JPH0834680A - Production of ceramic structure - Google Patents

Production of ceramic structure

Info

Publication number
JPH0834680A
JPH0834680A JP17244094A JP17244094A JPH0834680A JP H0834680 A JPH0834680 A JP H0834680A JP 17244094 A JP17244094 A JP 17244094A JP 17244094 A JP17244094 A JP 17244094A JP H0834680 A JPH0834680 A JP H0834680A
Authority
JP
Japan
Prior art keywords
substrate
solution
metal alkoxide
firing
ceramic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17244094A
Other languages
Japanese (ja)
Other versions
JP3452647B2 (en
Inventor
Masateru Nakamura
昌照 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17244094A priority Critical patent/JP3452647B2/en
Publication of JPH0834680A publication Critical patent/JPH0834680A/en
Application granted granted Critical
Publication of JP3452647B2 publication Critical patent/JP3452647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To produce a flexible ceramic structure having a complex fine skeleton by impregnating a metal alkoxide soln. into a substrate which is burned by firing and then carrying out firing. CONSTITUTION:Alcohol, water and an acid are added to a metal alkoxide and the resultant soln. is refluxed at a temp. just below the b.p. of the solvent to prepare a partially hydrolyzed metal alkoxide soln. A substrate which is burned by firing and has a fibrous texture or a porous structure is washed with a fluorocarbon-contg. nonionic surfactant. The metal alkoxide soln. is impregnated into the washed substrate, this substrate is carbonized by holding at a temp. below a firing temp. and above the decomposition temp. of the substrate for a prescribed time and then the substrate is fired at 800-1,000 deg.C to obtain the objective ceramic structure having a structure which reflects the shape of the micropores in the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス構造体の
製造方法に関する。より詳細には、本発明は、可撓性を
有するセラミックス構造体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic structure. More specifically, the present invention relates to a method for manufacturing a flexible ceramic structure.

【0002】[0002]

【従来の技術】セラミックスは耐熱性、耐薬品性、耐磨
耗性等の種々の特性に優れており、各種分野において利
用されている。しかしながら、セラミックスは脆い、加
工しにくい等の短所を有しており、特にセラミックスの
成形品は柔軟性が要求される用途においては十分ではな
かった。そこでセラミックスに柔軟性もしくは可撓性を
与えるため、セラミックスファイバーが開発された。現
在ではこのセラミックスファイバーは繊維複合材料、保
温材、耐火断熱材、吸音材等として広く用いられてお
り、例えばガラス繊維、ロックウール、アルミナシリケ
ート質ファイバー、シリカファイバー、アルミナファイ
バー等が知られている(特開昭62−30677号、特
開昭64−9881号)。
2. Description of the Related Art Ceramics are excellent in various properties such as heat resistance, chemical resistance and abrasion resistance and are used in various fields. However, ceramics have disadvantages such as brittleness and difficulty in processing, and molded articles of ceramics have not been particularly sufficient for applications requiring flexibility. Therefore, in order to impart flexibility or flexibility to ceramics, ceramic fibers have been developed. At present, this ceramic fiber is widely used as a fiber composite material, a heat insulating material, a fireproof heat insulating material, a sound absorbing material, and the like. For example, glass fiber, rock wool, alumina silicate fiber, silica fiber, alumina fiber, etc. are known. (JP-A-62-30677, JP-A-64-9881).

【0003】[0003]

【発明が解決しようとする課題】これらのセラミックス
ファイバーにおいて、例えばガラス繊維は、ガラス素地
を溶融させ、これを紡糸することにより製造され、また
アルミナシリケート質ファイバーは材料を高温で溶融
し、これを細流として流出させて繊維化することにより
製造される。このように、従来セラミックスファイバー
の製造には、溶融及び繊維化を行うことが必要であり、
従って高コストであり、さらに工程上、高融点のセラミ
ックスには適用できなかった。さらに、従来の方法では
複雑な形状の成形体を製造することが困難であり、ま
た、結晶質の成形体を製造することも困難であった。
In these ceramic fibers, for example, glass fibers are produced by melting a glass substrate and spinning it, and alumina silicate fibers are prepared by melting the material at high temperature. It is produced by flowing out as a trickle and fiberizing. Thus, in the conventional production of ceramic fibers, it is necessary to perform melting and fiberizing,
Therefore, the cost is high, and the process cannot be applied to high melting point ceramics. Furthermore, it has been difficult to manufacture a molded product having a complicated shape by the conventional method, and it has been difficult to manufacture a crystalline molded product.

