JPH0841765A - Continuous filament non-woven fabric and its production - Google Patents

Continuous filament non-woven fabric and its production

Info

Publication number
JPH0841765A
JPH0841765A JP17149194A JP17149194A JPH0841765A JP H0841765 A JPH0841765 A JP H0841765A JP 17149194 A JP17149194 A JP 17149194A JP 17149194 A JP17149194 A JP 17149194A JP H0841765 A JPH0841765 A JP H0841765A
Authority
JP
Japan
Prior art keywords
fiber
melting point
forming polymer
cross
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17149194A
Other languages
Japanese (ja)
Other versions
JP3429566B2 (en
Inventor
Takashi Nozu
堯 野津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP17149194A priority Critical patent/JP3429566B2/en
Publication of JPH0841765A publication Critical patent/JPH0841765A/en
Application granted granted Critical
Publication of JP3429566B2 publication Critical patent/JP3429566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a continuous filament nonwoven fabric which can be readily bonded by thermal compression without paying prudent care and keeps its surface not flattened like film even when it is strongly heat-compressed, thus shows very excellent mechanical properties, flexibility and draping properties. CONSTITUTION:This non-woven fabric is formed of continuous conjugated filament constituted with the first fiber-forming polymer 1 and the second fiber- forming polymer which melts at a temperature 20 deg.C or more lower than that of the first polymer. On the cross section of this conjugated filament, the first polymer 1 and the second one 2 occupy each a certain range along the circumference and the proportion of the second polymer 2 amounts to 5-15% in the total cross section, when it is calculated along the circumferential direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、衛生材料、生活資材及
び産業資材等、幅広い用途に用いられる長繊維不織布及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long-fiber non-woven fabric used for a wide variety of purposes such as sanitary materials, daily life materials and industrial materials, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、長繊維不織布を製造する方法
として、繊維形成性重合体を溶融紡糸し、紡出糸条をエ
アーサッカーにて牽引細化せしめた後、コンベアネット
上に堆積させてウエッブを形成し、このウエッブを熱圧
接装置にて熱圧接せしめる方法がある。熱圧接装置とし
ては、エンボスロールとフラットロールからなるもの
や、一対のエンボスロールからなるものなどがある。
2. Description of the Related Art Conventionally, as a method for producing a long-fiber nonwoven fabric, a fiber-forming polymer is melt-spun, and a spun yarn is pulled and thinned by an air sucker and then deposited on a conveyor net. There is a method in which a web is formed and the web is subjected to heat pressure contact with a heat pressure contact device. Examples of the heat-pressure welding device include a device including an embossing roll and a flat roll, and a device including a pair of embossing rolls.

【0003】この紡出糸条の横断面は、不織布の要求特
性によりさまざまなものが選択されている。すなわち、
繊維形成性重合体を単独に用いる場合は、単層丸断面、
単層中空断面、単層異形断面等が適用されている。ま
た、2種類以上の繊維形成性重合体を用いた場合は、複
合芯鞘断面、複合中空断面、複合異形断面、複合サイド
バイサイド断面、複合割繊断面、混繊複合等が幅広く適
用されている。例えば、不織布に高い機械的特性を要求
するならば複合芯鞘断面、不織布に軽量性を付与するな
らば中空断面、不織布に柔軟性を付与するならば異形断
面や複合サイドバイサイド断面、不織布にフイルター効
果及びドレープ性を付与するならば細繊度糸よりなる複
合割繊断面など、不織布の要求特性により種々の横断面
構造が選択されている。
Various cross-sections of this spun yarn are selected depending on the required characteristics of the nonwoven fabric. That is,
When using the fiber-forming polymer alone, a single-layer circular cross section,
Single-layer hollow sections, single-layer irregular sections, etc. are applied. When two or more kinds of fiber-forming polymers are used, composite core-sheath cross section, composite hollow cross section, composite irregular cross section, composite side-by-side cross section, composite split fiber section, mixed fiber composite, etc. are widely applied. For example, a composite core-sheath cross section is required if high mechanical properties are required for a nonwoven fabric, a hollow cross section is given if lightweight properties are given to the nonwoven fabric, a modified cross section or a composite side-by-side cross section is given if flexibility is given to the nonwoven fabric, and a filter effect is applied to the nonwoven fabric. In addition, various transverse cross-section structures are selected depending on the required properties of the non-woven fabric, such as a composite split cross-section made of fine-fineness yarns, if drapeability is given.

【0004】[0004]

【発明が解決しようとする課題】ところが、このような
従来の不織布では、下記のような不都合がある。すなわ
ち、単層断面においては、全融タイプであるがために熱
圧接温度を微妙に制御しなくてはならない。つまり、繊
維ウエッブに対し熱圧接温度が高すぎる場合には、熱圧
接部分の部分溶解が生じて非圧接部分と圧接部分との境
界の部分が著しく弱くなる、熱圧接工程で使用するロー
ルに繊維の溶融物が付着して操業性を著しく悪化させ
る、圧接部分が必要以上に溶解して穴があくか又は製品
が圧接部分から切断してしまう、などの重大な障害が発
生することとなる。また、逆に熱圧接温度が低すぎる場
合には、全く融着しないか、融着力が著しく弱くなる。
このため、得られた製品は機械的性能に劣り、また外観
上においては毛羽が発生し易く、とうてい使用に耐える
ものではない。この障害は、糸断面を変更しても改良さ
れることは無い。
However, such a conventional nonwoven fabric has the following disadvantages. That is, in the single-layer cross section, since it is a fully melted type, the heat contact temperature must be delicately controlled. In other words, when the heat-welding temperature is too high for the fiber web, partial melting of the heat-welding portion occurs and the boundary portion between the non-pressure-welding portion and the pressure-welding portion is significantly weakened. However, serious problems such as adherence of the melted material to deteriorate the operability, melting of the pressure contact portion more than necessary to form a hole, or cutting of the product from the pressure contact portion will occur. On the other hand, if the hot press contact temperature is too low, no fusion occurs at all, or the fusion force becomes extremely weak.
Therefore, the obtained product is inferior in mechanical performance, and fluff is liable to be generated in appearance, so that it cannot be used at all. This obstacle cannot be improved by changing the yarn cross section.

【0005】全融タイプで機械的性能の優れた長繊維不
織布を得る場合は、一般に融点よりも30〜50℃低い
温度で熱圧接をしたあと、バインダーとしての樹脂を含
浸させて、これを、乾燥させている。しかし、この方法
では、樹脂コストや、装置コストや、エネルギー等のラ
ンニングコストが高いという欠点がある。
In order to obtain a long-fiber non-woven fabric which is a fully melted type and has excellent mechanical performance, it is generally heat-pressed at a temperature 30 to 50 ° C. lower than the melting point and then impregnated with a resin as a binder. It's dried. However, this method has a drawback that the resin cost, the apparatus cost, and the running cost such as energy are high.

