JPH083636B2 - Electron beam positive resist - Google Patents

Electron beam positive resist

Info

Publication number
JPH083636B2
JPH083636B2 JP61283059A JP28305986A JPH083636B2 JP H083636 B2 JPH083636 B2 JP H083636B2 JP 61283059 A JP61283059 A JP 61283059A JP 28305986 A JP28305986 A JP 28305986A JP H083636 B2 JPH083636 B2 JP H083636B2
Authority
JP
Japan
Prior art keywords
electron beam
copolymer
methylstyrene
pmma
positive resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61283059A
Other languages
Japanese (ja)
Other versions
JPS63137227A (en
Inventor
裕子 中村
敏 武智
ゆかり 鶴永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61283059A priority Critical patent/JPH083636B2/en
Publication of JPS63137227A publication Critical patent/JPS63137227A/en
Publication of JPH083636B2 publication Critical patent/JPH083636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 〔概要〕 α−メチルスチレン・α−クロルアクリル酸メチル共
重合体からなる電子線ポジレジストを提供し感度及び耐
ドライエッチング性の向上を図る。
DETAILED DESCRIPTION [Outline] An electron beam positive resist composed of an α-methylstyrene / α-methyl chloroacrylate copolymer is provided to improve sensitivity and dry etching resistance.

〔産業上の利用分野〕[Industrial applications]

本発明は電子線ポジレジストに係り、特に高感度でし
かも耐ドライエッチング性が優れた電子線露光用ポジレ
ジスト材料に関する。
The present invention relates to an electron beam positive resist, and more particularly to a positive resist material for electron beam exposure which has high sensitivity and excellent dry etching resistance.

〔従来の技術及び問題点〕[Conventional technology and problems]

電子線による微細パターンの形成プロセスで用いられ
る電子線ポジレジストとしてポリメタクリル酸メチル
(PMMA)が良く知られている。
Polymethyl methacrylate (PMMA) is well known as an electron beam positive resist used in the process of forming a fine pattern by an electron beam.

このようなポジレジストはネガレジストに比して高解
像性のパターンを生成せしめ微細加工用レジストとして
好都合である。
Such a positive resist produces a pattern having a higher resolution than a negative resist, and is thus convenient as a fine processing resist.

しかしながら、前記材料を始めとする電子線ポジレジ
スト材料の大部分は感度が低く、パターン形成に要する
時間が長くなるという欠点を有する。
However, most of the electron beam positive resist materials including the above materials have the drawbacks of low sensitivity and long pattern formation time.

一方ポリ−1−ブテンスルホン(PBS)等のような高
感度ポジレジストにおいては耐ドライエッチング性耐熱
性が悪く実用性に乏しい。
On the other hand, in a high-sensitivity positive resist such as poly-1-butene sulfone (PBS), the dry etching resistance and heat resistance are poor and the practicality is poor.

従来高感度でしかも耐ドライエッチング性の優れたポ
ジレジストは開発されていなかった。
Conventionally, no positive resist having high sensitivity and excellent dry etching resistance has been developed.

そこで本発明は高感度で且つ耐ドライエッチング性の
優れた電子線ポジレジストを提供することを目的とす
る。
Therefore, an object of the present invention is to provide an electron beam positive resist having high sensitivity and excellent dry etching resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は本発明によれば 下記構造式(I)で示されるα−メチルスチレン・α
−クロルアクリル酸メチル共重合体であって、分子量10
万以下であり、該共重合体のα−メチルスチレン構造単
位とα−クロルアクリル酸メチル構造単位との比l:mが
3:7から7:3までであるものからなること特徴とする電子
線ポジレジスト。
According to the present invention, the above-mentioned problems are caused by α-methylstyrene · α represented by the following structural formula (I).
A methyl chloroacrylate copolymer having a molecular weight of 10
And the ratio l: m of the α-methylstyrene structural unit to the α-methyl acrylate structural unit of the copolymer is
An electron beam positive resist characterized by comprising from 3: 7 to 7: 3.