【0004】[0004]

【課題を解決するための手段】本発明のセラミックス構
造体の製造方法は、繊維状組織もしくは多孔質構造から
なりかつ焼成によって焼失する基材に金属アルコキシド
の溶液を含浸させ、次いでこの金属アルコキシドの溶液
が含浸した基材を焼成することを特徴とするものであ
る。
A method for producing a ceramic structure according to the present invention is a method of impregnating a base material having a fibrous structure or a porous structure and burning off by firing with a solution of a metal alkoxide, and then adding the metal alkoxide It is characterized in that the base material impregnated with the solution is fired.

【0005】本発明の第二の態様は、上記セラミックス
構造体の製造方法において、金属アルコキシドの溶液を
基材に含浸させる前に、前記溶液の溶媒の沸点直下にお
いて前記溶液を還流することを特徴とするものである。
A second aspect of the present invention is characterized in that, in the above-mentioned method for producing a ceramic structure, the solution is refluxed just below the boiling point of the solvent of the solution before the base material is impregnated with the solution of the metal alkoxide. It is what

【0006】本発明の第三の態様は、上記セラミックス
構造体の製造方法において、金属アルコキシドの溶液を
基材に含浸させる前に、前記基材を界面活性剤により洗
浄することを特徴とするものである。
A third aspect of the present invention is characterized in that, in the method for producing a ceramic structure, the base material is washed with a surfactant before the base material is impregnated with the metal alkoxide solution. Is.

【0007】本発明の第四の態様は、上記セラミックス
構造体の製造方法において、金属アルコキシドの溶液が
含浸した基材を、焼成の前にこの焼成温度よりも低くか
つ前記基材の分解温度よりも高い温度に保持することを
特徴とするものである。
In a fourth aspect of the present invention, in the above-mentioned method for producing a ceramic structure, the base material impregnated with the solution of the metal alkoxide is lower than the firing temperature and lower than the decomposition temperature of the base material before firing. Is also characterized by being maintained at a high temperature.

【0008】[0008]

【作用】本発明の方法において、基材中の微細な細孔内
に金属アルコキシドの溶液を含浸させることにより、微
細な骨格を有するセラミックス構造体が得られ、その結
果得られる構造体に可撓性が得られる。金属アルコキシ
ドの溶液を含浸させる前に還流することにより、金属ア
ルコキシドの脱水縮重合が十分に進行し、線形の結合構
造を内在する金属アルコキシドの溶液が得られる。その
結果、基材に含浸後、基材の微細な細部表面において2
次元的な結合構造が形成され、より微細な骨格構造が得
られ、可撓性が向上することになる。また、基材を界面
活性剤により処理することによって、金属アルコキシド
の溶液の含浸性が改善され、基材の有する微細な細部構
造のセラミックス構造体への転写性が向上する。その結
果、得られるセラミックス構造体はより微細な骨格構造
を有し、可撓性が向上することになる。さらに、金属ア
ルコキシドの溶液が含浸した基材を、焼成の前にこの焼
成温度よりも低くかつ前記基材の分解温度よりも高い温
度に保持することにより、基材を炭化させ、基材の構造
を保持させる。この結果、得られるセラミックス構造体
への基材の転写性が向上する。
In the method of the present invention, a ceramic structure having a fine skeleton is obtained by impregnating a solution of a metal alkoxide in fine pores in a substrate, and the resulting structure is flexible. Sex is obtained. By refluxing before the solution of the metal alkoxide is impregnated, dehydration polycondensation of the metal alkoxide sufficiently proceeds, and a solution of the metal alkoxide having a linear bond structure is obtained. As a result, after impregnating the base material, 2
A dimensional bond structure is formed, a finer skeleton structure is obtained, and flexibility is improved. Further, by treating the base material with the surfactant, the impregnation property of the metal alkoxide solution is improved, and the transfer property of the fine detailed structure of the base material to the ceramic structure is improved. As a result, the obtained ceramic structure has a finer skeleton structure and flexibility is improved. Further, the substrate impregnated with the solution of the metal alkoxide is kept at a temperature lower than the firing temperature and higher than the decomposition temperature of the substrate before firing, thereby carbonizing the substrate, and the structure of the substrate. To hold. As a result, the transferability of the base material to the obtained ceramic structure is improved.