【0006】一方、2種類以上の繊維形成性重合体を用
いた複合断面であっても、従来のものでは下記のような
不都合がある。例えば特開昭63−165564号公報には、低
融点の繊維形成性重合体を鞘部に配置せしめるととも
に、高融点の繊維形成性重合体を芯部に配置せしめた複
合芯鞘断面の繊維からなる不織布が開示されている。こ
の場合においては、たしかに、低融点成分の融点近傍の
温度で熱圧接するがために、鞘部はその形状が不定型化
するものの、芯部は熱に対する大きな劣化もなく残存す
ることとなる。また、熱圧接工程においても、2成分の
融点差を15℃以上にすれば、少々熱圧接温度が高くて
も、芯部が溶融することなく残存するので、機械的特性
に著しく劣る製品となる懸念は小さい。しかしながら、
繊維表面の全周に低融点成分が存在するために、熱圧接
温度が高すぎると、熱圧接工程で使用するエンボスに繊
維の溶融物が付着して操業性を著しく損なう結果となっ
たり、また得られた製品の柔軟性及びドレープ性が損な
われる結果となったりする。この障害は、たとえ芯鞘部
の複合比率や糸断面形状などを変更しても、繊維表面の
全周に低融点成分が存在する限り、改良されることは無
い。
On the other hand, even a composite cross section using two or more kinds of fiber-forming polymers, the conventional one has the following disadvantages. For example, in JP-A-63-165564, a fiber having a cross-section of a composite core-sheath in which a fiber-forming polymer having a low melting point is arranged in a sheath part and a fiber-forming polymer having a high melting point is arranged in a core part is disclosed. A non-woven fabric is disclosed. In this case, it is true that the sheath portion has an indefinite shape due to the heat pressure contact at a temperature in the vicinity of the melting point of the low melting point component, but the core portion remains without significant deterioration due to heat. Also, in the hot-pressing step, if the melting point difference between the two components is set to 15 ° C. or more, the core part remains without melting even if the hot-pressing temperature is slightly high, so that the product has significantly poor mechanical properties. Concerns are small. However,
Since the low-melting point component is present all around the fiber surface, if the hot-pressing temperature is too high, the melt of the fiber may adhere to the emboss used in the hot-pressing step, resulting in a significant loss of operability. This may result in deterioration of flexibility and drape of the obtained product. Even if the composite ratio of the core-sheath portion or the yarn cross-sectional shape is changed, this obstacle cannot be improved as long as the low melting point component is present on the entire circumference of the fiber surface.

【0007】複合サイドバイサイド断面の場合は、例え
ば異粘度の繊維形成性重合体を貼り合わせるとことで、
高次加工において捲縮が発現し、嵩高性及び柔軟性に優
れた差別化不織布が得られる。しかしながら、この複合
サイドバイサイド断面は、両素材の複合比率をほば50
/50(重量比)とするのが一般的である。複合比率を
極端に変化させると、製糸工程において、貼り合わされ
た両溶融物を口金より紡出する際に糸曲り角度が大きく
なる。このため経時的に口金を汚し、紡糸操業性を損な
うこととなるばかりか、目的とする嵩高性及び柔軟性を
不織布に付与できないこととなる。このことを防止する
ために、前述のように複合比率をほば50/50(重量
比)とするのであるが、この条件下で得られた繊維ウエ
ッブは、前述の複合芯鞘断面のものと同様に、熱圧接温
度を高くすると、エンボスへの溶融物の付着が生じた
り、また得られた製品の柔軟性及びドレープ性が損なわ
れる結果となったりする。
In the case of a composite side-by-side cross section, for example, by bonding a fiber-forming polymer having a different viscosity,
A crimp is developed in high-order processing, and a differentiated nonwoven fabric excellent in bulkiness and flexibility can be obtained. However, this composite side-by-side cross section has a composite ratio of both materials of about 50.
It is generally set to / 50 (weight ratio). If the compounding ratio is changed extremely, the yarn bending angle becomes large when the two melts bonded together are spun from the spinneret in the yarn making process. For this reason, the spinneret is soiled over time, spinning operability is impaired, and the desired bulkiness and flexibility cannot be imparted to the nonwoven fabric. In order to prevent this, the composite ratio is set to about 50/50 (weight ratio) as described above, but the fiber web obtained under these conditions has the composite core-sheath cross section described above. Similarly, increasing the hot press temperature can result in melt sticking to the embossments and in the resulting softness and drape of the resulting product.

【0008】さらに、不織布にフイルター効果及びドレ
ープ性を付与する場合、すなわち複合割繊断面を適用し
て高次加工において細繊度糸をつくり、不織布にフイル
ター効果及びドレープ性を付与する場合(特開平3−2
94557、特開平4−82952では、たしかに細繊
度糸より構成された不織布は、従来の2〜15デニール
程度の繊度の糸で構成された不織布に比較して多くの優
れた特性を有している。しかしながら、この割繊前の糸
断面はより多くのそしてより小さい繊度を得ようとする
ものであるから、繊維断面の円周方向における両成分の
積層個数が多くなる。その結果として、前述の複合芯鞘
断面と同様に、熱圧接温度を高くすると同様の支障が発
生することとなる。
Further, in the case of imparting a filter effect and drapability to a non-woven fabric, that is, in the case of applying a composite split cross section to form a fine-fineness yarn in a high-order processing, and imparting a filter effect and a drapability to the non-woven fabric (Japanese Patent Laid-Open No. Hei 10-1999) 3-2
According to 94557 and Japanese Patent Laid-Open No. 4-82952, the non-woven fabric composed of fine fiber certainly has many excellent properties as compared with the conventional non-woven fabric composed of yarn of 2 to 15 denier. . However, since the yarn cross section before splitting is intended to obtain more and smaller fineness, the number of laminated layers of both components in the circumferential direction of the fiber cross section increases. As a result, similar to the cross section of the composite core-sheath described above, if the hot press contact temperature is increased, the same trouble will occur.

【0009】また混繊複合の場合は、異成分を同一吸引
速度で牽引細化するがために、紡糸操業性に劣る。しか
も、前述の複合芯鞘断面と同様に、熱圧接温度を高くす
ると同様の支障が発生することとなる。またこのタイプ
で得られた製品は、一般的に機械的性能の均整度に劣る
傾向がある。
In the case of the mixed fiber composite, different components are pulled and thinned at the same suction speed, so that the spinning operability is poor. Moreover, similar to the cross section of the composite core-sheath described above, if the hot press contact temperature is increased, the same trouble will occur. Also, the products obtained with this type generally tend to have poor mechanical performance uniformity.

【0010】本発明は、このような問題点を解決して、
特に細心の注意を払わなくとも容易に熱圧接が可能であ
り、強固に熱圧接せしめても不織布表面がフイルム化せ
ず、かつ、極めて優れた機械的特性と柔軟性とドレープ
性とを有する長繊維不織布及びこの長繊維不織布を安価
に製造する方法を提供するものである。
The present invention solves such a problem and
It can be easily heat-pressed without particular care, the surface of the non-woven fabric does not become a film even when strongly heat-pressed, and it has excellent mechanical properties, flexibility and drapeability. The present invention provides a fibrous nonwoven fabric and a method for inexpensively producing this long-fiber nonwoven fabric.

【0011】[0011]

【課題を解決するための手段】本発明者らは、前記課題
をを達成すべく鋭意検討の結果、本発明に到達した。す
なわち本発明は、以下の構成をその要旨とするものであ
る。 (1)複合長繊維からなる不織ウエッブが部分的に熱圧
接されて所定の形態を保持している不織布であって、第
1の繊維形成性重合体と、この第1の繊維形成性重合体
よりも20℃以上融点の低い第2の繊維形成性重合体と
で構成された複合長繊維によって形成され、この複合長
繊維の横断面において、前記第1の繊維形成性重合体と
第2の繊維形成性重合体とが周方向の一定範囲ずつを占
め、この複合長繊維の横断面の周方向に沿ったときの全
断面積に占める前記第2の繊維形成性重合体の断面積の
比率が5〜15%であることを特徴とする長繊維不織
布。 (2)複合長繊維からなる不織ウエッブが部分的に熱圧
接されて所定の形態を保持している不織布の製造方法で
あって、第1の繊維形成性重合体と、この第1の繊維形
成性重合体よりも20℃以上融点の低い第2の繊維形成
性重合体とで構成され、横断面において前記第1の繊維
形成性重合体と第2の繊維形成性重合体とが周方向の一
定範囲ずつを占め、かつ横断面の周方向に沿ったときの
全断面積に占める前記第2の繊維形成性重合体の断面積
の比率が5〜15%となるように複合長繊維を紡糸し、
この複合長繊維によって不織ウエッブを形成し、この不
織ウエッブを、第2の繊維形成性重合体の融点をtであ
らわしたときに熱圧接温度Tを下式の範囲として、 t < T < t+15℃ 圧接面積比が4〜40%のエンボスロールにて部分的に
熱圧接することを特徴とする長繊維不織布の製造方法。
次に、本発明を詳細に説明する。
The present inventors have arrived at the present invention as a result of earnest studies to achieve the above object. That is, the gist of the present invention is the following configuration. (1) A non-woven fabric in which a nonwoven web made of composite long fibers is partially heat-pressed to maintain a predetermined shape, and comprises a first fiber-forming polymer and the first fiber-forming polymer. It is formed by a composite long fiber composed of a second fiber-forming polymer having a melting point of 20 ° C. or more lower than that of the coalescence, and in the cross section of the composite long fiber, the first fiber-forming polymer and the second fiber-forming polymer are formed. Of the second fiber-forming polymer occupying a constant range in the circumferential direction and occupying the entire cross-sectional area of the cross section of the composite continuous fiber in the circumferential direction. A long-fiber non-woven fabric characterized by a ratio of 5 to 15%. (2) A method for producing a non-woven fabric in which a nonwoven web made of composite long fibers is partially heat-pressed to maintain a predetermined shape, the first fiber-forming polymer and the first fiber. A second fiber-forming polymer having a melting point of 20 ° C. or more lower than that of the polymer forming polymer, and the first fiber-forming polymer and the second fiber-forming polymer are arranged in a circumferential direction in a cross section. Of the composite fiber in such a manner that the ratio of the cross-sectional area of the second fiber-forming polymer to the total cross-sectional area along the circumferential direction of the cross section is 5 to 15%. Spinning
A non-woven web is formed by the composite long fibers, and when the non-woven web is represented by the melting point of the second fiber-forming polymer as t, the thermal pressing temperature T is set in the range of the following equation, and t <T < t + 15 ° C. A method for producing a long-fiber non-woven fabric, which comprises performing partial heat pressure contact with an embossing roll having a pressure contact area ratio of 4 to 40%.
Next, the present invention will be described in detail.

