is a plan view of an embodiment of a nonvolatile semiconductor memory device of the present invention, FIG. 1B is a sectional view taken along the line AA ′ of FIG. 1A, and FIG. 1C is a sectional view taken along the line BB ′ of FIG. Figure

【図2】本発明の不揮発性半導体記憶装置の製造方法に
おける一実施例の工程断面図で、(A)は図1(A)の
A−A’部分の断面図、(B)は図1(A)のB−B’
部分の断面図
2A and 2B are process cross-sectional views of an embodiment of a method for manufacturing a nonvolatile semiconductor memory device of the present invention, where FIG. 2A is a cross-sectional view taken along the line AA ′ of FIG. 1A and FIG. BB 'of (A)
Sectional view

【図3】本発明の不揮発性半導体記憶装置の製造方法に
おける一実施例の工程断面図で、(A)は図1(A)の
A−A’部分の断面図、(B)は図1(A)のB−B’
部分の断面図
3A and 3B are process cross-sectional views of an embodiment of a method for manufacturing a nonvolatile semiconductor memory device of the present invention, where FIG. 3A is a cross-sectional view taken along the line AA ′ in FIG. 1A and FIG. BB 'of (A)
Sectional view

【図4】本発明の不揮発性半導体記憶装置の製造方法に
おける一実施例の工程断面図で、(A)は図1(A)の
A−A’部分の断面図、(B)は図1(A)のB−B’
部分の断面図
4A and 4B are process cross-sectional views of an embodiment of a method for manufacturing a nonvolatile semiconductor memory device according to the present invention, where FIG. 4A is a cross-sectional view taken along the line AA ′ of FIG. 1A and FIG. BB 'of (A)
Sectional view

【図5】本発明の不揮発性半導体記憶装置の製造方法に
おける一実施例の工程断面図で、(A)は図1(A)の
A−A’部分の断面図、(B)は図1(A)のB−B’
部分の断面図
5A and 5B are process cross-sectional views of one embodiment of the method for manufacturing a nonvolatile semiconductor memory device of the present invention, where FIG. 5A is a cross-sectional view taken along the line AA ′ of FIG. 1A and FIG. BB 'of (A)
Sectional view

【図6】従来の不揮発性半導体記憶装置の断面図FIG. 6 is a sectional view of a conventional nonvolatile semiconductor memory device.

【図7】(A)は従来の不揮発性半導体記憶装置の平面
図 (B)は(A)のA−A’断面図 (C)は(A)のB−B’断面図
7A is a plan view of a conventional nonvolatile semiconductor memory device, FIG. 7B is a sectional view taken along line AA ′ of FIG. 7A, and FIG. 7C is a sectional view taken along line BB ′ of FIG.

【符号の説明】[Explanation of symbols]

11 半導体基板 12 ドレイン領域 13 ソース領域 14 酸化シリコン膜 15 ゲート絶縁膜 16 浮遊ゲート電極 17 層間絶縁膜 18 ポリシリコン膜 19 レジストパターン 20 制御ゲート電極 21 消去ゲート電極 11 semiconductor substrate 12 drain region 13 source region 14 silicon oxide film 15 gate insulating film 16 floating gate electrode 17 interlayer insulating film 18 polysilicon film 19 resist pattern 20 control gate electrode 21 erase gate electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/115 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 27/115

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体基板中にソース領域およ
びドレイン領域が設けられ、前記ソース領域およびドレ
イン領域に挟まれ、前記ソース領域に接する所定のチャ
ネル領域上にゲート絶縁膜が形成されており、前記ゲー
ト絶縁膜上に浮遊ゲート電極を備え、前記浮遊ゲート電
極上に層間絶縁膜を介して、制御ゲート電極と消去ゲー
ト電極を少なくとも備えていることを特徴とする不揮発
性半導体記憶装置。
1. A source region and a drain region are provided in a semiconductor substrate of one conductivity type, and a gate insulating film is formed on a predetermined channel region which is sandwiched between the source region and the drain region and is in contact with the source region. A nonvolatile semiconductor memory device comprising a floating gate electrode on the gate insulating film, and at least a control gate electrode and an erase gate electrode on the floating gate electrode via an interlayer insulating film.
【請求項2】 一導電型半導体基板中にソース領域およ
びドレイン領域を形成する工程と、前記ソース領域およ
びドレイン領域に挟まれ、前記ソース領域に接する所定
のチャネル領域上にゲート酸化膜を形成する工程と、前
記ゲート絶縁膜上に浮遊ゲート電極を形成する工程と、
前記浮遊ゲート電極上に層間絶縁膜を形成する工程と、
前記層間絶縁膜上に制御ゲート電極と消去ゲート電極を
同時に形成する工程を少なくとも含む不揮発性半導体記
憶装置の製造方法。
2. A step of forming a source region and a drain region in a one conductivity type semiconductor substrate, and a gate oxide film is formed on a predetermined channel region which is sandwiched between the source region and the drain region and is in contact with the source region. A step of forming a floating gate electrode on the gate insulating film,
Forming an interlayer insulating film on the floating gate electrode;
A method of manufacturing a nonvolatile semiconductor memory device, comprising at least a step of simultaneously forming a control gate electrode and an erase gate electrode on the interlayer insulating film.
JP6185887A 1994-08-08 1994-08-08 Non-volatile semiconductor storage device and manufacture thereof Pending JPH0851164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6185887A JPH0851164A (en) 1994-08-08 1994-08-08 Non-volatile semiconductor storage device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6185887A JPH0851164A (en) 1994-08-08 1994-08-08 Non-volatile semiconductor storage device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0851164A true JPH0851164A (en) 1996-02-20