【0009】[0009]

【課題を解決するための手段の補足説明】本発明の方法
において用いられる基材は、セラミックス構造体の原料
である金属アルコキシドの溶液が十分にしみこむように
繊維状組織もしくは多孔質構造を有している。また、こ
の基材を構成する材料は、セラミックス構造体の製造に
必要な焼成工程において焼失してしまうものである。こ
のような基材の例としては、天然もしくは合成高分子多
孔質、例えば紙、スポンジ等が例示される。
[Supplementary Explanation of Means for Solving the Problems] The base material used in the method of the present invention has a fibrous structure or a porous structure so that the solution of the metal alkoxide, which is the raw material of the ceramic structure, can be sufficiently infiltrated. ing. Further, the material forming the base material is burned out in the firing step necessary for manufacturing the ceramic structure. Examples of such a substrate include natural or synthetic polymer porous materials such as paper and sponge.

【0010】この基材に金属アルコキシドの溶液を含浸
させると、基材の繊維状組織もしくは多孔質構造内に金
属アルコキシドの溶液が入り込む。次いでいわゆるゾル
・ゲル法によりセラミックス構造体を製造する。金属ア
ルコキシドの溶液は以下のようにして製造する。すなわ
ち、目的とするセラミックスに対応する金属のアルコキ
シド、M(OR)n (式中、Mは金属、例えばSi、T
i、Zr、Al,Fe等であり、Rはアルキル基、例え
ばメチル、エチル、プロピルであり、nは金属Mによっ
てきまる整数である)にアルコール、水及び酸を加えて
溶液とする。この溶液において、添加する水の量を十分
にすると金属アルコキシドが一気に加水分解し、重合
し、三次元ネットワークを形成するため粒状のゾル粒子
が得られる。この粒状のゾル粒子は基材の微細な細孔内
に入りにくいためあまり好ましくない。従って、加える
水の量は、金属アルコキシドが部分加水分解する程度に
することが好ましく、例えば金属アルコキシドとしてS
i(OR)4 を用いた場合、Si/H2 O=1/3〜1
のモル比が好ましい。あるいは、水の量を制御する代わ
りに加水分解抑制剤、例えばジエチレングリコールモノ
メチルエーテル、トリエチレングリコールモノメチルエ
ーテル、ジエチレングリコールモノエチルエーテル等の
他、アセチルアセトン等のβ−ジケトン類等を加えても
よい。金属アルコキシドを部分加水分解することによ
り、金属アルコキシドは線状の結合構造を有することに
なり、基材の微細な細孔内に入りやすくなる。
When this base material is impregnated with the solution of the metal alkoxide, the solution of the metal alkoxide enters the fibrous structure or porous structure of the base material. Next, a ceramic structure is manufactured by the so-called sol-gel method. The metal alkoxide solution is manufactured as follows. That is, a metal alkoxide corresponding to the target ceramic, M (OR) n (where M is a metal such as Si or T
i, Zr, Al, Fe, etc., R is an alkyl group such as methyl, ethyl, propyl, and n is an integer determined by the metal M) and alcohol, water and acid are added to form a solution. In this solution, when the amount of water to be added is sufficient, the metal alkoxide is hydrolyzed at once and polymerized to form a three-dimensional network, whereby granular sol particles are obtained. This granular sol particle is not so preferable because it does not easily enter the fine pores of the substrate. Therefore, the amount of water added is preferably such that the metal alkoxide is partially hydrolyzed.
When i (OR) 4 is used, Si / H 2 O = 1/3 to 1
Is preferred. Alternatively, instead of controlling the amount of water, hydrolysis inhibitors such as diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, diethylene glycol monoethyl ether, etc., as well as β-diketones such as acetylacetone may be added. By partially hydrolyzing the metal alkoxide, the metal alkoxide has a linear bond structure, and is likely to enter the fine pores of the base material.

【0011】また、金属アルコキシドの溶液を基材に含
浸する前に溶媒の沸点直下で還流することが好ましい。
この還流は溶液粘度が10ポイズを越えない範囲が好まし
い。この還流によって金属アルコキシドは線状の結合構
造を有することになり、基材の微細な細孔内に入りやす
くなる。
Further, it is preferable to reflux just below the boiling point of the solvent before impregnating the substrate with the metal alkoxide solution.
This reflux is preferably within the range where the solution viscosity does not exceed 10 poise. Due to this reflux, the metal alkoxide has a linear bond structure, and easily enters the fine pores of the base material.