【0012】まず、不織布を構成するための複合長繊維
について説明する。この複合長繊維は、第1の繊維形成
性重合体(以下、「高融点成分」と称する)と、この第
1の繊維形成性重合体すなわち低融点成分よりも20℃
以上融点の低い第2の繊維形成性重合体(以下、「低融
点成分」と称する)とで構成されている。
First, the composite long fibers for forming the nonwoven fabric will be described. This composite continuous fiber comprises a first fiber-forming polymer (hereinafter referred to as “high melting point component”) and 20 ° C. higher than the first fiber-forming polymer, that is, a low melting point component.
The second fiber-forming polymer having a low melting point (hereinafter referred to as "low melting point component").

【0013】これら高融点成分および低融点成分をなす
繊維形成性重合体は、代表的には、ポリエチレンテレフ
タレート、ポリブチレンテレフタレート、イソフタル酸
共重合ポリエチレンテレフタレート等のポリエステル
や、ナイロン6、ナイロン66等のポリアミドや、ポリ
エチレン、ポリプロピレン等のポリオレフイン等の重合
体からなる。そして、これら重合体のブレンド物や、こ
れら重合体どうしの共重合体からなるものも含まれる。
The fiber-forming polymers that form the high melting point component and the low melting point component are typically polyesters such as polyethylene terephthalate, polybutylene terephthalate, and isophthalic acid copolymerized polyethylene terephthalate, nylon 6, nylon 66, and the like. It is made of a polymer such as polyamide or polyolefin such as polyethylene or polypropylene. It also includes blends of these polymers and copolymers of these polymers.

【0014】これら高融点成分および低融点成分には、
本発明の目的を阻害しない範囲で、艶消し剤、顔料、防
炎剤、消息剤、帯電防止剤、酸化防止剤、紫外線吸収剤
等の任意の添加剤が添加されていてもよい。
The high melting point component and the low melting point component include
Any additive such as a matting agent, a pigment, a flameproofing agent, an antiseptic agent, an antistatic agent, an antioxidant, and an ultraviolet absorber may be added to the extent that the object of the present invention is not impaired.

【0015】高融点成分と低融点成分との組み合わせに
おいては、両成分どうしが相溶性であることが好まし
い。なぜなら、両成分が非相溶性であると、複合断面形
態において両成分の相間剥離が発生し、不織布を得ると
きの堆積及び圧接工程において種々の障害を誘発して好
ましくないためである。この理由により、高融点成分が
ホモポリマーであり、低融点成分が高融点成分の共重合
ポリマーであることが好ましい。
In the combination of the high melting point component and the low melting point component, it is preferable that the two components are compatible with each other. The reason for this is that if both components are incompatible, phase separation of both components occurs in the composite cross-sectional form, and various obstacles are induced in the deposition and pressure welding steps when obtaining a nonwoven fabric, which is not preferable. For this reason, it is preferable that the high melting point component is a homopolymer and the low melting point component is a copolymerization polymer of the high melting point component.

【0016】また、高融点成分に対して低融点成分の溶
融粘度が高い方が好ましい。なぜなら、低粘度素材の高
融点成分中に高粘度素材の低融点成分を埋設させること
が、複合断面の安定性の点で効果があるからである。
It is preferable that the low melting point component has a higher melt viscosity than the high melting point component. This is because embedding the low melting point component of the high viscosity material in the high melting point component of the low viscosity material is effective in terms of stability of the composite cross section.

【0017】低融点成分の融点は、高融点成分の融点よ
りも20℃以上低いことが必要である。融点差が20℃
未満であると、熱圧接装置を用いて熱圧着する際に高融
点成分までが軟化あるいは溶融し、熱圧接装置であるエ
ンボスロールに繊維の軟化及び溶融物が付着して操業性
を損なうばかりか、不織布表面がフイルム化して品位を
損ない、また機械的特性及び柔軟性に優れた長繊維不織
布が得られなくなる。この理由により、融点差が25℃
以上であることがさらに好ましい。
It is necessary that the melting point of the low melting point component is lower than the melting point of the high melting point component by 20 ° C. or more. 20 ° C difference in melting point
If it is less than, not only the high melting point component is softened or melted during thermocompression bonding using a thermocompression bonding apparatus, but also the softening of the fiber and the melt adhere to the embossing roll which is a thermocompression bonding apparatus, impairing the operability. However, the surface of the non-woven fabric becomes a film to impair the quality, and a long fiber non-woven fabric excellent in mechanical properties and flexibility cannot be obtained. For this reason, the melting point difference is 25 ° C.
It is more preferable that the above is satisfied.

【0018】複合長繊維の単糸繊度は、1.5〜15デ
ニールであるのが好ましい。1.5デニール未満である
と、あまりにも繊維が細いために、紡糸工程において安
定した複合断面が得られないばかりか糸切れを誘発し、
好ましくない。逆に、15デニールを越えると、繊維が
太いために繊維どうしの圧接点が容易にはずれてしまっ
たり、得られた不織布の機械的性能及び柔軟性が損なわ
れたりする。この理由により、2〜12デニールがさら
に好ましい。
The single yarn fineness of the composite long fibers is preferably 1.5 to 15 denier. If it is less than 1.5 denier, the fibers are too thin, so that a stable composite cross section cannot be obtained in the spinning process and also yarn breakage is induced.
Not preferred. On the other hand, if it exceeds 15 denier, the pressure contact between the fibers is easily displaced due to the thick fibers, and the mechanical performance and flexibility of the obtained nonwoven fabric are impaired. For this reason, 2-12 denier is more preferred.