によって解決される。 Solved by

〔作用〕[Action]

すなわち本発明に係るレジストはα−メチルスチレン
とα−クロルアクリル酸メチルとの共重合体からなるも
のであり、α−メチルスチレンはベンゼン環の保護安定
性により耐ドライエッチング性に優れておりα−クロル
アクリル酸メチルはα−位に高感度基のクロル基(−C
l)が導入され主鎖切断効率が向上する。
That is, the resist according to the present invention is composed of a copolymer of α-methylstyrene and α-methyl chloroacrylate, and α-methylstyrene is excellent in dry etching resistance due to the protective stability of the benzene ring. -Methyl chloroacrylate is a highly sensitive chloro group (-C
l) is introduced to improve the main chain cleavage efficiency.

従って本発明の共重合体により耐ドライエッチング性
に優れ、しかも高感度な電子線ポジレジストを得る。
Therefore, the copolymer of the present invention provides an electron beam positive resist having excellent dry etching resistance and high sensitivity.

上記構造式(1)で表されるα−メチルスチレン・α
−クロルアクリル酸メチル共重合体において、式中のl:
m比が(3:7)〜(7:3)の範囲外になると、本発明のレ
ジストの耐ドライエッチング耐性はPMMAと同等かそれ以
下になってしまう。
Α-methylstyrene · α represented by the above structural formula (1)
In the methyl chloroacrylate copolymer, l in the formula:
If the m ratio is outside the range of (3: 7) to (7: 3), the dry etching resistance of the resist of the present invention becomes equal to or lower than PMMA.

また分子量が2万より小さいα−メチルスチレン、α
−クロルアクリル酸エステル共重合体では電子線露光
(20KV)により未露光部と露光部の現像液に対する溶解
度差が小さく、非常に低感度となる。
Further, α-methylstyrene having a molecular weight of less than 20,000, α
In the case of the chloroacrylic acid ester copolymer, the difference in solubility between the unexposed area and the exposed area in the developing solution is small due to electron beam exposure (20 KV), and the sensitivity is extremely low.

〔実施例〕〔Example〕

以下本発明の実施例を比較例と共に説明する。 Hereinafter, examples of the present invention will be described together with comparative examples.

実施例1 α−メチルスチレン・α−クロルアクリル酸メチル共
重合体 (Mw 2.2万、Mw/Mn 1.73)(l:m=5:5)をメチルセロ
ソルブアセテート(MCA)溶液(18重量%)とし基板上
に1μmの厚さにスピンコートし、180℃、20分間プリ
ベークした後、電子線露光(加速電圧20KV)を行なっ
た。キシレンを用いた5分(室温)浸漬(dip)現像で
はDoは13μc/cm2で、0.5μmライン・アンド・スペース
を解像(20μc/cm2)した。キシレン3分(室温)浸漬
現像でもDoは15μc/cm2で、0.3μmライン/スペースを
解像(20μc/cm2)した。得られたパターンはパターン
エッジがPMMAよりシャープでありPMMAより高感度化し
た。
Example 1 α-Methylstyrene / α-chloroacrylic acid methyl copolymer (Mw 22,000, Mw / Mn 1.73) (l: m = 5: 5) was used as a methyl cellosolve acetate (MCA) solution (18% by weight) and spin-coated to a thickness of 1 μm on the substrate, 180 ° C, 20 minutes After prebaking, electron beam exposure (accelerating voltage 20 KV) was performed. 5 minutes with xylene (RT) D o is immersed (dip) development in 13μc / cm 2, and the 0.5μm line and space resolved (20μc / cm 2). Xylene 3 min (RT) D o in immersion development in 15μc / cm 2, and the 0.3μm line / space resolved (20μc / cm 2). The obtained pattern had a sharper pattern edge than PMMA and was more sensitive than PMMA.

またCF4ガスを用いて300W、0.15Torrの圧力条件でド
ライエッチングを行なった結果、PMMAのエッチングレー
トの1/2であり、この値は耐ドライエッチング性の優れ
たフォトレジストOFPR800(東京応化社製)と同等であ
った。
As a result of dry etching under a pressure of 300 W and 0.15 Torr using CF 4 gas, the etching rate was 1/2 that of PMMA. This value is OFPR800, a photoresist with excellent dry etching resistance (Tokyo Ohka Co., Ltd.). Manufactured).

