JPH0840798A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH0840798A
JPH0840798A JP17907494A JP17907494A JPH0840798A JP H0840798 A JPH0840798 A JP H0840798A JP 17907494 A JP17907494 A JP 17907494A JP 17907494 A JP17907494 A JP 17907494A JP H0840798 A JPH0840798 A JP H0840798A
Authority
JP
Japan
Prior art keywords
heater
crystal
single crystal
raw material
effective length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17907494A
Other languages
Japanese (ja)
Inventor
Hiromasa Yamamoto
裕正 山本
Manabu Kano
学 加納
Soichiro Otani
聡一郎 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP17907494A priority Critical patent/JPH0840798A/en
Publication of JPH0840798A publication Critical patent/JPH0840798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce single crystal of a continuous compound semiconductor having high formation ratio of single crystal in excellent reproducibility. CONSTITUTION:A crucible 14 charged with a raw material and a sealing agent 4 is set in a crucible 14 and heated by a heater 15 to melt the raw material. Seed crystal 2 is brought into contact with the surface of a melt 3 of the raw material and is gradually pulled up while being rotated to grow single crystal 1. In the operation, a lower movable heat insulating member 18 is gradually raised with interlocking the member to a crucible shaft 13 as the crystal grows. An opening amount of an opening part 19 formed between the lower mobile heat insulating member 18 and an upper stationary heat insulating member 17 is gradually narrowed. The crystal is grown while controlling so as to shorten effective length of the heater 15. Consequently, at the beginning of the growth, the effective length of the heater becomes long to prevent formation of polycrystal. As the crystal grows, the effective length of the heater is made short. Since the temperature gradient in the growing crystal in the vicinity of a solid-liquid interface is kept large, formation of polycrystal in the middle of growth is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶の製造方法に関
し、特に液体封止チョクラルスキー(LEC)法により
化合物半導体単結晶を製造するのに利用して有用な方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal, and more particularly to a method useful for producing a compound semiconductor single crystal by the liquid-encapsulated Czochralski (LEC) method.

【0002】[0002]

【従来の技術】GaAsなどのIII −V 族化合物半導体
の単結晶を製造する主要な方法として、原料と封止剤を
るつぼ内で溶融させ、その原料融液表面に種結晶を接触
させて回転させながら徐々に引き上げることにより単結
晶を育成するLEC法が公知である。このLEC法にお
いて使用されるヒーターの大きさは、結晶引上げ方向の
発熱長が使用されるるつぼの大きさやそのるつぼへの原
料の初期投入量に対して最適となるように予め選択され
ている。
2. Description of the Related Art As a main method for producing a single crystal of a III-V group compound semiconductor such as GaAs, a raw material and a sealant are melted in a crucible, and a seed crystal is brought into contact with the surface of the raw material melt and rotated. The LEC method is known, in which a single crystal is grown by gradually pulling it up. The size of the heater used in this LEC method is selected in advance so that the heat generation length in the crystal pulling direction is optimum for the size of the crucible used and the initial amount of the raw material charged into the crucible.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来のLEC法では、図5に示すように、結晶育成中に直
胴部の途中から多結晶化してしまい、再現性よく長尺の
単結晶が得られないという問題点があった。
However, in the above-mentioned conventional LEC method, as shown in FIG. 5, polycrystallization occurs from the middle of the straight body portion during crystal growth, and a long single crystal with good reproducibility is obtained. There was a problem that I could not get it.