【0019】本発明にもとづく複合長繊維では、その表
面において高融点成分に対し低融点成分が一部露出する
ような複合繊維断面であるので、従来の低融点成分が繊
維表面の100%を覆っている複合芯鞘断面のものや、
低融点成分と高融点成分とが周方向に交互に積層され
て、低融点成分が繊維表面のほぼ50%程度を占める複
合割繊断面のものでは到底適用できない熱圧接温度が適
用できる。すなわち、本発明によれば、低融点成分は複
合長繊維の横断面における繊維表面のある一部を占める
だけであるので、加熱された熱圧接装置に対して低融点
成分がごく短い周期でかつ短時間で接したり離れたりす
る。そのため、熱圧接温度を低融点成分の融点と同等あ
るいはそれ以上としても、低融点成分の溶融物が熱圧接
装置に付着して操業性を損なうことはない。また、得ら
れる長繊維不織布の表面がフイルム化しないので、品位
の良好な製品となる。
In the composite continuous fiber according to the present invention, the cross section of the composite fiber is such that the low melting point component is partly exposed with respect to the high melting point component, so that the conventional low melting point component covers 100% of the fiber surface. With a composite core-sheath cross section,
The low melting point component and the high melting point component are alternately laminated in the circumferential direction, and the hot pressing temperature which cannot be applied at all in the case of the composite split fiber cross section in which the low melting point component occupies about 50% of the fiber surface can be applied. That is, according to the present invention, since the low melting point component occupies only a part of the fiber surface in the cross section of the composite long fiber, the low melting point component has a very short cycle with respect to the heated thermocompression bonding device and Contact and leave in a short time. Therefore, even if the hot press contact temperature is equal to or higher than the melting point of the low melting point component, the melt of the low melting point component does not adhere to the hot press contacting device and impair the operability. Moreover, since the surface of the obtained long-fiber nonwoven fabric does not become a film, the product is of good quality.

【0020】ここで、低融点成分はバインダー機能とし
て作用するのであるが、この低融点成分が繊維表面の一
部を占めているにもかかわらず、この低融点成分に対し
て充分な熱量を付与できるために、優れた接着性能及び
毛羽立防止性を示す。また、高融点成分は、不織布を構
成する長繊維の母体となり、付与された熱量に対して劣
化あるいは不定型化することが無いので、フイルム化す
ることなく、また、優れた機械的性能や柔軟性やドレー
プ性を示す。
Here, the low melting point component acts as a binder function, but a sufficient amount of heat is imparted to the low melting point component even though the low melting point component occupies a part of the fiber surface. As a result, it exhibits excellent adhesion performance and anti-fluffing property. In addition, the high-melting point component does not become a film because it becomes the matrix of the long fibers that make up the non-woven fabric and does not deteriorate or become atypical with respect to the applied heat, and it has excellent mechanical performance and flexibility. Shows sexuality and drape.

【0021】このことより、横断面の周方向に沿ったと
きの全断面積に占める低融点成分の断面積の比率が5〜
15%の範囲であることが必要である。低融点成分の断
面比率が15%を越えると、繊維どうしの圧接区域が大
きくなり過ぎるがために、得られる長繊維不織布の機械
的性能は優れるものの、熱圧接温度が低融点成分の融点
と同等あるいは融点以上であると、熱圧接工程で使用す
るエンボスに繊維の溶融物が付着して操業性を著しく損
なう結果となったり、また得られた製品の柔軟性及びド
レープ性が損なわれる結果となったりする。逆に5%未
満であると、低融点成分の融点近傍で熱圧接するとはい
え、あまりにも低融点成分が少な過ぎるために繊維どう
しの融着が不足し、得られる長繊維不織布の柔軟性は優
れるものの、機械的特性に劣り、さらに不織布表面に毛
羽立が発生して、とうてい使用に耐えるものではない。
この理由により、更に好ましくは、低融点成分の断面比
率は7〜12%が良い。
Therefore, the ratio of the cross-sectional area of the low melting point component to the total cross-sectional area along the circumferential direction of the cross section is 5 to 5.
It must be in the range of 15%. When the cross-sectional ratio of the low-melting point component exceeds 15%, the pressure-bonding area between the fibers becomes too large, so the long-fiber nonwoven fabric obtained has excellent mechanical performance, but the hot-pressing temperature is equivalent to the melting point of the low-melting-point component. Alternatively, if the melting point is higher than the melting point, the melt of the fibers adheres to the emboss used in the heat-pressing process, resulting in a marked loss of operability, or the flexibility and drape of the obtained product are impaired. Or On the other hand, when the content is less than 5%, although the material is hot pressed in the vicinity of the melting point of the low melting point component, the fusion of the fibers is insufficient because the low melting point component is too small, and the flexibility of the obtained long fiber nonwoven fabric is Although it is excellent, it is inferior in mechanical properties, and further, fluff is generated on the surface of the non-woven fabric, so that it cannot be used at all.
For this reason, it is more preferable that the cross-sectional ratio of the low melting point component is 7 to 12%.

【0022】本発明に適用できる複合断面の模式図を図
1、図2に示す。ここで、繊維は円形断面を呈してお
り、1は高融点成分、2は低融点成分である。図1にお
いては、扇形の低融点成分2が、高融点成分1に対し周
方向の一箇所に配置されている。図2では、小さな角度
の扇形の低融点成分2が高融点成分1に対し周方向の三
箇所に配置されている。ただし、これはあくまでも模式
図であり、低融点成分2が配置される数は適宣に決めれ
ばよく、1〜10箇所の配置が好ましい。さらに、繊維
断面が異形または中空形状であっても何ら差しつかえな
い。
A schematic view of a composite cross section applicable to the present invention is shown in FIGS. Here, the fiber has a circular cross section, 1 is a high melting point component, and 2 is a low melting point component. In FIG. 1, the fan-shaped low-melting point component 2 is arranged at one position in the circumferential direction with respect to the high-melting point component 1. In FIG. 2, the fan-shaped low-melting point component 2 having a small angle is arranged at three locations in the circumferential direction with respect to the high-melting point component 1. However, this is only a schematic diagram, and the number of the low melting point components 2 to be arranged may be appropriately determined, and the arrangement of 1 to 10 places is preferable. Furthermore, even if the fiber cross section is irregular or hollow, there is no problem.

【0023】次に、本発明の長繊維不織布の製造方法に
ついて説明する。本発明の長繊維不織布を製造する際に
は、融点の異なる2種類の繊維形成性重合体を別々に溶
融し、横断面の周方向に沿ったときの全断面積に占める
低融点成分の断面積の比率が5〜15%になるように個
々に計量した後、両溶融素材を例えば、図1、図2に示
される断面構造を形成可能な複合紡糸口金に供給する。
そして口金より紡出された糸条を、従来公知の横型吹付
や環状吹付等の冷却装置を用いて冷却せしめた後、エア
ーサッカーを用いて、目的繊度となるように牽引細化さ
せて引き取る。牽引速度は3500m/分以上が好まし
く、特に4000m/分以上とすると不織布の寸法安定
性が向上するため、さらに好適である。エアーサッカー
から排出された複合繊維は、一般的な方法で開繊させた
後、スクリーンからなるコンベアーの如き移動堆積装置
上に開繊集積させてウエッブとする。次いで、このウエ
ッブを熱圧接装置であるエンボスロールにて部分的に熱
圧接せしめれば、長繊維不織布を得ることができる。
Next, a method for manufacturing the long fiber nonwoven fabric of the present invention will be described. When producing the long-fiber nonwoven fabric of the present invention, two types of fiber-forming polymers having different melting points are separately melted, and the low melting point component occupying in the total cross-sectional area along the circumferential direction of the cross section is cut. After being individually weighed so that the area ratio is 5 to 15%, both molten materials are supplied to, for example, a composite spinneret capable of forming the cross-sectional structure shown in FIGS.
The yarn spun from the spinneret is cooled using a conventionally known cooling device such as horizontal spraying or annular spraying, and then drawn and drawn to a target fineness using an air sucker. The pulling speed is preferably 3500 m / min or more, and particularly preferably 4000 m / min or more because the dimensional stability of the nonwoven fabric is improved. The composite fiber discharged from the air sucker is opened by a general method, and then opened and accumulated on a moving and accumulating device such as a conveyor including a screen to form a web. Then, the web is partially heat-pressed with an embossing roll, which is a heat-pressing device, to obtain a long-fiber nonwoven fabric.

【0024】ウエッブの熱圧接には、エンボスロールと
フラットロールを備えた熱圧接装置や、二つのエンボス
ロールからなる一対のロールを備えた熱圧接装置を使用
する。複数の熱圧接装置を用いてもよい。
For the heat pressure welding of the web, a heat pressure welding device having an embossing roll and a flat roll, or a heat pressure welding device having a pair of two embossing rolls is used. You may use several thermocompression bonding apparatuses.