実施例2 α−メチルスチレン・α−クロルアクリル酸メチル共
重合体(Mw 3万、Mw/Mn 1.74)、上式共重合比(l:m=
5:5)をモノクロルベンゼン溶液(15重量%)とし、1
μmの厚さにスピンコートし、180℃で20分間プリベー
クした後、電子線露光(加速電圧20kv)した。キシレン
5分(室温)浸漬現像でDoは17μC/cm2で、0.3μmライ
ン・アンド・スペースを解像(31μc/cm2)した。その
結果得られたパターンエッジはPMMAよりシャープであ
り、またPMMAより高感度化した。
Example 2 α-methylstyrene / α-methyl chloroacrylate copolymer (Mw 30,000, Mw / Mn 1.74), the above copolymerization ratio (l: m =
5: 5) as a monochlorobenzene solution (15% by weight) and 1
After spin coating to a thickness of μm and prebaking at 180 ° C. for 20 minutes, electron beam exposure (accelerating voltage 20 kv) was performed. D o xylene 5 min (room temperature) Immersion development in 17μC / cm 2, and the 0.3μm line and space resolved (31μc / cm 2). The resulting pattern edges were sharper than PMMA and more sensitive than PMMA.

次に実施例1と同じ条件でドライエッチングした時、
やはりPMMAエッチングレートの1/2と実施例1と同様の
結果を得た。
Next, when dry etching was performed under the same conditions as in Example 1,
Again, half of the PMMA etching rate and the same results as in Example 1 were obtained.

実施例3 α−メチルスチレン・α−クロルアクリル酸メチル共
重合体(Mw 3.3万、Mw/Mn 1.63)、上式共重合比(l:m
=6:4)をモノクロルベンゼン溶液(14重量%)とし
て、1μmの厚さにスピンコートし電子線露光(20kv)
した。実施例2と同じ現像条件で、感度、解像性とも実
施例2と同等であり、実施例1と同じ条件でエッチング
した結果も実施例1と同等であった。
Example 3 α-methylstyrene / α-methyl chloroacrylate copolymer (Mw 33,000, Mw / Mn 1.63), copolymerization ratio (l: m)
= 6: 4) as a monochlorobenzene solution (14% by weight) and spin-coated to a thickness of 1 μm and electron beam exposure (20 kv)
did. Under the same development conditions as in Example 2, both sensitivity and resolution were equivalent to those in Example 2, and the results of etching under the same conditions as in Example 1 were also equivalent to those in Example 1.

実施例4 α−メチルスチレン・α−クロルアクリル酸メチル共
重合体(Mw 5.6万、Mw/Mn 1.84)、上式共重合比(l:m
=6:4)をモノクロルベンゼン溶液(13重量%)とし
て、1μmの厚さにスピンコートし180℃で20分間プリ
ベークした後電子線露光(20kv)した。キシレン5分
(室温)浸漬現像でDoは20μc/cm2で、0.3μmライン・
アンド・スペース解像(35μc/cm2)した。PMMAに比較
しパターンエッジがシャープであり、高感度化できた。
次に実施例1と同じ条件でエッチングした結果PMMAのエ
ッチングレート1/2であった。
Example 4 α-Methylstyrene / α-chloromethyl acrylate copolymer (Mw 56,000, Mw / Mn 1.84), copolymerization ratio (l: m)
= 6: 4) as a monochlorobenzene solution (13% by weight) was spin-coated to a thickness of 1 μm, prebaked at 180 ° C. for 20 minutes, and then exposed to electron beam (20 kv). In D o is 20μc / cm 2 with xylene 5 min (room temperature) immersion development, 0.3 [mu] m line
And-space resolution (35 μc / cm 2 ) was performed. Compared to PMMA, the pattern edge was sharper and the sensitivity was higher.
Next, the result of etching under the same conditions as in Example 1 was a PMMA etching rate of 1/2.

実施例5 α−メチルスチレン・α−クロルアクリル酸メチル共
重合体(Mw 7.0万、Mw/Mn 1.87)、上式共重合比(l:m
=6:4)をモノクロルベンゼン溶液(12重量%)として
1μmの厚さにスピンコートし、190℃、20分間プリベ
ークした後電子線露光(20kv)した。キシレン3分(室
温)浸漬現像でDoは25μc/cm2で、0.3μmライン・アン
ド・スペースを解像(45μc/cm2)した。PMMAに比べ、
パターンエッジがシャープであった。実施例1と同条件
エッチングした結果PMMAエッチングレート1/2であっ
た。
Example 5 α-methylstyrene / α-chloromethyl acrylate copolymer (Mw 70,000, Mw / Mn 1.87), copolymerization ratio (l: m)
= 6: 4) was spin-coated as a monochlorobenzene solution (12% by weight) to a thickness of 1 μm, prebaked at 190 ° C. for 20 minutes, and then exposed to an electron beam (20 kv). D o xylene 3 min (room temperature) Immersion development in 25μc / cm 2, and the 0.3μm line and space resolved (45μc / cm 2). Compared to PMMA,
The pattern edge was sharp. As a result of etching under the same conditions as in Example 1, the PMMA etching rate was 1/2.

実施例6 α−メチルスチレン・α−クロルアクリル酸メチル共
重合体(Mw 8.7万、Mw/Mn 1.99)上式共重合比(l:m=
5:5)をモノクロルベンゼン溶液(12重量%)として1
μmの厚さにスピンコートし、190℃、20分間プリベー
クした後、電子線露光(20kv)した。キシレン/CCl
4(1:2)5分(室温)浸漬現像でDoは28μc/cm2で、0.5
μmライン・アンド・スペースを解像(49μc/cm2)、
シクロヘキサノン/CCl4(1:1)5分(室温)浸漬現像
でDoは21μc/cm2で、0.3μmライン・アンド・スペース
を解像(39μc/cm2)した。PMMAに比べ、パターンエッ
ジがシャープであった。また実施例1と同じ条件でエッ
チングした結果、PMMAエッチングレートの1/2であっ
た。
Example 6 α-methylstyrene / α-methyl chloromethyl acrylate copolymer (Mw 87,000, Mw / Mn 1.99) Copolymerization ratio (l: m =)
5: 5) as a monochlorobenzene solution (12% by weight)
After spin-coating to a thickness of μm and prebaking at 190 ° C. for 20 minutes, electron beam exposure (20 kv) was performed. Xylene / CCl
4 (1: 2) at 5 min (room temperature) D o immersion development 28μc / cm 2, 0.5
Resolution of μm line and space (49 μc / cm 2 ),
Cyclohexanone / CCl 4 (1: 1) D o at 5 min (room temperature) Immersion development in 21μc / cm 2, and the 0.3μm line and space resolved (39μc / cm 2). The pattern edge was sharper than that of PMMA. As a result of etching under the same conditions as in Example 1, the PMMA etching rate was 1/2.

実施例7 α−メチルスチレン・α−クロルアクリル酸メチル共
重合体(Mw 1.3万、Mw/Mn 1.74)上式共重合比(l:m=
5:5)をMCA溶液(25重量%)とし1μmの厚さにスピン
コートし180℃20分間プリベークした後電子線露光(20k
v)した。感度はDoは60〜75μc/cm2であった。次に実施
例1と同じ条件でエッチングした結果PMMAのエッチング
レートの1/2であった。
Example 7 α-Methylstyrene / α-methyl chloroacrylate copolymer (Mw 13,000, Mw / Mn 1.74) Copolymerization ratio (l: m =)
5: 5) as an MCA solution (25% by weight), spin-coated to a thickness of 1 μm, prebaked at 180 ° C. for 20 minutes, and then exposed to electron beam (20 k
v) done. Sensitivity D o was 60~75μc / cm 2. Next, the result of etching under the same conditions as in Example 1 was 1/2 of the etching rate of PMMA.

実施例8 α−メチルスチレン・α−クロルアクリル酸共重合体
(Mw 8.8万、Mw/Mn 1.48)上式共重合比(l:m=2:8)を
実施例1と同じ条件でエッチングした結果PMMAのエッチ
ングレートの0.9〜1倍であった。
Example 8 α-Methylstyrene / α-chloroacrylic acid copolymer (Mw 88,000, Mw / Mn 1.48) The above-mentioned copolymerization ratio (l: m = 2: 8) was etched under the same conditions as in Example 1. The result was 0.9 to 1 times the etching rate of PMMA.