【0012】金属アルコキシドの溶液が粘稠すぎると基
材の微細な細孔内に入りにくいため、含浸前に溶媒によ
って3〜7倍に希釈することが好ましい。さらに、基材
の微細な細孔の表面に不純物相を形成する核、例えばア
ルカリ金属もしくはアルカリ土類金属等が存在すると、
得られるセラミックス構造体に不純物相が存在し、強度
を低下させることになる。また、不純物が存在すると、
得られるセラミックス構造体に基材の微細な細孔の形状
を反映しにくくなる。従って、金属アルコキシドの溶液
を含浸する前に基材を0.1 〜1Nの酸水溶液で洗浄しア
ルカリ金属もしくはアルカリ土類金属を除去し、次いで
界面活性剤によって洗浄することが好ましい。従って、
界面活性剤としては、アルカリ金属もしくはアルカリ土
類金属を含まないものが好ましく、フルオロカーボンを
含む非イオン性界面活性剤が好ましい。
If the solution of the metal alkoxide is too viscous, it will be difficult for it to enter the fine pores of the substrate. Therefore, it is preferable to dilute the solution 3 to 7 times with a solvent before the impregnation. Furthermore, when a nucleus that forms an impurity phase on the surface of the fine pores of the base material, for example, an alkali metal or an alkaline earth metal, is present,
An impurity phase exists in the obtained ceramic structure, and the strength is reduced. Also, if impurities are present,
It becomes difficult to reflect the shape of the fine pores of the base material in the obtained ceramic structure. Therefore, it is preferable to wash the substrate with 0.1 to 1N acid aqueous solution to remove the alkali metal or alkaline earth metal before impregnating with the metal alkoxide solution, and then wash with a surfactant. Therefore,
As the surfactant, those not containing an alkali metal or alkaline earth metal are preferable, and a nonionic surfactant containing a fluorocarbon is preferable.

【0013】さらに、基材に金属アルコキシドの溶液を
含浸させた後、焼成する前に、基材の分解温度以上に所
定時間保ち、基材を炭化させることが好ましい。この炭
化処理を行わないと、得られるセラミックス構造体に煤
が残留する場合があり、この煤の残留はセラミックス構
造体への基材の形状の転写性を低下させてしまう。
Further, after the substrate is impregnated with the solution of the metal alkoxide, it is preferable to carbonize the substrate by keeping the temperature above the decomposition temperature of the substrate for a predetermined time before firing. If this carbonization treatment is not performed, soot may remain in the obtained ceramic structure, and this soot residue reduces the transferability of the shape of the base material to the ceramic structure.

【0014】最後に、金属アルコキシドの溶液を含浸さ
せた基材を800 〜1000℃において焼成することにより、
基材は燃焼分解してしまい、一方金属アルコキシドは焼
結され、セラミックスとなり、最終的に基材の微細な細
孔の形状を反映した構造を有するセラミックス構造体が
得られる。
Finally, the substrate impregnated with the solution of the metal alkoxide is calcined at 800 to 1000 ° C.
The base material is burned and decomposed, while the metal alkoxide is sintered into a ceramic, and finally a ceramic structure having a structure reflecting the shape of the fine pores of the base material is obtained.

【0015】[0015]

【実施例】実施例1 珪素テトラエトキシド(Si(OC2 5)4)1モルにエ
タノール1モル、水2モル及び塩酸0.01モルを加え、珪
素テトラエトキシドの溶液を製造した。この溶液を室温
において攪拌し、溶液1を得た。また、上記珪素テトラ
エトキシドの溶液を70℃において8時間還流し、溶液2
を得た。さらに、この還流後、この溶液をエタノールに
より5倍に希釈し、溶液3を得た。また珪素テトラエト
キシド(Si(OC2 5)4)1モルにエタノール1モ
ル、水10モル及び塩酸0.01モルを加え、70℃において8
時間還流し、そしてエタノールにより5倍に希釈し、溶
液4を得た。
Example 1 A silicon tetraethoxide solution was prepared by adding 1 mol of ethanol, 2 mol of water and 0.01 mol of hydrochloric acid to 1 mol of silicon tetraethoxide (Si (OC 2 H 5 ) 4 ). This solution was stirred at room temperature to obtain solution 1. The solution of silicon tetraethoxide was refluxed at 70 ° C. for 8 hours to prepare solution 2
I got Further, after this reflux, this solution was diluted 5-fold with ethanol to obtain solution 3. Further, 1 mol of ethanol, 10 mol of water and 0.01 mol of hydrochloric acid were added to 1 mol of silicon tetraethoxide (Si (OC 2 H 5 ) 4 ), and the mixture was stirred at 70 ° C. for 8 hours.
Reflux for hours and dilute 5 times with ethanol to give solution 4.