【0025】そのときに、熱圧接を行なうに際してウエ
ッブに与える熱圧接温度と圧接面積比とが重要である。
すなわち、高融点成分と低融点成分の複合繊維からなる
ウエッブを熱圧接装置により熱圧接するに際し、熱圧接
温度Tを、下式の範囲としなければならない。
At this time, the heat-welding temperature and the pressure-welding area ratio given to the web during the heat-welding are important.
That is, when the web composed of the composite fiber of the high melting point component and the low melting point component is hot pressed by the hot pressing device, the hot pressing temperature T must be within the range of the following formula.

【0026】低融点成分の融点 < T < 低融点成
分の融点+15℃ 熱圧接温度Tとして低融点成分の融点未満の温度を適用
すると、得られる長繊維不織布の機械的性能及び毛羽立
防止性が劣る結果となり、好ましくない。逆に、Tとし
て低融点成分の融点+15℃よりも高い温度を適用する
と、ウエッブがエンボスロールやフラットロールに融着
して操業性を著しく損ない、また得られた不織布の表面
がフイルム化して品位に劣る製品となり、好ましくな
い。この理由により、さらに好適には、Tを下式の範囲
にするとよい。
Melting point of low-melting point component <T <melting point of low-melting point component + 15 ° C. When a temperature lower than the melting point of the low-melting point component is applied as the hot pressing temperature T, the mechanical performance and fluff prevention of the obtained long-fiber nonwoven fabric are improved. The result is inferior, which is not preferable. On the contrary, when a temperature higher than the melting point of the low melting point component + 15 ° C. is applied as T, the web is fused to the embossing roll or the flat roll and the operability is remarkably impaired, and the surface of the obtained non-woven fabric becomes a film and the quality is improved. It is inferior to the product and is not preferable. For this reason, T is more preferably in the range of the following formula.

【0027】低融点成分の融点 < T < 低融点成
分の融点+10℃ 圧接面積比は、4〜40%の範囲でなければならない。
ここで、圧接面積比は、不織布シート全体の面積に対す
る圧接された部分の面積の割合で定義される。これが4
%未満であると、圧接区域があまりにも少ないため、長
繊維不織布は柔軟性には優れるものの機械的性能及び毛
羽立防止性が劣る結果となり、好ましくない。逆に40
%を越えると、繊維間の圧接区域があまりにも大きいた
め、不織布の柔軟性が損なわれて好ましくない。この理
由により、さらに好ましくは、10〜30%とするのが
良い。
Melting point of low melting point component <T <melting point of low melting point component + 10 ° C. The pressure contact area ratio must be in the range of 4 to 40%.
Here, the pressed area ratio is defined as the ratio of the area of the pressed portion to the entire area of the nonwoven fabric sheet. This is 4
When it is less than%, the long-fiber nonwoven fabric is excellent in flexibility but poor in mechanical performance and fluff prevention property because the pressure contact area is too small, which is not preferable. Conversely, 40
If it exceeds%, the pressure contact area between the fibers is too large, so that the flexibility of the nonwoven fabric is impaired, which is not preferable. For this reason, it is more preferably 10 to 30%.

【0028】[0028]

【実施例】以下、実施例により本発明を具体的に説明す
る。しかし、本発明は、これらの実施例によって何ら限
定されるものではない。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to these examples.

【0029】以下の実施例において、各特性値は、次の
ようにして求めた。 ・重合体の融点:パーキンエルマー社製DSC−2型の
示差走査型熱量計を用いて、昇温速度20℃/分で測定
した融解吸熱ピークの最大値を与える温度を融点とし
た。
In the following examples, each characteristic value was obtained as follows. -Melting point of polymer: The temperature that gives the maximum value of the melting endothermic peak measured at a temperature rising rate of 20 ° C / min using a DSC-2 type differential scanning calorimeter manufactured by Perkin Elmer was taken as the melting point.

【0030】・ポリエステルの相対粘度:フエノールと
四塩化エタンとの等重量比の混合溶媒100ミリリット
ルに試料0.5gを溶解し、温度20℃の条件で常法に
より測定した。
Relative viscosity of polyester: 0.5 g of a sample was dissolved in 100 ml of a mixed solvent of phenol and ethane tetrachloride in an equal weight ratio, and the viscosity was measured by a conventional method at a temperature of 20 ° C.

【0031】・ポリプロピレンのメルトフローレート
(以下、「MFR」と称する):ASTM D1238
(L)に記載の方法で測定した。 ・低融点成分の断面比率:エアーガンにより牽引細化し
た複合繊維について、電子顕微鏡を用いて、繊維全体の
断面積及び低融点成分のみの断面積を読み取り、下記式
にて算出した。
Melt flow rate of polypropylene (hereinafter referred to as "MFR"): ASTM D1238
It was measured by the method described in (L). -Cross-section ratio of low-melting point component: With respect to the composite fiber pulled and thinned by an air gun, the cross-sectional area of the entire fiber and the cross-sectional area of only the low-melting point component were read using an electron microscope and calculated by the following formula.

【0032】断面比率=(低融点成分の断面積/全断面
積)×100(%) ・糸の繊度:エアーガンにより牽引細化した複合繊維に
ついて、電子顕微鏡を用いて、密度補正を行なって求め
た。
Cross-sectional ratio = (cross-sectional area of low melting point component / total cross-sectional area) x 100 (%) Fineness of yarn: Obtained by density correction using an electron microscope for composite fibers pulled and thinned by an air gun. It was

【0033】・不織布の引張強力:定速伸張型試験機械
である東洋ボールドウイン社製テンシロンUTM−4−
100型を用い、幅5cm、長さ30cmの試験片をつ
かんで、間隔20cm、引張速度20cm/分の条件で
測定し、測定個数10の平均値から求めた。
Tensile strength of non-woven fabric: Tensilon UTM-4- manufactured by Toyo Baldwin Co., Ltd., which is a constant-speed extension type test machine
Using a 100 type, a test piece having a width of 5 cm and a length of 30 cm was grabbed, measured under the conditions of an interval of 20 cm and a pulling speed of 20 cm / min, and the average value of 10 measurements was obtained.

【0034】・不織布の圧縮剛軟度:東洋ボールドウイ
ン社製テンシロンUTM−4−100型を用い、幅(縦
方向)5cm、長さ(横方向)10cmの試験片を横方
向に曲げて円筒状とし、その端部を接合して試料とし、
この円筒状資料を5cm/分の圧縮速度で縦方向に圧縮
し、その最大荷重時の応力を測定することにより求め
た。この圧縮剛軟度の値が小さいほど、柔軟性に優れて
いる。
Compression stiffness of the nonwoven fabric: Tensilon UTM-4-100 type manufactured by Toyo Baldwin Co., Ltd. was used to bend a test piece having a width (longitudinal direction) of 5 cm and a length (horizontal direction) of 10 cm in the lateral direction to form a cylinder. Shape, and join the ends to make a sample,
This cylindrical material was compressed in the longitudinal direction at a compression speed of 5 cm / min, and the stress at the maximum load was measured to obtain the value. The smaller the value of this compression stiffness is, the more excellent the flexibility is.