【0004】本発明は、上記問題点を解決するためにな
されたもので、その目的は、単結晶化率の高い長尺の化
合物半導体単結晶を再現性よく製造することができるよ
うにすることにある。
The present invention has been made to solve the above problems, and an object thereof is to make it possible to reproducibly manufacture a long compound semiconductor single crystal having a high single crystallization rate. It is in.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、結晶育成中に多結晶化が起こる原因
は、固液界面を取り巻く熱環境が変化して固液界面の形
状が理想的な下凸状態でなくなってしまうことにあると
考えた。そして、固液界面近傍における育成結晶中の温
度勾配を、計算機を用いたシミュレーションにより調べ
た結果、図4に●で示すように、従来のヒーターの場合
には結晶成長が進むと温度勾配が小さくなり過ぎること
がわかった。これは、結晶成長の進行にしたがって漸次
減少する原料融液量に対して、ヒーターの発熱長が長く
なり過ぎてしまうことが原因であると考えられる。そこ
で、ヒーターの発熱長を従来のものよりも短くしてシミ
ュレーションを行なったところ、図4に○で示すよう
に、温度勾配を従来のヒーターよりも大きくすることが
できることがわかった。
In order to achieve the above object, the present inventors have found that the cause of polycrystallization during crystal growth is that the thermal environment surrounding the solid-liquid interface changes I thought that the shape would not be the ideal downward convex state. As a result of investigating the temperature gradient in the grown crystal near the solid-liquid interface by a simulation using a computer, as shown by ● in FIG. 4, in the case of the conventional heater, the temperature gradient becomes small as the crystal growth proceeds. I knew it would be too much. It is considered that this is because the heating length of the heater becomes too long with respect to the amount of the raw material melt that gradually decreases as the crystal growth progresses. Therefore, a simulation was carried out by making the heat generation length of the heater shorter than that of the conventional heater, and it was found that the temperature gradient can be made larger than that of the conventional heater as shown by ◯ in FIG.

【0006】しかし、ヒーターの発熱長を短くすること
により、成長開始時点における原料融液の深さに比べて
発熱長が小さくなり過ぎると、原料融液の対流が大きく
なって熱的に不安定な状態となってしまい、成長初期に
多結晶、特に双晶が入り易くなる、という傾向がある。
However, by shortening the heat generation length of the heater, if the heat generation length becomes too small compared to the depth of the raw material melt at the start of growth, the convection of the raw material melt becomes large and becomes thermally unstable. However, there is a tendency that polycrystals, especially twin crystals, tend to enter in the initial stage of growth.

【0007】本発明は、上記知見に基づきなされたもの
で、原料と封止剤とを入れたるつぼを炉内に設置し、ヒ
ーターにより加熱して溶融させ、原料融液表面に種結晶
を接触させて徐々に引き上げることにより単結晶を育成
するにあたり、前記ヒーターの、前記原料融液の加熱に
有効に寄与し得る実効長(発熱長)が結晶の成長に応じ
て短くなるように制御することを特徴とする。
The present invention was made based on the above findings. A crucible containing a raw material and a sealant was placed in a furnace, heated by a heater to melt the crucible, and a seed crystal was brought into contact with the surface of the raw material melt. When the single crystal is grown by gradually pulling it up, the effective length (heat generation length) of the heater, which can effectively contribute to the heating of the raw material melt, is controlled to be shortened according to the growth of the crystal. Is characterized by.

【0008】具体的には、前記ヒーターと前記るつぼと
の間に移動可能で且つその移動により開口量が増減され
る開口部を有する断熱部材を設け、前記開口部の大きさ
が原料融液の残量に対応して漸次狭まるように前記断熱
部材を移動させることにより、前記ヒーターの実効長の
制御を行なうようにしてもよいし、また、前記ヒーター
が、個別に電力の供給量の増減及び停止が可能な複数の
発熱領域を有しており、各発熱領域に対する電力供給量
を原料融液の残量に対応して個別に増減又は停止させる
ことにより、前記ヒーターの実効長の制御を行なうよう
にしてもよい。
Specifically, a heat insulating member having an opening that is movable between the heater and the crucible and whose opening amount is increased or decreased by the movement is provided, and the size of the opening is the size of the raw material melt. The effective length of the heater may be controlled by moving the heat insulating member so as to gradually narrow according to the remaining amount, or the heater may individually increase or decrease the amount of power supply and It has a plurality of heat generation areas that can be stopped, and the effective length of the heater is controlled by individually increasing or decreasing or stopping the power supply amount to each heat generation area in accordance with the remaining amount of the raw material melt. You may do it.