Family

ID=16178623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6185887A Pending JPH0851164A (en) 1994-08-08 1994-08-08 Non-volatile semiconductor storage device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0851164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057574A (en) * 1996-09-30 2000-05-02 Nec Corporation Contactless nonvolatile semiconductor memory device having buried bit lines surrounded by grooved insulators
WO2001069673A1 (en) * 2000-03-13 2001-09-20 Tadahiro Ohmi Flash memory device and method for manufacturing the same, and method for forming dielectric film
US6426257B1 (en) 1998-01-07 2002-07-30 Nec Corporation Flash memory and manufacturing method therefor
US6486507B1 (en) 1998-02-27 2002-11-26 Nec Corporation Split gate type memory cell having gate insulating layers appropriately regulated in thickness and process of fabrication thereof
CN100369253C (en) * 1999-07-14 2008-02-13 株式会社日立制作所 Semiconductor integrated circuit device, its manufacturing method and action method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057574A (en) * 1996-09-30 2000-05-02 Nec Corporation Contactless nonvolatile semiconductor memory device having buried bit lines surrounded by grooved insulators
US6274432B1 (en) 1996-09-30 2001-08-14 Nec Corporation Method of making contactless nonvolatile semiconductor memory device having buried bit lines surrounded by grooved insulators
US6426257B1 (en) 1998-01-07 2002-07-30 Nec Corporation Flash memory and manufacturing method therefor
US6486507B1 (en) 1998-02-27 2002-11-26 Nec Corporation Split gate type memory cell having gate insulating layers appropriately regulated in thickness and process of fabrication thereof
CN100369253C (en) * 1999-07-14 2008-02-13 株式会社日立制作所 Semiconductor integrated circuit device, its manufacturing method and action method
US6838394B2 (en) 2000-03-13 2005-01-04 Tadahiro Ohmi Flash memory device and a fabrication process thereof, method of forming a dielectric film
US6551948B2 (en) 2000-03-13 2003-04-22 Tadahiro Ohmi Flash memory device and a fabrication process thereof, method of forming a dielectric film
US6846753B2 (en) 2000-03-13 2005-01-25 Tadahiro Ohmi Flash memory device and a fabrication process thereof, method of forming a dielectric film
US6998355B2 (en) 2000-03-13 2006-02-14 Tadahiro Ohmi Flash memory device and a fabrication process thereof, method of forming a dielectric film
US6998354B2 (en) 2000-03-13 2006-02-14 Tadahiro Ohmi Flash memory device and fabrication process thereof, method of forming a dielectric film
US7001855B2 (en) 2000-03-13 2006-02-21 Tadahiro Ohmi Flash memory device and fabrication process thereof, method of forming a dielectric film
US7026681B2 (en) 2000-03-13 2006-04-11 Tadahiro Ohmi Flash memory device and fabrication process thereof, method of forming a dielectric film
US7109083B2 (en) 2000-03-13 2006-09-19 Tadahiro Ohmi Flash memory device and a fabrication process thereof, method of forming a dielectric film
WO2001069673A1 (en) * 2000-03-13 2001-09-20 Tadahiro Ohmi Flash memory device and method for manufacturing the same, and method for forming dielectric film
KR100833406B1 (en) * 2000-03-13 2008-05-28 다다히로 오미 Flash memory device and method for manufacturing the same, and method for forming dielectric film

Similar Documents

Publication Publication Date Title
KR100468745B1 (en) Non-volatile memory cell having a silicon-oxide-nitride-oxide-silicon gate structure and fabrication method of such cell
US5773343A (en) Semiconductor device having a recessed channel structure and method for fabricating the same
US5471422A (en) EEPROM cell with isolation transistor and methods for making and operating the same
KR940009644B1 (en) Non-volatile semiconductor memory device and manufacturing method thereof
US20050162926A1 (en) Split-gate type nonvolatile memory devices and methods for fabricating the same
US5708285A (en) Non-volatile semiconductor information storage device
JPH09283644A (en) Structure and manufacture of flash memory
JPH10223782A (en) Non-volatile semiconductor memory device and manufacture thereof
JPH1098119A (en) Flash memory and manufacture thereof
US5422292A (en) Process for fabricating split gate flash EEPROM memory
JP2855509B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JP2967346B2 (en) Method of manufacturing nonvolatile memory device
US6680507B2 (en) Dual bit isolation scheme for flash memory devices having polysilicon floating gates
US5763308A (en) Method for fabricating flash memory cells using a composite insulating film
JPH0851164A (en) Non-volatile semiconductor storage device and manufacture thereof
US6355514B1 (en) Dual bit isolation scheme for flash devices
JP2904498B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH05226662A (en) Semiconductor storage device
KR100485502B1 (en) Nonvolatile memory device and method for manufacturing thereof
JPH07312394A (en) Nonvolatile memory and its manufacturing method
JP3807633B2 (en) Method for manufacturing nonvolatile semiconductor memory device
US20060180850A1 (en) Process for manufacturing a memory with local electrical contact between the source line and the well
KR950006232B1 (en) Flash eeprom cell and manufacturing method thereof
KR920009668B1 (en) Nonvolatile memory system
JPH0992739A (en) Nonvolatile semiconductor memory, drive method and fabrication thereof