【0016】0.5N塩酸水溶液で洗浄後界面活性剤に浸漬
し、乾燥させたポリプロピレンフォーム(10×10×50m
m、相対密度(嵩密度/真密度)=0.08)に上記溶液1
〜4を適量浸漬させた。次いで雰囲気を温度100 ℃、湿
度100 %に調整した炉内で1時間処理し、100 ℃/hrで
加熱し、380 ℃において1時間加熱し、さらに600 ℃/
hrで加熱し、850 ℃において1時間焼成し、セラミック
ス構造体サンプル1〜4を得た。また、溶液3を用い、
界面活性剤による処理を行わないポリプロピレンフォー
ムに含浸させ、同様にしてサンプル5を得た。さらに、
溶液3を用い、上記と同様にして界面活性剤処理したポ
リプロピレンフォームに含浸させ、上記炉内で炭化処理
を行わず、600 ℃/hrで加熱し、850 ℃において1時間
焼成することによってサンプル6を得た。こうして得ら
れたセラミックス構造体の強度及び可撓性を測定した。
強度は3点曲げ試験機により破断点までの強度を測定
し、可撓性は曲げ剛性(EIz)により、その逆数(1/
E)より評価した。これらの結果を図1〜4に示す。
A polypropylene foam (10 × 10 × 50 m) which has been washed with a 0.5 N hydrochloric acid aqueous solution, dipped in a surfactant and dried.
m, relative density (bulk density / true density) = 0.08) above solution 1
~ 4 was immersed in an appropriate amount. Then, the atmosphere was treated in a furnace adjusted to a temperature of 100 ° C and a humidity of 100% for 1 hour, heated at 100 ° C / hr, heated at 380 ° C for 1 hour, and further heated at 600 ° C / hr.
The ceramic structure samples 1 to 4 were obtained by heating for 1 hour and firing at 850 ° C. for 1 hour. Also, using solution 3,
Sample 5 was obtained in the same manner by impregnating a polypropylene foam that had not been treated with a surfactant. further,
Sample 6 was prepared by using Solution 3 to impregnate a polypropylene foam treated with a surfactant in the same manner as described above, heating at 600 ° C / hr without firing in the above furnace, and firing at 850 ° C for 1 hour. Got The strength and flexibility of the ceramic structure thus obtained were measured.
The strength is measured up to the breaking point with a 3-point bending tester, and the flexibility is determined by the flexural rigidity (EIz) and its reciprocal (1 /
It was evaluated from E). These results are shown in FIGS.

【0017】通常のセラミックスバルク体はほとんど可
撓性を有していないが、本発明の方法により得られたセ
ラミックス構造体は微細な構造を有し、その断面が小さ
いため可撓性を示している。図1及び2に示すように、
基材に含浸させる金属アルコキシドの溶液を、加水分解
を制御し、還流し、希釈したもの(溶液3)が基材の細
孔の形状をより反映させ、最も可撓性の高いセラミック
ス構造体を与える。また、図3及び4より明らかなよう
に、基材を界面活性剤により前処理し、また焼成前に炭
化処理を行うことにより、より可撓性の高いセラミック
ス構造体が得られる。
The ordinary ceramic bulk body has almost no flexibility, but the ceramic structure obtained by the method of the present invention has a fine structure and has a small cross section, and therefore exhibits flexibility. There is. As shown in FIGS. 1 and 2,
The solution of the metal alkoxide with which the base material is impregnated is subjected to hydrolysis, refluxed, and diluted (Solution 3) to more closely reflect the shape of the pores of the base material, and the most flexible ceramic structure is obtained. give. Further, as is clear from FIGS. 3 and 4, by pretreating the substrate with a surfactant and carbonizing before firing, a more flexible ceramic structure can be obtained.