なお上記実施例1〜7のα−メチルスチレン・α−ク
ロルアクリル酸メチル共重合体について140℃の温度で
1時間加熱してもパターンだれはなかった。これは、本
発明における共重合体のガラス転移温度が極立って高い
ためであると考えられる。すなわち、共重合体中のα−
クロルアクリル酸メチルエステル構造単位に特有の効果
と考えられ、他のエステル、例えばエチルエステル等を
用いると、ガラス転移温度は著しく低下してしまう(10
0℃以下になる)。上記実施例から明らかなように、本
発明の共重合体では、分子量10万以下で極めて微細なレ
ジストパターンを形成すること可能であるが、感度は分
子量の増加とともに低下する傾向が見られる。同様に該
共重合体について大きな抜きパータンの周りのパターン
の位置ずれを調査した結果PMMAに比較して膜厚1.5μm
のときこの共重合体は1/2であった。
Note that the α-methylstyrene / α-methyl chloroacrylate copolymers of Examples 1 to 7 described above did not show any pattern even when heated at a temperature of 140 ° C. for 1 hour. It is considered that this is because the glass transition temperature of the copolymer in the present invention is extremely high. That is, α- in the copolymer
It is considered that this is an effect peculiar to the chloroacrylic acid methyl ester structural unit, and when other ester such as ethyl ester is used, the glass transition temperature is significantly lowered (10
Below 0 ° C). As is clear from the above examples, with the copolymer of the present invention, it is possible to form an extremely fine resist pattern with a molecular weight of 100,000 or less, but the sensitivity tends to decrease as the molecular weight increases. Similarly, with respect to the copolymer, as a result of investigating the positional deviation of the pattern around the large punch pattern, the film thickness was 1.5 μm as compared with PMMA.
At this time, this copolymer was 1/2.

〔比較例〕[Comparative example]

PMMAを基板上に1μm厚さにスピンコートし170℃20
分間プリベークした後電子線露光(加速電圧20kv)し
た。その後メチルイソブチルケトン(MIBK)を用いて3
分滴下現像、ポストベークを100℃100秒間実施した。そ
の結果感度Doは50μc/cm2で、0.5μmライン・アンド・
スペースを解像(40μc/cm2)した。
PMMA is spin-coated on the substrate to a thickness of 1 μm and 170 ℃ 20
After prebaking for a minute, electron beam exposure (accelerating voltage 20 kv) was performed. Then use methyl isobutyl ketone (MIBK) to
Minute drop development and post bake were carried out at 100 ° C. for 100 seconds. As a result, the sensitivity D o was 50 μc / cm 2 and the line and
The space was resolved (40 μc / cm 2 ).

また120℃の温度でレジストパターンがだれた。 In addition, the resist pattern was sagging at a temperature of 120 ° C.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によればPMMAより高感度で
チャージアップが少なく解像性もよく、しかも耐ドライ
エッチング性、耐熱性に優れたレジストを得ることがで
きる。
As described above, according to the present invention, it is possible to obtain a resist having higher sensitivity than PMMA, less charge-up, good resolution, and excellent dry etching resistance and heat resistance.

フロントページの続き (56)参考文献 特開 昭57−118243(JP,A) 特開 昭60−257445(JP,A) 特開 昭60−117243(JP,A)Continuation of front page (56) Reference JP-A-57-118243 (JP, A) JP-A-60-257445 (JP, A) JP-A-60-117243 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記構造式(I)で示されるα−メチルス
チレン・α−クロルアクリル酸メチル共重合体であっ
て、分子量10万以下であり、該共重合体のα−メチルス
チレン構造単位とα−クロルアクリル酸メチル構造単位
との比l:mが3:7から7:3までであるものからなること特
徴とする電子線ポジレジスト。
1. An α-methylstyrene / α-methyl chloroacrylate copolymer represented by the following structural formula (I), having a molecular weight of 100,000 or less, wherein the α-methylstyrene structural unit of the copolymer is An electron beam positive resist, characterized in that the ratio l: m of α to methyl α-chloroacrylate structural unit is 3: 7 to 7: 3.
JP61283059A 1986-11-29 1986-11-29 Electron beam positive resist Expired - Lifetime JPH083636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61283059A JPH083636B2 (en) 1986-11-29 1986-11-29 Electron beam positive resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283059A JPH083636B2 (en) 1986-11-29 1986-11-29 Electron beam positive resist

Publications (2)

Publication Number Publication Date
JPS63137227A JPS63137227A (en) 1988-06-09
JPH083636B2 true JPH083636B2 (en) 1996-01-17

Family

ID=17660669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283059A Expired - Lifetime JPH083636B2 (en) 1986-11-29 1986-11-29 Electron beam positive resist

Country Status (1)

Country Link
JP (1) JPH083636B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120287A (en) * 2015-12-28 2017-07-06 日本ゼオン株式会社 Method for forming resist pattern and method for determining development conditions
WO2017130872A1 (en) 2016-01-29 2017-08-03 日本ゼオン株式会社 Resist pattern forming method
WO2018123667A1 (en) 2016-12-27 2018-07-05 日本ゼオン株式会社 Polymer, positive resist composition, and resist pattern formation method
US10241405B2 (en) 2015-02-20 2019-03-26 Zeon Corporation Polymer and positive resist composition
US10248021B2 (en) 2015-02-20 2019-04-02 Zeon Corporation Polymer and positive resist composition
WO2019150966A1 (en) 2018-02-05 2019-08-08 日本ゼオン株式会社 Resist composition and resist film
US10386720B2 (en) 2015-02-20 2019-08-20 Zeon Corporation Polymer and positive resist composition
US10626205B2 (en) 2016-03-25 2020-04-21 Zeon Corporation Method for producing copolymer
CN113956395A (en) * 2021-10-27 2022-01-21 江苏汉拓光学材料有限公司 Polymer resin and preparation method thereof, electron beam photoresist and preparation and use methods thereof
US11402753B2 (en) 2017-09-29 2022-08-02 Zeon Corporation Positive resist composition, resist film formation method, and laminate manufacturing method
US11988964B2 (en) 2018-04-27 2024-05-21 Zeon Corporation Positive resist composition for EUV lithography and method of forming resist pattern

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550201B2 (en) * 1989-03-03 1996-11-06 富士通株式会社 Method for manufacturing semiconductor device and pattern forming coating solution used therefor
DE69015381T2 (en) * 1989-03-03 1995-05-04 Fujitsu Ltd Manufacturing process for a semiconductor device and pattern-forming coating solution therefor.
DE69032464T2 (en) * 1989-10-19 1998-11-12 Fujitsu Ltd Process for the production of photoresist patterns
JP2867479B2 (en) * 1989-10-19 1999-03-08 富士通株式会社 Method of forming resist pattern
JP3022418B2 (en) * 1997-07-09 2000-03-21 日本電気株式会社 Resist material and resist pattern forming method using the same
TWI281101B (en) * 2000-02-28 2007-05-11 Mitsubishi Electric Corp Developing process, process for forming pattern and process for preparing semiconductor device using same
JP3779882B2 (en) * 2000-02-28 2006-05-31 三菱電機株式会社 Development method, pattern formation method, photomask manufacturing method using these, and semiconductor device manufacturing method
JP4589582B2 (en) * 2001-08-30 2010-12-01 富士通株式会社 Method for forming resist pattern
JP5275385B2 (en) * 2011-02-22 2013-08-28 東京エレクトロン株式会社 Organic development processing method and organic development processing apparatus
JP6365015B2 (en) * 2014-06-30 2018-08-01 大日本印刷株式会社 POSITIVE RESIST COMPOSITION AND METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING RESIST PATTERN USING THE POSITIVE RESIST COMPOSITION
US20180024431A1 (en) * 2015-02-20 2018-01-25 Zeon Corporation Polymer and positive resist composition
JP6679929B2 (en) * 2015-12-28 2020-04-15 日本ゼオン株式会社 Polymer and positive resist composition
JP6707875B2 (en) * 2016-01-29 2020-06-10 日本ゼオン株式会社 Polymer and positive resist composition
JP6801829B1 (en) 2019-07-02 2020-12-16 王子ホールディングス株式会社 Resist material and pattern formation method
US20220365448A1 (en) 2019-07-02 2022-11-17 Oji Holdings Corporation Pattern forming method, resist material, and pattern forming apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118243A (en) * 1981-01-14 1982-07-23 Toshiba Corp Formation of fine resist pattern
JPS60257445A (en) * 1984-06-01 1985-12-19 Kuraray Co Ltd Positive type rediation resist material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386720B2 (en) 2015-02-20 2019-08-20 Zeon Corporation Polymer and positive resist composition
US10241405B2 (en) 2015-02-20 2019-03-26 Zeon Corporation Polymer and positive resist composition
US10248021B2 (en) 2015-02-20 2019-04-02 Zeon Corporation Polymer and positive resist composition
JP2017120287A (en) * 2015-12-28 2017-07-06 日本ゼオン株式会社 Method for forming resist pattern and method for determining development conditions
WO2017130872A1 (en) 2016-01-29 2017-08-03 日本ゼオン株式会社 Resist pattern forming method
US10809618B2 (en) 2016-01-29 2020-10-20 Zeon Corporation Method of forming resist pattern
US10626205B2 (en) 2016-03-25 2020-04-21 Zeon Corporation Method for producing copolymer
WO2018123667A1 (en) 2016-12-27 2018-07-05 日本ゼオン株式会社 Polymer, positive resist composition, and resist pattern formation method
US11644752B2 (en) 2016-12-27 2023-05-09 Zeon Corporation Polymer, positive resist composition, and method of forming resist pattern
US11402753B2 (en) 2017-09-29 2022-08-02 Zeon Corporation Positive resist composition, resist film formation method, and laminate manufacturing method
WO2019150966A1 (en) 2018-02-05 2019-08-08 日本ゼオン株式会社 Resist composition and resist film
US11960207B2 (en) 2018-02-05 2024-04-16 Zeon Corporation Resist composition and resist film
US11988964B2 (en) 2018-04-27 2024-05-21 Zeon Corporation Positive resist composition for EUV lithography and method of forming resist pattern
CN113956395A (en) * 2021-10-27 2022-01-21 江苏汉拓光学材料有限公司 Polymer resin and preparation method thereof, electron beam photoresist and preparation and use methods thereof

Also Published As

Publication number Publication date
JPS63137227A (en) 1988-06-09

Similar Documents

Publication Publication Date Title
JPH083636B2 (en) Electron beam positive resist
CA1273521A (en) Radiation-sensitive composition and recording material based on compounds which can be split by acid
JP4036773B2 (en) Polymer blends and related methods of preparation and use
JP2002088124A (en) Photosensitive polymer having protective group containing condensed aromatic ring, and resist composition containing the same
US4788127A (en) Photoresist composition comprising an interpolymer of a silicon-containing monomer and an hydroxystyrene
JP3339157B2 (en) Photosensitive composition and pattern forming method
EP0064222B1 (en) Process for forming resist patterns
JP2001072716A (en) Organometallic polymer and use
EP0524250A1 (en) Resist material for use in thick film resists
US6617086B2 (en) Forming a pattern of a negative photoresist
US4355094A (en) Positive radiation sensitive resist terpolymers
JP4080916B2 (en) Copolymer for chemically amplified resist
JP3221909B2 (en) Photoresist material and pattern forming method using the same
EP0119017B1 (en) Electron-beam and x-ray sensitive polymers and resists
EP0064864B1 (en) Method of making sensitive positive electron beam resists
US4415653A (en) Method of making sensitive positive electron beam resists
JP2901044B2 (en) Pattern formation method by three-layer resist method
US6586156B2 (en) Etch improved resist systems containing acrylate (or methacrylate) silane monomers
Namaste et al. Copolymers of itaconic acid and methyl methacrylate as positive electron beam resists
US4405776A (en) Positive radiation sensitive resist terpolymer from omega alkynoic acid
JPS60257445A (en) Positive type rediation resist material
US4414313A (en) Sensitive positive electron beam resists
JPH0332783B2 (en)
US4795692A (en) Negative-working polymers useful as X-ray or E-beam resists
JPH0358104B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term