【0009】[0009]

【作用】上記した手段によれば、LEC法により化合物
半導体の単結晶を育成するにあたり、ヒーターの実効長
を結晶の成長に応じて短くなるように制御することによ
り、成長初期においてはヒーターの実効長が長くなって
多結晶化が防止されるとともに、結晶成長が進むとヒー
ターの実効長が短くなって固液界面近傍における育成結
晶中の温度勾配が大きく保たれるので、固液界面形状が
下凸状態に保たれることとなり、長尺の単結晶が再現性
よく得られる。
According to the above-mentioned means, when growing a single crystal of a compound semiconductor by the LEC method, the effective length of the heater is controlled so as to be shortened in accordance with the growth of the crystal, so that the effective heater becomes effective at the initial growth stage. As the length becomes longer and polycrystallization is prevented, the effective length of the heater becomes shorter as the crystal growth progresses and the temperature gradient in the grown crystal near the solid-liquid interface is kept large. The convex shape is maintained, and a long single crystal can be obtained with good reproducibility.

【0010】その際、ヒーターとるつぼとの間に移動可
能で且つその移動により開口量が増減される開口部を有
する断熱部材を設け、その断熱部材を移動させて開口部
の大きさが原料融液の残量に対応して漸次狭まるように
するか、またはヒーターを、個別に電力の供給量の増減
及び停止が可能な複数の発熱領域を有する構成のものと
し、各発熱領域に対する電力供給量を原料融液の残量に
対応して個別に増減又は停止させるようにすることによ
り、上述したように、成長初期においてはヒーターの実
効長が長くなり、結晶成長が進むとヒーターの実効長が
短くなるように実効長の制御を行なうことができる。
At this time, a heat insulating member having an opening which is movable between the heater and the crucible and whose opening amount is increased or decreased by the movement is provided, and the size of the opening is changed by moving the heat insulating member. The heater should be gradually narrowed according to the remaining amount of liquid, or the heater shall be configured to have multiple heat generation areas that can individually increase or decrease the amount of power supply and stop, and the amount of power supply to each heat generation area. By individually increasing / decreasing or stopping according to the remaining amount of the raw material melt, as described above, the effective length of the heater becomes long in the initial stage of growth, and the effective length of the heater increases as the crystal growth progresses. The effective length can be controlled so that the length becomes shorter.

【0011】[0011]

【実施例】以下に、本発明に係る単結晶の製造方法の実
施例を説明する。この製造方法は、原料と封止剤とを入
れたるつぼを炉内に設置し、ヒーターにより加熱して溶
融させ、原料融液表面に種結晶を接触させて回転させな
がら徐々に引き上げることにより単結晶を育成するLE
C法において、ヒーターの、原料融液の加熱に有効に寄
与し得る実効長を結晶の成長に応じて短くするように制
御しながら結晶育成を行なうものである。
EXAMPLES Examples of the method for producing a single crystal according to the present invention will be described below. In this manufacturing method, a crucible containing a raw material and a sealant is placed in a furnace, heated by a heater to melt, and a seed crystal is brought into contact with the surface of the raw material melt and gradually pulled up while rotating. LE to grow crystals
In the method C, crystal growth is performed while controlling the effective length of the heater that can effectively contribute to the heating of the raw material melt in accordance with the growth of the crystal.