【0018】実施例2 チタンテトラプロポキシド1モルにプロパノール1モル
及びジエチレングリコールモノメチルエーテル4モルを
加え、この混合物を80℃において0.5 時間還流した。次
いで水1モルを加え、90℃において1時間還流した。0.
1N塩酸水溶液で洗浄後界面活性剤に浸漬し、乾燥させた
ポリプロピレンフォーム(10×10×50mm、相対密度(嵩
密度/真密度)=0.08)に上記溶液を適量含浸した。次
いで雰囲気を温度100 ℃、湿度50%に調整した炉内で1
時間処理し、100 ℃/hrで加熱し、380 ℃において1時
間加熱し、さらに900 ℃/hrで加熱し、900 ℃において
1時間焼成し、セラミックス構造体サンプル7を得た。
このサンプルについて上記と同様にして強度と可撓性を
測定した。この結果を図5に示す。この図より明らかな
ように、このサンプル7もサンプル3と同様の強度と著
しい可撓性を示した。
EXAMPLE 2 1 mol of propanol and 4 mol of diethylene glycol monomethyl ether were added to 1 mol of titanium tetrapropoxide, and the mixture was refluxed at 80 ° C. for 0.5 hours. Then, 1 mol of water was added, and the mixture was refluxed at 90 ° C. for 1 hour. 0.
An appropriate amount of the above solution was impregnated into a polypropylene foam (10 × 10 × 50 mm, relative density (bulk density / true density) = 0.08) which was washed with a 1N aqueous hydrochloric acid solution, dipped in a surfactant and dried. Next, in an oven where the temperature is adjusted to 100 ° C and the humidity is set to 50%, 1
It was treated for a time, heated at 100 ° C./hr, heated at 380 ° C. for 1 hour, further heated at 900 ° C./hr, and fired at 900 ° C. for 1 hour to obtain a ceramic structure sample 7.
The strength and flexibility of this sample were measured in the same manner as above. The result is shown in FIG. As is clear from this figure, this sample 7 also showed the same strength and remarkable flexibility as sample 3.

【0019】[0019]

【発明の効果】本発明の方法により、簡易にかつ低コス
トで、複雑な微細骨格を有し、可撓性を有するセラミッ
クス構造体が得られる。また、高融点組成の構造体及び
結晶質の構造体を製造することも可能である。
By the method of the present invention, a ceramic structure having a complicated fine skeleton and flexibility can be obtained easily and at low cost. It is also possible to manufacture a structure having a high melting point composition and a crystalline structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により得られたセラミックス構造
体の強度と可撓性の測定結果を示すグラフである。
FIG. 1 is a graph showing measurement results of strength and flexibility of a ceramic structure obtained by the method of the present invention.

【図2】本発明の方法により得られたセラミックス構造
体の強度と可撓性の測定結果を示すグラフである。
FIG. 2 is a graph showing measurement results of strength and flexibility of a ceramic structure obtained by the method of the present invention.

【図3】本発明の方法において、基材の前処理の効果を
示すグラフである。
FIG. 3 is a graph showing the effect of substrate pretreatment in the method of the present invention.

【図4】本発明の方法において、炭化処理の効果を示す
グラフである。
FIG. 4 is a graph showing the effect of carbonization treatment in the method of the present invention.

【図5】本発明の方法により得られたセラミックス構造
体の強度と可撓性の測定結果を示すグラフである。
FIG. 5 is a graph showing measurement results of strength and flexibility of a ceramic structure obtained by the method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊維状組織もしくは多孔質構造からなり
かつ焼成によって焼失する基材に金属アルコキシドの溶
液を含浸させ、次いでこの金属アルコキシドの溶液が含
浸した基材を焼成することを特徴とするセラミックス構
造体の製造方法。
1. A ceramic material characterized in that a base material having a fibrous structure or a porous structure and burned out by firing is impregnated with a solution of a metal alkoxide, and then the base material impregnated with the solution of the metal alkoxide is fired. Structure manufacturing method.
【請求項2】 金属アルコキシドの溶液を基材に含浸さ
せる前に、前記溶液の溶媒の沸点直下において前記溶液
を還流することを特徴とする、請求項1記載の方法。
2. The method according to claim 1, wherein the solution is refluxed just below the boiling point of the solvent of the solution before the substrate is impregnated with the solution of the metal alkoxide.
【請求項3】 金属アルコキシドの溶液を基材に含浸さ
せる前に、前記基材を界面活性剤により洗浄することを
特徴とする、請求項1記載の方法。
3. The method according to claim 1, wherein the substrate is washed with a surfactant before the substrate is impregnated with the solution of the metal alkoxide.
【請求項4】 金属アルコキシドの溶液が含浸した基材
を、焼成の前にこの焼成温度よりも低くかつ前記基材の
分解温度よりも高い温度に保持することを特徴とする、
請求項1記載の方法。
4. The substrate impregnated with the solution of metal alkoxide is kept at a temperature lower than the firing temperature and higher than the decomposition temperature of the substrate before firing.
The method of claim 1.
JP17244094A 1994-07-25 1994-07-25 Manufacturing method of ceramic structure Expired - Fee Related JP3452647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17244094A JP3452647B2 (en) 1994-07-25 1994-07-25 Manufacturing method of ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17244094A JP3452647B2 (en) 1994-07-25 1994-07-25 Manufacturing method of ceramic structure