【0035】実施例1 高融点成分としての、融点が160℃、MFRが50g
/10分のポリプロピレン重合体を準備するとともに、
低融点成分としての、融点が138℃、MFRが30g
/10分であり、かつエチレンが4重量%ランダム共重
合されたプロピレン系共重合体を準備した。この共重合
体を用い、公知の溶融複合紡糸機と図1に示される複合
断面を形成できる口金とを用い、紡糸温度が230℃、
吐出量が1.4g/1ホール・分、複合比(高融点成分
/低融点成分)が92/8重量%という条件の下で紡出
した。紡出糸条を冷却した後、エアーサッカーにより4
200m/分の速度で引き取り、公知の方法にて開繊
し、移動する捕集面上に捕集・堆積させてウエッブとし
た。このウエッブを、エンボスロールからなる熱圧接装
置により、ポイント柄、加工温度145℃、圧接面積比
15%という条件下で熱圧接し、目付け30g/m2
長繊維不織布を得た。繊維集積体から採取した複合繊維
の繊度は3デニール、低融点成分の断面比率は8%であ
った。この長繊維不織布の物性を表1に示す。
Example 1 As a high melting point component, the melting point was 160 ° C. and the MFR was 50 g.
While preparing a polypropylene polymer for / 10 minutes,
Low melting point component, melting point 138 ° C, MFR 30g
/ 10 minutes, and a propylene-based copolymer in which 4% by weight of ethylene was randomly copolymerized was prepared. Using this copolymer, a known melt composite spinning machine and a spinneret capable of forming the composite cross section shown in FIG. 1 were used, and the spinning temperature was 230 ° C.
Spinning was carried out under the conditions that the discharge rate was 1.4 g / hole / min and the composite ratio (high melting point component / low melting point component) was 92/8 wt%. After cooling the spun yarn, 4 by air soccer
The web was collected at a speed of 200 m / min, opened by a known method, and collected and deposited on a moving collecting surface to form a web. The web was heat-pressed using a hot-pressing device including an embossing roll under the conditions of a point pattern, a processing temperature of 145 ° C., and a pressing area ratio of 15% to obtain a long-fiber nonwoven fabric having a basis weight of 30 g / m 2 . The fineness of the composite fiber collected from the fiber assembly was 3 denier, and the cross-sectional ratio of the low melting point component was 8%. Table 1 shows the physical properties of this long-fiber nonwoven fabric.

【0036】実施例2 実施例1と同一の原料を用い、図2に示される複合断面
を形成できる口金を用い、温度が230℃、吐出量が
1.5g/1ホール・分、複合比(高融点成分/低融点
成分)が88/12重量%という条件の下で紡出した。
紡出糸条を冷却した後、エアーサッカーにより4500
m/分の速度で引き取り、公知の方法にて開繊し、移動
する捕集面上に捕集・堆積させてウエッブとした。この
ウエッブを、エンボスロールからなる熱圧接装置によ
り、ポイント柄、加工温度145℃、圧接面積比:15
%という条件下で熱圧接し、目付け30g/m2 の長繊
維不織布を得た。繊維集積体から採取した複合繊維の繊
度は3デニール、低融点成分の断面比率は12%であっ
た。この長繊維不織布の物性を表1に示す。
Example 2 Using the same raw material as in Example 1 and using a die capable of forming the composite cross section shown in FIG. 2, the temperature was 230 ° C., the discharge rate was 1.5 g / 1 hole · min, and the composite ratio ( The high-melting point component / low-melting point component) was spun under the condition of 88/12% by weight.
After cooling the spun yarn, 4500 by air sucker
The web was collected at a speed of m / min, opened by a known method, and collected and deposited on a moving collecting surface to form a web. This web was point-patterned, the processing temperature was 145 ° C., and the pressure-contact area ratio was 15 using a heat-pressure welding device consisting of an embossing roll.
% Under the condition of%, and a long fiber nonwoven fabric having a basis weight of 30 g / m 2 was obtained. The fineness of the composite fiber collected from the fiber assembly was 3 denier and the cross-sectional ratio of the low melting point component was 12%. Table 1 shows the physical properties of this long-fiber nonwoven fabric.

【0037】実施例3 高融点成分としての、融点が260℃、相対粘度が1.
38のポリエチレンテレフタレート重合体を準備すると
ともに、低融点成分としての、融点が215℃、相対粘
度が1.35であり、かつイソフタル酸が15モル%共
重合された共重合体ポリエステルを準備した。このよう
な原料を用い、公知の溶融複合紡糸機と図2に示される
複合断面を形成できる口金とを用い、紡糸温度が290
℃、吐出量が1.6g/1ホール・分、複合比(高融点
成分/低融点成分)が88/12重量%という条件の下
で紡出した。紡出糸条を冷却した後、エアーサッカーに
より4800m/分の速度で引き取り、公知の方法にて
開繊し、移動する捕集面上に捕集・堆積させてウエッブ
とした。このウエッブを、エンボスロールからなる熱圧
接装置により、ポイント柄、加工温度215℃、圧接面
積比15%という条件下で熱圧接し、目付け30g/m
2 の長繊維不織布を得た。繊維集積体から採取した複合
繊維の繊度は3デニール、低融点成分の断面比率は12
%であった。この長繊維不織布の物性を表1に示す。
Example 3 A high melting point component having a melting point of 260 ° C. and a relative viscosity of 1.
A polyethylene terephthalate polymer of No. 38 was prepared, and a copolymer polyester having a melting point of 215 ° C., a relative viscosity of 1.35 and 15 mol% of isophthalic acid as a low melting point component was prepared. Using such a raw material, a known melt composite spinning machine and a spinneret capable of forming the composite cross section shown in FIG. 2 are used, and the spinning temperature is 290.
Spinning was carried out under conditions that the temperature was ℃, the discharge rate was 1.6 g / 1 hole · min, and the composite ratio (high melting point component / low melting point component) was 88/12 wt%. After the spun yarn was cooled, it was taken up by air sucker at a speed of 4800 m / min, opened by a known method, and collected and accumulated on a moving collecting surface to obtain a web. This web was hot pressed with a hot pressing device consisting of an embossing roll under the conditions of a point pattern, a processing temperature of 215 ° C., and a press contact area ratio of 15%, and a basis weight of 30 g / m 2.
A long fiber non-woven fabric of 2 was obtained. The fineness of the composite fiber collected from the fiber assembly is 3 denier, and the cross-sectional ratio of the low melting point component is 12
%Met. Table 1 shows the physical properties of this long-fiber nonwoven fabric.

【0038】実施例4 実施例3と同一の原料を用い、公知の溶融複合紡糸機と
図2に示される複合断面を形成できる口金とを用い、紡
糸温度が290℃、吐出量が5.2g/1ホール・分、
複合比(高融点成分/低融点成分)が88/12重量%
という条件の下で紡出した。紡出糸条を冷却した後、エ
アーサッカーにより5000m/分の速度で引き取り、
公知の方法にて開繊し、移動する捕集面上に捕集・堆積
させてウエッブとした。このウエッブを、エンボスロー
ルからなる熱圧接装置により、ポイント柄、加工温度2
35℃、圧接面積比5%という条件下で熱圧接し、目付
け50g/m2 の長繊維不織布を得た。繊維集積体から
採取した複合繊維の繊度は8デニール、低融点成分の断
面比率は12%であった。この長繊維不織布の物性を表
1に示す。
Example 4 Using the same raw material as in Example 3, using a known melt composite spinning machine and a spinneret capable of forming the composite cross section shown in FIG. 2, the spinning temperature was 290 ° C. and the discharge rate was 5.2 g. / 1 hole / minute,
Composite ratio (high melting point component / low melting point component) 88/12% by weight
It was spun under the condition. After cooling the spun yarn, it is taken up by air sucker at a speed of 5000 m / min,
The web was opened by a known method and collected and deposited on the moving collecting surface to form a web. This web was point-patterned at a processing temperature of 2 using a thermocompression bonding device consisting of an embossing roll.
Thermal pressing was performed under the conditions of 35 ° C. and a pressing area ratio of 5% to obtain a long fiber nonwoven fabric having a basis weight of 50 g / m 2 . The fineness of the composite fiber collected from the fiber assembly was 8 denier, and the cross-sectional ratio of the low melting point component was 12%. Table 1 shows the physical properties of this long-fiber nonwoven fabric.

【0039】実施例5 圧接面積比を35%とした他は、実施例1と同様とし
て、不織布を得た。その結果を表1に示す。
Example 5 A nonwoven fabric was obtained in the same manner as in Example 1 except that the pressure contact area ratio was 35%. The results are shown in Table 1.