【0012】図1は、本発明の実施に供される単結晶製
造装置の一例を示す図であるが、同図において、1は育
成結晶、2は種結晶、3は原料融液、4は封止剤、10
は単結晶製造装置、11は図示しないガス導入口及びガ
ス排出口を有する高圧チャンバー、12は下端に種結晶
2を保持して必要に応じて回転しながら所定の引上げ速
度で上昇する結晶引上げ軸、13はるつぼ14を保持し
て必要に応じて回転しながら原料融液3の残量に合わせ
て上昇するるつぼ軸、15はるつぼ14を囲む円筒形状
のヒーターである。また、16,17,18は何れも略
円筒形状部分を有し、るつぼ14やヒーター15を囲む
ように配置された断熱部材であり、16は外側固定断熱
部材、17は上側固定断熱部材、18は下側可動断熱部
材、19は上側固定断熱部材17と下側可動断熱部材1
8とで挟まれて形成された開口部である。
FIG. 1 is a diagram showing an example of an apparatus for producing a single crystal used for carrying out the present invention. In the figure, 1 is a grown crystal, 2 is a seed crystal, 3 is a raw material melt, and 4 is Sealant, 10
Is a single crystal production apparatus, 11 is a high-pressure chamber having a gas inlet and a gas outlet (not shown), and 12 is a crystal pulling shaft that holds the seed crystal 2 at the lower end and rotates at a predetermined pulling speed while rotating as necessary. , 13 are crucible shafts which hold the crucible 14 and rotate according to the remaining amount of the raw material melt 3 while rotating as necessary, and 15 is a cylindrical heater surrounding the crucible 14. Further, all of 16, 17, and 18 are heat insulating members which have a substantially cylindrical shape and are arranged so as to surround the crucible 14 and the heater 15, 16 is an outer fixed heat insulating member, 17 is an upper fixed heat insulating member, 18 Is a lower movable heat insulating member, 19 is an upper fixed heat insulating member 17 and a lower movable heat insulating member 1.
It is an opening formed by being sandwiched between 8 and.

【0013】上側固定断熱部材17は、高圧チャンバー
11内の所定位置に固定されていて、ヒーター15の熱
が原料融液3の上方空間、即ち育成結晶1側に過剰に供
給されないようにしている。下側可動断熱部材18はる
つぼ軸13に連動されていて、るつぼ軸13とともに上
昇・下降するようになっている。そして、この単結晶製
造装置10においては、結晶の成長に連れて下側可動断
熱部材18が漸次上昇することによって開口部19の開
口量が徐々に狭まり、ヒーター15の実効長が短くな
る。
The upper fixed heat insulating member 17 is fixed at a predetermined position in the high pressure chamber 11 so that the heat of the heater 15 is not excessively supplied to the upper space of the raw material melt 3, that is, the grown crystal 1 side. . The lower movable heat insulating member 18 is interlocked with the crucible shaft 13 so as to move up and down together with the crucible shaft 13. Then, in the single crystal manufacturing apparatus 10, the lower movable heat insulating member 18 gradually rises as the crystal grows, whereby the opening amount of the opening 19 gradually narrows, and the effective length of the heater 15 shortens.

【0014】なお、下側可動断熱部材18の上下動をる
つぼ軸13から独立して制御してもよいし、上側固定断
熱部材17を上昇・下降させるようにしてもよい。
The vertical movement of the lower movable heat insulating member 18 may be controlled independently of the crucible shaft 13, or the upper fixed heat insulating member 17 may be moved up and down.

【0015】図2は、本発明の実施に供される単結晶製
造装置の他の例を示す図であるが、同図において、1,
2,3,4はそれぞれ図1と同様に育成結晶、種結晶、
原料融液及び封止剤であり、20は単結晶製造装置、2
1,22,23,24はそれぞれ上記単結晶製造装置1
0と同様の高圧チャンバー、結晶引上げ軸、るつぼ軸及
びるつぼである。また、25,26は何れもるつぼ24
を囲んで同心円状に配置された円筒形状のヒーターであ
り、25はヒーター長の短い主ヒーター、26はその外
側に配置されたヒーター長の長い補助ヒーターである。
従って、この単結晶製造装置20のヒーターは、主ヒー
ター25及び補助ヒーター26からなる複数の発熱領域
で構成されていることになる。27は上記外側固定断熱
部材16と同様の断熱部材である。
FIG. 2 is a diagram showing another example of the single crystal production apparatus used for carrying out the present invention. In FIG.
2, 3, 4 are the grown crystal, seed crystal, and
A raw material melt and a sealant, 20 is a single crystal manufacturing apparatus, 2
1, 22, 23, and 24 are the single crystal manufacturing apparatus 1 described above, respectively.
High pressure chamber, crystal pulling shaft, crucible shaft and crucible similar to 0. Further, 25 and 26 are both crucibles 24
Is a cylindrical heater that is concentrically arranged so as to surround the main heater, 25 is a main heater with a short heater length, and 26 is an auxiliary heater with a long heater length that is arranged outside thereof.
Therefore, the heater of the single crystal manufacturing apparatus 20 is composed of a plurality of heat generating regions including the main heater 25 and the auxiliary heater 26. Reference numeral 27 is a heat insulating member similar to the outer fixed heat insulating member 16.