Publications (2)

Publication Number Publication Date
JPH0834680A true JPH0834680A (en) 1996-02-06
JP3452647B2 JP3452647B2 (en) 2003-09-29

Family

ID=15942030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17244094A Expired - Fee Related JP3452647B2 (en) 1994-07-25 1994-07-25 Manufacturing method of ceramic structure

Country Status (1)

Country Link
JP (1) JP3452647B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505046A (en) * 1999-07-15 2003-02-12 ナノゲン・インコーポレイテッド Inorganic osmotic layer for micro-electric devices
WO2003035577A1 (en) * 2001-10-22 2003-05-01 National Institute Of Advanced Industrial Science And Technology Silicon carbide based porous structure and method for manufacture thereof
JP2010037183A (en) * 2008-08-05 2010-02-18 Samsung Electro-Mechanics Co Ltd Method for producing magnesium vanadium multiple oxide nanoparticle and magnesium vanadium multiple oxide nanoparticle produced thereby
JP2018115400A (en) * 2017-01-17 2018-07-26 株式会社クラレ Composite fiber and production method thereof, and hollow fiber and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505046A (en) * 1999-07-15 2003-02-12 ナノゲン・インコーポレイテッド Inorganic osmotic layer for micro-electric devices
WO2003035577A1 (en) * 2001-10-22 2003-05-01 National Institute Of Advanced Industrial Science And Technology Silicon carbide based porous structure and method for manufacture thereof
JP2010037183A (en) * 2008-08-05 2010-02-18 Samsung Electro-Mechanics Co Ltd Method for producing magnesium vanadium multiple oxide nanoparticle and magnesium vanadium multiple oxide nanoparticle produced thereby
JP2018115400A (en) * 2017-01-17 2018-07-26 株式会社クラレ Composite fiber and production method thereof, and hollow fiber and production method thereof

Also Published As

Publication number Publication date
JP3452647B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
Sakka Gel method for making glass
JP3401570B2 (en) Method for producing glass substrate with improved long-term stability at high temperatures
US4460639A (en) Fiber reinforced glass matrix composites
US4786618A (en) Sol-gel method for making ultra-low expansion glass
WO2012049858A1 (en) Inorganic fiber molded article, method for producing same, and heating equipment
JPH02141481A (en) Manufacture of composite material consisting of glass ceramic or ceramic matrix by using sol-gel process, and composite material thus obtained
JPS6140841A (en) Porous moulded product of glass and its preparation
US3082099A (en) Inorganic fibers and method of preparation
JP3452647B2 (en) Manufacturing method of ceramic structure
US6221942B1 (en) Zircon-carbon for ceramic composite fiber coatings and fine-grained zircon powder
US5268199A (en) Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing
USH1682H (en) Method for producing ceramic coatings on fibers
US3861947A (en) Process for the preparation of zircon coated zirconia fibers
JP2000509116A (en) Ceramic fiber coated with activated carbon
US20090235696A1 (en) Method for Manufacturing Grin Lens
JPH04310579A (en) Multilayer fiber matrix ceramic composite material and method of manufacturing same
KR101527356B1 (en) Ceramic core And Its Manufacturing Methode
JPH11514625A (en) Ecologically compatible aqueous stable mullite precursor sols, mullite composites and methods of making them
JP2001089254A (en) Composite ceramic material and its production process
JPS61232239A (en) Production of porous glass
Lu et al. Synthesis of long ZrTiO 4 fibers by a sol–gel process free of organic components
JPH0534308B2 (en)
JPS62230644A (en) Production of electrically conductive fiber
JPH04130026A (en) Production of sio2 porous glass
JPH045770B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080718

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090718

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090718

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100718

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110718

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110718

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120718

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130718

LAPS Cancellation because of no payment of annual fees