【0040】比較例1 低融点成分の断面比率が3%になるように条件を変更し
た以外は、実施例1と同一条件下にて長繊維不織布を得
ようと試みた。しかし、あまりにも低融点成分が少な過
ぎるために繊維どうしの融着が不足し、得られた長繊維
不織布は、柔軟性には優れるものの、機械的特性に劣
り、さらに不織布表面の毛羽立が発生し、到底使用に耐
えるものではなかった。また糸抜けが多数発生した。
Comparative Example 1 An attempt was made to obtain a long fiber nonwoven fabric under the same conditions as in Example 1 except that the conditions were changed so that the cross-sectional ratio of the low melting point component was 3%. However, the fusion of the fibers was insufficient because the low-melting point component was too small, and the obtained long-fiber non-woven fabric was excellent in flexibility, but inferior in mechanical properties, and further fluffing of the non-woven fabric surface occurred. However, it was not durable enough to use. In addition, many thread dropouts occurred.

【0041】比較例2 低融点成分の断面比率が18%となるように条件を変更
した以外は、実施例1と同一条件下にて長繊維不織布を
得ようと試みた。しかし、断面比率が高過ぎたためエン
ボスロールに低融点成分であるポリプロピレン共重合体
の溶融物が付着し、所期の長繊維不織布は得られなかっ
た。
Comparative Example 2 An attempt was made to obtain a long-fiber nonwoven fabric under the same conditions as in Example 1 except that the conditions were changed so that the cross-sectional ratio of the low melting point component was 18%. However, since the cross-section ratio was too high, a melt of polypropylene copolymer, which is a low melting point component, adhered to the embossing roll, and the desired long-fiber nonwoven fabric was not obtained.

【0042】比較例3 エンボスロールの加工温度を210℃としたこと以外
は、実施例3と同一条件下にて長繊維不織布を得ようと
試みた。しかし、エンボスロールの温度が低すぎて融着
力が不足し、長繊維不織布の表面は毛羽が多く、とうて
い使用に耐えるものではなかった。
Comparative Example 3 An attempt was made to obtain a long-fiber nonwoven fabric under the same conditions as in Example 3 except that the processing temperature of the embossing roll was 210 ° C. However, the temperature of the embossing roll was too low, the fusion force was insufficient, and the surface of the long fiber non-woven fabric had a lot of fluff, so that it was hardly usable.

【0043】比較例4 エンボスロールの加工温度を245℃としたこと以外
は、実施例3と同一条件下にて長繊維不織布を得ようと
試みた。しかし、エンボスロールの温度が高過ぎたため
低融点成分であるポリエステル共重合体の溶融物が付着
し、所期の長繊維不織布は得られなかった。
Comparative Example 4 An attempt was made to obtain a long fiber nonwoven fabric under the same conditions as in Example 3 except that the processing temperature of the embossing roll was 245 ° C. However, since the temperature of the embossing roll was too high, the melt of the polyester copolymer, which is a low melting point component, adhered, and the desired long-fiber nonwoven fabric was not obtained.

【0044】比較例5 エンボスロールの圧接面積比を2%として熱圧接を行な
った以外は、比較例3と同一条件下にて長繊維不織布を
得ようと試みた。しかし、圧接が不十分となったため
に、長繊維不織布の表面は毛羽が多く、目的とする長繊
維不織布が得られなかった。
Comparative Example 5 An attempt was made to obtain a long fiber non-woven fabric under the same conditions as in Comparative Example 3 except that hot pressing was carried out with the pressing area ratio of the embossing roll being 2%. However, due to insufficient pressure contact, the surface of the long fiber non-woven fabric had many fluffs, and the intended long fiber non-woven fabric could not be obtained.

【0045】比較例6 エンボスロールの圧接面積比を50%として熱圧接を行
なった以外は、比較例3と同一条件下にて長繊維不織布
を得ようと試みた。しかし、圧接が十分過ぎたために、
不織布の表面がフィルム化し、目的とする長繊維不織布
が得られなかった。
Comparative Example 6 An attempt was made to obtain a long fiber non-woven fabric under the same conditions as in Comparative Example 3 except that hot pressing was performed with the pressing area ratio of the embossing roll being 50%. However, because the pressure contact was too much,
The surface of the non-woven fabric was formed into a film, and the intended long-fiber non-woven fabric was not obtained.

【0046】比較例7 実施例3と同一素材を用い、公知の溶融複合紡糸機に
て、高融点成分のポリエチレンテレフタレートが芯部を
形成するとともに、低融点成分のイソフタル酸15モル
%を共重合した共重合ポリエステルが鞘部を形成する芯
鞘複合断面になるような口金を用いた。そして、紡糸温
度が290℃、吐出量が1.5g/1ホール・分、複合
比(高融点成分/低融点成分)が50/50重量%とい
う条件の下で紡出した。紡出糸条を冷却した後、エアー
サッカーにより4500m/分の速度で引き取り、公知
の方法にて開繊し、移動する捕集面上に捕集・堆積させ
てウエッブとした。このウエッブを、エンボスロールか
らなる熱圧接装置により、ポイント柄、加工温度245
℃、圧接面積比15%という条件下で熱圧接し、目付け
30g/m2 の長繊維不織布を得た。繊維集積体から採
取した複合繊維の繊度は3デニールであった。この場合
に得られた長繊維不織布は、圧接部分が溶解して穴があ
き、一部フィルム化していた。
Comparative Example 7 Using the same material as in Example 3, and using a known melt-composite spinning machine, polyethylene terephthalate having a high melting point component forms a core, and 15 mol% of isophthalic acid having a low melting point component is copolymerized. A die having a core-sheath composite cross section in which the copolymerized polyester thus formed forms a sheath was used. Then, spinning was carried out under the conditions that the spinning temperature was 290 ° C., the discharge rate was 1.5 g / 1 hole · minute, and the composite ratio (high melting point component / low melting point component) was 50/50 wt%. After the spun yarn was cooled, it was taken up by air sucker at a speed of 4500 m / min, opened by a known method, and collected and accumulated on the moving collecting surface to form a web. This web was point-patterned at a processing temperature of 245 using a thermocompression bonding device consisting of an embossing roll.
Heat-pressing was performed under the conditions of a temperature of 15 ° C. and a pressing area ratio of 15% to obtain a long-fiber nonwoven fabric having a basis weight of 30 g / m 2 . The fineness of the composite fiber collected from the fiber assembly was 3 denier. In the long fiber nonwoven fabric obtained in this case, the pressure contact portion was melted and a hole was formed, and a part was formed into a film.

【0047】[0047]

【表1】 [Table 1]

【0048】表1から明らかなように、本発明の実施例
1〜5によれば、複合繊維の横断面における周方向の一
部に低融点成分が配置され、かつエンボスロール温度を
低融点成分の融点の近傍としたため、エンボスロールに
不織布が付する等の障害は発生せず、また得られた長繊
維不織布は機械的性能及び柔軟性に優れたものであっ
た。
As is clear from Table 1, according to Examples 1 to 5 of the present invention, the low melting point component is disposed in a part of the cross section of the conjugate fiber in the circumferential direction, and the embossing roll temperature is set to the low melting point component. Since the temperature was close to the melting point of No. 3, no problems such as the non-woven fabric sticking to the embossing roll occurred, and the obtained long-fiber non-woven fabric was excellent in mechanical performance and flexibility.

【0049】一方、比較例2、4、6、7の場合は、い
ずれも熱圧接装置(エンボスロール)に低融点成分の溶
融物が付着し、操業性を著しく損なうこととなった。ま
た、長繊維不織布が得られた場合でも、その表面がフイ
ルム化するとともに、柔軟性及びドレープ性を損なう結
果となった。反対に比較例1、3、5の場合は、熱圧接
が不十分となる結果しか得られなかった。
On the other hand, in each of Comparative Examples 2, 4, 6, and 7, the melt of the low-melting point component adhered to the hot-pressing device (embossing roll), which markedly impaired the operability. Further, even when a long-fiber nonwoven fabric was obtained, the surface thereof was formed into a film and the flexibility and drape property were impaired. On the contrary, in the case of Comparative Examples 1, 3, and 5, only the result of insufficient thermal pressure welding was obtained.