【0016】主ヒーター25及び補助ヒーター26は個
別に電力供給量の増減及び停止が操作されるようになっ
ている。そして、結晶育成初期においては、補助ヒータ
ー26に供給する電力を大きくすることによりヒータの
実効長が長くなり、結晶の成長に連れて主ヒーター25
への電力供給量を増大させるとともに補助ヒーター26
の電力供給量を減少させることによりヒーターの実効長
が短くなる。
The main heater 25 and the auxiliary heater 26 can be individually operated to increase / decrease and stop the power supply amount. In the initial stage of crystal growth, the effective length of the heater is increased by increasing the power supplied to the auxiliary heater 26, and the main heater 25 grows as the crystal grows.
Power supply to the auxiliary heater 26
The effective length of the heater is shortened by reducing the power supply amount of the heater.

【0017】なお、補助ヒーター26の外側にさらに一
つ以上の順に大きくなる補助ヒーターを設けてもよく、
その場合には、結晶育成の開始時には外側の補助ヒータ
ーへの電力供給量を大きくし、結晶成長が進むに連れて
順に内側のヒーターへの電力供給量が外側のヒーターよ
りも大きくなるようにすればよい。
It should be noted that one or more auxiliary heaters may be provided on the outside of the auxiliary heater 26 in order of increasing size.
In that case, increase the amount of power supplied to the outer auxiliary heater at the start of crystal growth, so that as the crystal growth proceeds, the amount of power supplied to the inner heater becomes larger than that of the outer heater. Good.

【0018】図3は、本発明の実施に供される単結晶製
造装置のさらに他の例を示す図であるが、同図におい
て、1,2,3,4はそれぞれ図1と同様に育成結晶、
種結晶、原料融液及び封止剤であり、30は単結晶製造
装置、31,32,33,34はそれぞれ上記単結晶製
造装置10と同様の高圧チャンバー、結晶引上げ軸、る
つぼ軸及びるつぼである。また、35,36,37は複
数の発熱領域を有する多段型ヒーターを構成する円筒形
状のヒーターであり、何れもるつぼ34を囲むように上
下に連なって配置されている。35は主ヒーター、3
6,37は補助ヒーターであるが、主ヒーター35の長
さは、成長開始時点における原料融液3の深さと同じ程
度かそれよりも短いのが好ましい。38は上記外側固定
断熱部材16と同様の断熱部材である。
FIG. 3 is a diagram showing still another example of the single crystal production apparatus used for carrying out the present invention. In FIG. 3, 1, 2, 3, and 4 are grown in the same manner as in FIG. crystal,
A seed crystal, a raw material melt, and a sealant, 30 is a single crystal manufacturing apparatus, and 31, 32, 33, and 34 are high-pressure chambers, crystal pulling shafts, crucible shafts, and crucibles, which are the same as those of the single crystal manufacturing apparatus 10, respectively. is there. Reference numerals 35, 36, and 37 denote cylindrical heaters that form a multi-stage heater having a plurality of heat generating regions, and are all arranged vertically so as to surround the crucible 34. 35 is a main heater, 3
Reference numerals 6 and 37 are auxiliary heaters, but the length of the main heater 35 is preferably equal to or shorter than the depth of the raw material melt 3 at the start of growth. Reference numeral 38 is a heat insulating member similar to the outer fixed heat insulating member 16.

【0019】主ヒーター35及び補助ヒーター36,3
7は個別に電力供給量の増減及び停止が操作されるよう
になっている。そして、結晶育成初期においては、補助
ヒーター36,37に供給する電力を大きくすることに
よりヒータの実効長が長くなり、結晶の成長に連れて主
ヒーター35への電力供給量を増大させるとともに補助
ヒーター36,37の電力供給量を減少させることによ
りヒーターの実効長が短くなる。
Main heater 35 and auxiliary heaters 36, 3
7, the power supply amount can be individually increased / decreased and stopped. In the initial stage of crystal growth, the effective length of the heater is increased by increasing the electric power supplied to the auxiliary heaters 36 and 37. As the crystal grows, the electric power supply amount to the main heater 35 is increased and the auxiliary heater is increased. By reducing the power supply of 36 and 37, the effective length of the heater is shortened.

【0020】なお、補助ヒータの数は一つでもよいし3
つ以上でもよい。3つ以上の場合には、結晶成長が進む
に連れて順に主ヒーター35から遠いヒータへの電力供
給量を減少させればよい。
The number of auxiliary heaters may be one or three.
It may be more than one. In the case of three or more, as the crystal growth proceeds, the power supply amount to the heaters farther from the main heater 35 may be sequentially decreased.

【0021】次に、具体例及び比較例を挙げて本発明の
特徴とするところをさらに明らかとするが、本発明は以
下の具体例により何等制限されないのはいうまでもな
い。各具体例及び比較例においては、内径300mmのる
つぼ内に初期投入量24.5kgの原料(GaAs多結
晶)と封止剤としてB2 3 を入れ、20atmのArガ
ス雰囲気下で、るつぼを20rpmの相対回転数で回転さ
せながら毎時8mmの引上げ速度で種結晶(GaAs単結
晶)を引き上げて直胴部の直径が110mm、育成重量が
約21kg、育成方位が〈100〉の結晶を成長させた。
Next, the features of the present invention will be further clarified with reference to specific examples and comparative examples, but it goes without saying that the present invention is not limited to the following specific examples. In each of the specific examples and comparative examples, a raw material (GaAs polycrystal) with an initial charge of 24.5 kg and B 2 O 3 as a sealant were placed in a crucible having an inner diameter of 300 mm, and the crucible was placed under an Ar gas atmosphere of 20 atm. The seed crystal (GaAs single crystal) was pulled at a pulling rate of 8 mm per hour while rotating at a relative rotational speed of 20 rpm to grow a crystal with a straight body diameter of 110 mm, a growing weight of about 21 kg, and a growing orientation of <100>. It was

【0022】具体例1では、図1に示した単結晶製造装
置10を用い、結晶が成長するのに連れて開口部19が
狭まり、ヒーターの実効長が短くなるように制御した。
その結果、単結晶が得られた直胴部の長さは390〜4
50mmであった。
In the specific example 1, the single crystal manufacturing apparatus 10 shown in FIG. 1 was used, and the opening 19 was narrowed as the crystal grew, and the effective length of the heater was shortened.
As a result, the length of the straight body part from which the single crystal was obtained was 390 to 4
It was 50 mm.

【0023】具体例2では、図3に示した単結晶製造装
置30を用い、結晶成長とともに主ヒーター35及び補
助ヒーター36,37への各電力供給量を調節して、ヒ
ーターの実効長が短くなるように制御した。その結果、
単結晶が得られた直胴部の長さは400〜450mmであ
った。
In Example 2, the single crystal manufacturing apparatus 30 shown in FIG. 3 is used to adjust the amount of power supplied to the main heater 35 and the auxiliary heaters 36 and 37 as the crystal grows, thereby shortening the effective length of the heater. Controlled to be. as a result,
The length of the straight body part from which the single crystal was obtained was 400 to 450 mm.

【0024】比較例では、従来の一段型ヒーターを有す
る製造装置を用い、結晶育成の開始から終了に至るまで
ヒーターの実効長を一定に保った。その結果、単結晶が
得られた直胴部の長さは100〜140mmであった。
In the comparative example, a manufacturing apparatus having a conventional one-stage heater was used, and the effective length of the heater was kept constant from the start to the end of crystal growth. As a result, the length of the straight body portion from which the single crystal was obtained was 100 to 140 mm.

【0025】従って、上記各具体例及び比較例より、本
発明によれば、長尺の単結晶が得られることが確認され
た。
Therefore, it was confirmed from the above specific examples and comparative examples that a long single crystal can be obtained according to the present invention.

【0026】なお、上記各具体例では、GaAs単結晶
を育成する場合を例として挙げたが、本発明はGaAs
以外のInP等の化合物半導体単結晶をLEC法で育成
する場合に適用可能であるのは勿論である。
In each of the above specific examples, the case of growing a GaAs single crystal has been taken as an example, but the present invention is based on GaAs.
It is needless to say that it can be applied to the case of growing a compound semiconductor single crystal such as InP other than the above by the LEC method.

【0027】[0027]

【発明の効果】本発明に係る単結晶の製造方法によれ
ば、LEC法により化合物半導体の単結晶を育成するに
あたり、ヒーターの実効長を結晶の成長に応じて短くな
るように制御することにより、成長初期においてはヒー
ターの実効長が長くなって多結晶化が防止されるととも
に、結晶成長が進むとヒーターの実効長が短くなって固
液界面近傍における育成結晶中の温度勾配が大きく保た
れるので、固液界面形状が下凸状態に保たれることとな
り、長尺の単結晶が再現性よく得られる。
According to the method for producing a single crystal of the present invention, in growing a single crystal of a compound semiconductor by the LEC method, the effective length of the heater is controlled so as to be shortened according to the growth of the crystal. , In the early stage of growth, the effective length of the heater was increased to prevent polycrystallization, and as the crystal growth proceeded, the effective length of the heater was shortened to maintain a large temperature gradient in the grown crystal near the solid-liquid interface. As a result, the solid-liquid interface shape is maintained in a downward convex state, and a long single crystal can be obtained with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る単結晶の製造方法の実施に使用さ
れる単結晶製造装置の一例を示す概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing an example of a single crystal manufacturing apparatus used for carrying out a method for manufacturing a single crystal according to the present invention.

【図2】本発明に係る単結晶の製造方法の実施に使用さ
れる単結晶製造装置の他の例を示す概略縦断面図であ
る。
FIG. 2 is a schematic vertical cross-sectional view showing another example of a single crystal production apparatus used for carrying out the method for producing a single crystal according to the present invention.

【図3】本発明に係る単結晶の製造方法の実施に使用さ
れる単結晶製造装置のさらに他の例を示す概略縦断面図
である。
FIG. 3 is a schematic vertical sectional view showing still another example of a single crystal production apparatus used for carrying out the method for producing a single crystal according to the present invention.

【図4】LEC法による育成結晶中の固液界面近傍にお
ける温度勾配の計算機によるシミュレーション結果を示
す特性図である。
FIG. 4 is a characteristic diagram showing a computer simulation result of a temperature gradient in the vicinity of a solid-liquid interface in a crystal grown by the LEC method.

【図5】従来のLEC法により育成した結晶の欠陥状態
を示す模式図である。
FIG. 5 is a schematic view showing a defect state of a crystal grown by a conventional LEC method.

【符号の説明】[Explanation of symbols]

1 育成結晶 2 種結晶 3 原料融液 4 封止剤 14,24,34 るつぼ 15 ヒーター 25,35 主ヒーター(発熱領域) 26,36,37 補助ヒーター(発熱領域) 17 上側固定断熱部材 18 下側可動断熱部材 19 開口部 1 Growth Crystal 2 Seed Crystal 3 Raw Material Melt 4 Sealant 14, 24, 34 Crucible 15 Heater 25, 35 Main Heater (Heating Area) 26, 36, 37 Auxiliary Heater (Heating Area) 17 Upper Fixed Insulation Member 18 Lower Side Movable heat insulating member 19 opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料と封止剤とを入れたるつぼを炉内に
設置し、ヒーターにより加熱して溶融させ、原料融液表
面に種結晶を接触させて徐々に引き上げることにより単
結晶を育成するにあたり、前記ヒーターの、前記原料融
液の加熱に有効に寄与し得る実効長が結晶の成長に応じ
て短くなるように制御することを特徴とする単結晶の製
造方法。
1. A single crystal is grown by placing a crucible containing a raw material and a sealant in a furnace, heating it with a heater to melt it, and bringing a seed crystal into contact with the surface of the raw material melt and gradually pulling it up. In doing so, a method for producing a single crystal, wherein the effective length of the heater that can effectively contribute to the heating of the raw material melt is controlled so as to be shortened according to the growth of the crystal.
【請求項2】 前記ヒーターと前記るつぼとの間に移動
可能で且つその移動により開口量が増減される開口部を
有する断熱部材を設け、前記開口部の大きさが原料融液
の残量に対応して漸次狭まるように前記断熱部材を移動
させることにより、前記ヒーターの実効長の制御を行な
うことを特徴とする請求項1記載の単結晶の製造方法。
2. A heat insulating member having an opening that is movable between the heater and the crucible and whose opening amount is increased or decreased by the movement is provided, and the size of the opening is the remaining amount of the raw material melt. The method for producing a single crystal according to claim 1, wherein the effective length of the heater is controlled by moving the heat insulating member so as to be gradually narrowed correspondingly.
【請求項3】 前記ヒーターは、個別に電力の供給量の
増減及び停止が可能な複数の発熱領域を有しており、各
発熱領域に対する電力供給量を原料融液の残量に対応し
て個別に増減又は停止させることにより、前記ヒーター
の実効長の制御を行なうことを特徴とする請求項1記載
の単結晶の製造方法。
3. The heater has a plurality of heat generation regions capable of individually increasing and decreasing and stopping the power supply amount, and the power supply amount to each heat generation region is set in correspondence with the remaining amount of the raw material melt. The method for producing a single crystal according to claim 1, wherein the effective length of the heater is controlled by individually increasing or decreasing or stopping.
JP17907494A 1994-07-29 1994-07-29 Production of single crystal Pending JPH0840798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17907494A JPH0840798A (en) 1994-07-29 1994-07-29 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17907494A JPH0840798A (en) 1994-07-29 1994-07-29 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH0840798A true JPH0840798A (en) 1996-02-13

Family

ID=16059641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17907494A Pending JPH0840798A (en) 1994-07-29 1994-07-29 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH0840798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777427A (en) * 2018-07-25 2020-02-11 昭和电工株式会社 Crystal growing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777427A (en) * 2018-07-25 2020-02-11 昭和电工株式会社 Crystal growing device
US11105016B2 (en) 2018-07-25 2021-08-31 Showa Denko K.K. Crystal growth apparatus with controlled center position of heating
CN110777427B (en) * 2018-07-25 2021-11-19 昭和电工株式会社 Crystal growing device

Similar Documents

Publication Publication Date Title
JP2008508187A (en) Method for growing a single crystal from a melt
CN109415842B (en) Method for producing silicon single crystal
JPH0840798A (en) Production of single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
US5840115A (en) Single crystal growth method
JP4120777B2 (en) InP single crystal manufacturing method and InP single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP3885245B2 (en) Single crystal pulling method
JP2002234792A (en) Method of producing single crystal
JPH09309791A (en) Method for producing semiconducting single crystal
JPH07133185A (en) Production of single crystal
JPH0474788A (en) Production of compound semiconductor single crystal
CN105970286A (en) Method for multi-crucible LPE (liquid phase epitaxy) of SiC crystals
JP2781857B2 (en) Single crystal manufacturing method
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JPH09175892A (en) Production of single crystal
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JPH08151292A (en) Method for growing single crystal
JPH0341432B2 (en)
JPH05148079A (en) Production of single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPS63295498A (en) Production of single-crystal of group iii-v compound semiconductor
JPS63319286A (en) Method for growing single crystal
TWI513865B (en) Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same
JP2004269328A (en) Manufacturing apparatus of single crystal