【0050】[0050]

【発明の効果】本発明の長繊維不織布及びその製造方法
によれば、複合長繊維の横断面において、第1の繊維形
成性重合体(高融点成分)と第2の繊維形成性重合体
(低融点成分)とが周方向の一定範囲ずつを占め、第2
の繊維形成性重合体が繊維表面の一部に露出することに
なり、また、この複合長繊維からなるウエッブが、エン
ボスロールによって、低融点成分の融点の近傍であるが
この融点よりも高い温度で熱圧着されるため、構成繊維
の融点よりも低い温度で圧接させる従来方法とは異な
り、充分にウエッブを熱圧接できるために優れた接着特
性が得られ、また高融点成分が不織布の構成繊維の母体
であるので機械的特性及び柔軟性に優れた長繊維不織布
が得られる。
According to the long-fiber nonwoven fabric and the method for producing the same of the present invention, the first fiber-forming polymer (high melting point component) and the second fiber-forming polymer ( Low melting point component) occupies a certain range in the circumferential direction,
The fiber-forming polymer of is exposed on a part of the fiber surface, and the web made of the composite long fibers has a temperature higher than the melting point of the low-melting point component by the embossing roll. Since it is thermocompression-bonded to the web, unlike the conventional method in which the web is pressure-welded at a temperature lower than the melting point of the constituent fiber, excellent adhesive properties can be obtained because the web can be sufficiently thermocompressed. Since it is the matrix of the above, a long-fiber nonwoven fabric excellent in mechanical properties and flexibility can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の長繊維不織布を構成する長繊維の複合
断面構造の一例を示す模式図である。
FIG. 1 is a schematic view showing an example of a composite cross-sectional structure of long fibers constituting a long fiber nonwoven fabric of the present invention.

【図2】長繊維の複合断面構造の他の例を示す模式図で
ある。
FIG. 2 is a schematic view showing another example of a composite cross-sectional structure of long fibers.

【符号の説明】[Explanation of symbols]

1 高融点成分 2 低融点成分 1 High melting point component 2 Low melting point component

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複合長繊維からなる不織ウエッブが部分
的に熱圧接されて所定の形態を保持している不織布であ
って、第1の繊維形成性重合体と、この第1の繊維形成
性重合体よりも20℃以上融点の低い第2の繊維形成性
重合体とで構成された複合長繊維によって形成され、こ
の複合長繊維の横断面において、前記第1の繊維形成性
重合体と第2の繊維形成性重合体とが周方向の一定範囲
ずつを占め、この複合長繊維の横断面の周方向に沿った
ときの全断面積に占める前記第2の繊維形成性重合体の
断面積の比率が5〜15%であることを特徴とする長繊
維不織布。
1. A non-woven fabric in which a nonwoven web made of composite long fibers is partially heat-pressed to maintain a predetermined shape, which comprises a first fiber-forming polymer and the first fiber-forming polymer. Formed by a composite long fiber composed of a second fiber-forming polymer having a melting point of 20 ° C. or more lower than that of the organic polymer, and in the cross section of the composite long fiber, the first fiber-forming polymer The second fiber-forming polymer occupies a certain range in the circumferential direction, and the cross section of the second fiber-forming polymer occupies the entire cross-sectional area of the cross section of the composite continuous fiber in the circumferential direction. A long-fiber nonwoven fabric having an area ratio of 5 to 15%.
【請求項2】 複合長繊維の単糸繊度が1.5〜15デ
ニールであることを特徴とする請求項1記載の長繊維不
織布。
2. The continuous fiber non-woven fabric according to claim 1, wherein the single filament fineness of the composite continuous fiber is 1.5 to 15 denier.
【請求項3】 複合長繊維からなる不織ウエッブが部分
的に熱圧接されて所定の形態を保持している不織布の製
造方法であって、 第1の繊維形成性重合体と、この第1の繊維形成性重合
体よりも20℃以上融点の低い第2の繊維形成性重合体
とで構成され、横断面において前記第1の繊維形成性重
合体と第2の繊維形成性重合体とが周方向の一定範囲ず
つを占め、かつ横断面の周方向に沿ったときの全断面積
に占める前記第2の繊維形成性重合体の断面積の比率が
5〜15%となるように複合長繊維を紡糸し、 この複合長繊維によって不織ウエッブを形成し、 この不織ウエッブを、第2の繊維形成性重合体の融点を
tであらわしたときに熱圧接温度Tを下式の範囲とし
て、 t < T < t+15℃ 圧接面積比が4〜40%のエンボスロールにて部分的に
熱圧接することを特徴とする長繊維不織布の製造方法。
3. A method for producing a non-woven fabric in which a nonwoven web made of composite long fibers is partially heat-pressed to maintain a predetermined shape, the first fiber-forming polymer and the first fiber-forming polymer. Of the second fiber-forming polymer having a melting point lower than that of the fiber-forming polymer of 20 ° C. or more, and the first fiber-forming polymer and the second fiber-forming polymer are The composite length occupies a certain range in the circumferential direction and the ratio of the cross-sectional area of the second fiber-forming polymer to the total cross-sectional area along the circumferential direction of the cross section is 5 to 15%. A fiber is spun to form a non-woven web by the composite long fiber, and when the non-woven web is represented by the melting point of the second fiber-forming polymer by t, the hot pressing temperature T is set within the range of the following formula. , T <T <t + 15 ° C For embossing rolls with a pressure contact area ratio of 4 to 40% A method for producing a long-fiber non-woven fabric, which is characterized in that partial heat-bonding is performed.
JP17149194A 1994-07-25 1994-07-25 Long-fiber nonwoven fabric and method for producing the same Expired - Fee Related JP3429566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17149194A JP3429566B2 (en) 1994-07-25 1994-07-25 Long-fiber nonwoven fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17149194A JP3429566B2 (en) 1994-07-25 1994-07-25 Long-fiber nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0841765A true JPH0841765A (en) 1996-02-13
JP3429566B2 JP3429566B2 (en) 2003-07-22

Family

ID=15924086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17149194A Expired - Fee Related JP3429566B2 (en) 1994-07-25 1994-07-25 Long-fiber nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP3429566B2 (en)

Also Published As

Publication number Publication date
JP3429566B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP4619947B2 (en) High strength nonwoven fabric
EP0534863A1 (en) Bonded composite nonwoven web and process
JP5019991B2 (en) Method for producing spunlace composite nonwoven fabric
JP4315663B2 (en) Method for producing nonwoven fabric comprising core-sheath composite long fiber
JP3240819B2 (en) Non-woven fabric and its manufacturing method
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JP3102451B2 (en) Three-layer nonwoven fabric and method for producing the same
JP3429566B2 (en) Long-fiber nonwoven fabric and method for producing the same
JP3102450B2 (en) Three-layer nonwoven fabric and method for producing the same
JP3101414B2 (en) Stretchable polyester-based elastic nonwoven fabric and method for producing the same
JP3562667B2 (en) Method for producing stretchable long-fiber nonwoven fabric
JPH05263344A (en) Stretchable nonwoven fabric of filament and its production
JP3107626B2 (en) Heat-bonded long-fiber nonwoven fabric
JP2856474B2 (en) High elongation non-woven fabric
JPH09291457A (en) Laminated nonwoven fabric of conjugate long fiber
JPH07207566A (en) Laminated nonwoven fabric and its production
JPH0571060A (en) Laminated filament nonwoven fabric and its production
JPH11309063A (en) Primary base fabric for tufted carpet
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same
JPH1096156A (en) Base fabric for disposable clothes
JPH09273060A (en) Conjugate long fiber nonwoven fabric and its production
JPH05186955A (en) Hot melt bonded filament nonwoven fabric
JP2007321311A (en) Heat-sealing nonwoven fabric
JPH10298860A (en) Continuous filament nonwoven fabric for construction and its production
JP2636925B2 (en) Nonwoven fabric made of heat-adhesive conjugate fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees