JPH04130026A - Production of sio2 porous glass - Google Patents

Production of sio2 porous glass

Info

Publication number
JPH04130026A
JPH04130026A JP25397290A JP25397290A JPH04130026A JP H04130026 A JPH04130026 A JP H04130026A JP 25397290 A JP25397290 A JP 25397290A JP 25397290 A JP25397290 A JP 25397290A JP H04130026 A JPH04130026 A JP H04130026A
Authority
JP
Japan
Prior art keywords
sol
gel
glass
porous glass
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25397290A
Other languages
Japanese (ja)
Other versions
JPH0794326B2 (en
Inventor
Tetsuo Yazawa
哲夫 矢澤
Hiroshi Tanaka
博史 田中
Hiroshi Nakamichi
中道 弘
Akiko Miyake
明子 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shinko Pantec Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2253972A priority Critical patent/JPH0794326B2/en
Publication of JPH04130026A publication Critical patent/JPH04130026A/en
Publication of JPH0794326B2 publication Critical patent/JPH0794326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain SiO2 porous glass having lots of fine pores and excellent heat resistance and corrosion resistance by adding org. polymers into a silicon alkoxide soln. in the production of SiO2 porous glass by sol-gel method. CONSTITUTION:A silicon alkoxide soln. in which org. polymers such as polyethylene glycol is dissolved is hydrolyzed to obtain a sol. A soln. containing a metal alkoxide except for silicon alkoxide (e.g. zirconium alkoxide) is added to this sol, mixed, and hydrolyzed to obtain a sol. This sol is gelatified and dried to obtain a dry gel containing org. polymers. Then, this gel is converted into glass by heating at 500-800 deg.C and by dehydration condensation reaction while removing the org. polymers, and thus, the SiO2 porous glass is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、SiO□系多孔質ガラスの製造法に関し詳細
には、分離膜や酵素担体なとの如く、微細孔を多数有す
ると共に優れた耐熱性や耐食性を有する事か必要とされ
る多孔質材料として使用する5iOz系多孔質ガラスの
製造法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing SiO This invention relates to a method for producing 5iOz porous glass, which is used as a porous material that is required to have heat resistance and corrosion resistance.

(従来の技術) 分離膜や酵素担体なとの多孔質材料としては、微細な孔
、例えば細孔半径=5〜lO人程度の微細孔を多数有す
ると共に、耐熱性や耐食性に優れていることが必要であ
る。一方、5ins系ガラスは耐熱性及び耐酸性に優れ
、その中でもZrO,を含有する5iOz系ガラス(Z
rOt−3iO□ガラス)は耐熱性に優れると共に、耐
アルカリ性にも優れている。従って、微細孔を多数有す
る5i02系ガラス(即ち5if2系多孔質ガラス)を
安定して実用的に製造できれば、分離膜や酵素担体など
の多孔質材料として好適に使用し得るようになる。
(Prior art) Porous materials such as separation membranes and enzyme carriers must have a large number of fine pores, for example, with a pore radius of 5 to 1 O, and have excellent heat resistance and corrosion resistance. is necessary. On the other hand, 5ins type glass has excellent heat resistance and acid resistance, and among them, 5iOz type glass (ZrO) containing ZrO.
rOt-3iO□ glass) has excellent heat resistance and also excellent alkali resistance. Therefore, if 5i02-based glass (that is, 5if2-based porous glass) having a large number of micropores can be produced stably and practically, it can be suitably used as a porous material for separation membranes, enzyme carriers, and the like.

従来SiO2系多孔質ガラスの製造法としては、ガラス
の分相現象を利用した製造法や、ゾル・ケル法を利用し
た製造法か知られている。
Conventionally, known methods for manufacturing SiO2-based porous glass include a manufacturing method that utilizes the phase separation phenomenon of glass and a manufacturing method that utilizes the sol-kel method.

前者の製造法は、種々の金属酸化物を含むSiO2系ガ
ラスを軟化点以下の温度で長時間熱処理して、骨格とな
るSiO□相と可溶性の金属酸化物相とに分相させ、可
溶相を酸溶出することにより5iOz系多孔質ガラスを
製造するものである。
The former method involves heat-treating SiO2-based glasses containing various metal oxides at temperatures below their softening point for a long period of time to separate the SiO□ phase, which forms the skeleton, and the soluble metal oxide phase. A 5iOz porous glass is produced by eluting the phase with acid.

後者の製造法は、シリコンアルコキシド(或いはシリコ
ンアルコキシド及びシリコン以外の金属のアルコキシド
)を加水分解してゾル化した後ゲル化させ、これを乾燥
して多孔質の乾燥ゲルと成し、該乾燥ゲルを徐々に加熱
してゲル中の水分蒸発と脱水縮合反応によりガラスを合
成してSiO2系多孔質ガラスを製造するものである。
The latter production method involves hydrolyzing silicon alkoxide (or silicon alkoxide and alkoxides of metals other than silicon) to form a sol, then gelling it, drying it to form a porous dry gel, and producing the dried gel. SiO2-based porous glass is produced by gradually heating the gel to synthesize glass through evaporation of water in the gel and dehydration condensation reaction.

尚、乾燥ゲルの加熱温度をさらに高くすると、焼結反応
によりガラスか緻密化して細孔が消失するため、多孔質
ガラスは得られない。
Note that if the heating temperature of the dry gel is further increased, the glass will become denser due to the sintering reaction and the pores will disappear, making it impossible to obtain porous glass.

(発明か解決しようとする課題) ところか、前記従来のSiO2系多孔質ガラスの製造法
の中、ガラスの分相現象を利用した製造法においては、
細孔半径 20Å以下の微細孔を存するものを製造し得
す、又、分相したZrO2か酸で溶出されるためZrO
□の含有量か5mo1%以下に制限されるので耐アルカ
リ性か充分てないという問題点かある。
(Problem to be solved by the invention) However, among the conventional methods for producing SiO2-based porous glass, the method using the phase separation phenomenon of glass has the following problems:
It is possible to manufacture products with micropores with a pore radius of 20 Å or less, and since phase-separated ZrO2 is eluted with acid, ZrO
Since the content of □ is limited to 5 mo1% or less, there is a problem that the alkali resistance is not sufficient.

ゾル・ケル法を利用した従来の多孔質ガラス製造法にお
いては、ZrO2の含有量をより多くし得るので耐アル
カリ性の点ては問題はないか、細孔半径二10人程度の
微細孔を存するものを製造するためには、乾燥ゲルを加
熱して生成したガラスか緻密化する直前で加熱を停止す
る等の処置が必要となるか、ガラスの緻密化は狭い温度
範囲で急激に起るので制御か難しい。例えば、乾燥ゲル
を300〜500℃程度で加熱した場合には、生成ガラ
スの強度及び耐食性か充分てなく、500℃以上で加熱
すると細孔径の制御か難しくなる。
In the conventional porous glass manufacturing method using the sol-kel method, the ZrO2 content can be increased, so there is no problem with alkali resistance, or there are micropores with a pore radius of about 210 mm. In order to manufacture products, it is necessary to take measures such as stopping the heating just before the glass produced by heating the dry gel becomes densified, or because the densification of glass occurs rapidly within a narrow temperature range. Difficult to control. For example, if the dry gel is heated at about 300 to 500°C, the resulting glass will not have sufficient strength and corrosion resistance, and if it is heated above 500°C, it will be difficult to control the pore diameter.

又、微細孔は加水分解によるゾル化、ゲル化及びゲルの
加熱温度によって変化するので、生成される微細孔の状
態は当然に該生成条件により定まるか、該生成条件を一
定に精度良く制御するのは極めて難しいので、微細孔の
状態を制御し難く、これは製造の都度具なり、再現性に
欠けるという問題点かある。尚、上記微細孔の状態とは
、基本的には微細孔の大きさ(半径)とその分布及び数
等のことであるか、実用的には微細孔半径、及び、微細
孔の大きさと数等により定まるガラスの単位重量当りの
微細孔の表面積(以降、比表面積という)等のことてあ
り、かかる微細孔半径及び比表面積等は多孔質材料の微
細孔の良否や適否、又はその水準を評価する上で重要な
因子である更に、乾燥ゲルの加熱に時間を要するため、
急激に高温加熱して加熱時間を短縮しようとすると、未
反応有機物が残存し熱分解炭素によりガラスか黒化し易
くなるという欠点かある。これを防止するには、乾燥ゲ
ルの加熱前に水蒸気中で温度を徐々に上昇させ加熱する
水蒸気処理を施し、しかる後乾燥ゲルを加熱するように
するとよいか、この場合は水蒸気処理に長時間を要する
In addition, since the micropores change depending on the solization and gelation due to hydrolysis and the heating temperature of the gel, the state of the micropores that are generated is naturally determined by the generation conditions, or the generation conditions are controlled to be constant and precise. Since this is extremely difficult, it is difficult to control the state of the micropores, and this has to be done each time it is manufactured, resulting in a lack of reproducibility. The condition of the micropores mentioned above basically refers to the size (radius) of the micropores, their distribution, number, etc., or in practical terms, the condition of the micropores refers to the radius of the micropores, and the size and number of the micropores. The surface area of micropores per unit weight of glass (hereinafter referred to as specific surface area) is determined by In addition, since it takes time to heat the dry gel, which is an important factor in evaluation,
If an attempt is made to shorten the heating time by rapidly heating to a high temperature, there is a drawback that unreacted organic substances remain and the glass tends to blacken due to pyrolytic carbon. To prevent this, it is recommended to perform a steam treatment in which the temperature is gradually raised in steam before heating the dry gel, and then heat the dry gel.In this case, the steam treatment may take a long time. It takes.

本発明はこの様な事情に着目してなされたものであって
、その目的は従来のものかもつ以上のような問題点を解
消し、ゾル・ケル法によりSiO2系多孔質ガラスを製
造するに際し、細孔半径 5〜10人程度の微細孔を存
するものを製造し得ると共に、ゾル・ゲル法による従来
法の場合に比してガラス強度及び耐食性を向上し得、又
、ガラスの微細孔の状態(微細孔半径及び比表面積なと
)を制御し易くその再現性に優れ、更には長時間の水蒸
気処理をせずともガラスの黒化を抑制し得るSiO2系
多孔質ガラスの製造法を提供しようとするものである。
The present invention has been made in view of these circumstances, and its purpose is to solve the above-mentioned problems of the conventional methods and to improve the production of SiO2-based porous glass by the sol-kel method. , it is possible to manufacture glass having micropores with a pore radius of about 5 to 10, and it is also possible to improve the glass strength and corrosion resistance compared to the conventional method using the sol-gel method. Provided is a method for producing SiO2-based porous glass that allows easy control of conditions (micropore radius and specific surface area), excellent reproducibility, and further suppresses blackening of the glass without long-term steam treatment. This is what I am trying to do.

(課題を解決するための手段) 上記目的を達成するために、本発明に係るSiO2系多
孔質ガラスの製造法は次のような構成としている。
(Means for Solving the Problems) In order to achieve the above object, the method for producing SiO2-based porous glass according to the present invention has the following configuration.

即ち、請求項1に記載のSin、系多孔質ガラスの製造
法は、ゾル・ゲル法によりSiO□系多孔質ガラスを製
造するに際し、有機高分子を含有するシリコンアルコキ
シド溶液について該シリコンアルコキットを加水分解し
てゾル化し、次いて該ゾルにノリコン以外の金属のアル
コキシドを含有する溶液を添加混合し、該金属アルコキ
シドを加水分解してゾル化してさらにゲル化した後、こ
れを乾燥して乾燥ゲルと成し、該乾燥ゲルを500〜8
00℃の温度で加熱してガラス化すると共に該乾燥ゲル
中の有機高分子を除去することを特徴とする5i02系
多孔質ガラスの製造法である。
That is, in the method for producing a Si-based porous glass according to claim 1, when producing a SiO□-based porous glass by a sol-gel method, the silicon alkoxide solution containing an organic polymer is prepared using the silicon alkoxide solution. Hydrolyze to form a sol, then add and mix a solution containing an alkoxide of a metal other than Noricon to the sol, hydrolyze the metal alkoxide to form a sol, further form a gel, and then dry this. gel, and dry the gel at 500~8
This is a method for producing 5i02-based porous glass, which is characterized by vitrifying it by heating at a temperature of 00°C and removing organic polymers in the dried gel.

請求項2に記載のSiO□系多孔質ガラスの製造法は、
前記乾燥ゲルの加熱前に水蒸気中で温度を徐々に上昇さ
せ加熱する水蒸気処理を乾燥ゲルに施す請求項1に記載
のSiO2系多孔質ガラスの製造法である。
The method for producing SiO□-based porous glass according to claim 2,
2. The method for producing SiO2-based porous glass according to claim 1, wherein the dry gel is subjected to a steam treatment in which the temperature is gradually raised and heated in steam before heating the dry gel.

請求項3に記載のSiO2系多孔質ガラスの製造法は、
前記シリコン以外の金属のアルコキシドかジルコニウム
アルコキシドである請求項1に記載のSiO2系多孔質
ガラスの製造法である。
The method for producing SiO2-based porous glass according to claim 3,
2. The method for producing SiO2-based porous glass according to claim 1, wherein the alkoxide of a metal other than silicon or zirconium alkoxide is used.

(作 用) 本発明に係る5i02系多孔質ガラスの製造法は、前記
の如く、有機高分子を含有するシリコンアルコキシド溶
液について該ノリコンアルコキシドを加水分解してゾル
化し、次いて該ゾルにシリコン以外の金属のアルコキシ
ド(以降、他金属アルコキシドという)を含有する溶液
を添加混合し、該金属アルコキシドを加水分解してゾル
化し、さらにゲル化した後、これを乾燥して乾燥ゲルと
成すようにしているので、有機高分子を含有する乾燥ゲ
ルが得られる。
(Function) As described above, in the method for producing 5i02-based porous glass according to the present invention, in a silicon alkoxide solution containing an organic polymer, the silicon alkoxide is hydrolyzed to form a sol, and then silicon is added to the sol. Add and mix a solution containing an alkoxide of a metal other than the above (hereinafter referred to as other metal alkoxide), hydrolyze the metal alkoxide to form a sol, further gel it, and then dry it to form a dry gel. As a result, a dry gel containing organic polymers can be obtained.

ここて、加水分解によるゾル化に際し、上記の如き順序
としているのは、シリコンアルコキシドは他金属アルコ
キシドに比し加水分解の反応速度か低く、かかる速度か
低いものから加水分解することにより、組成が均質なゾ
ルか得られ、その結果組成均質な乾燥ゲルか得られ、ガ
ラスの機能をより向上し得るようになるからである。即
ち、先に他金属アルコキシドを加水分解するようにする
と、そのゾル化か速いためシリコンアルコキシドを添加
した際に均一に混合されず、均質なゾルか得られ難くな
り、又、同時に加水分解を開始させた場合も、均質なゾ
ルか得られ難くなる。これにより、上記本発明に係るゾ
ル及び乾燥ゲルは組成均質なものとなる。
The reason why the above order is used for sol formation by hydrolysis is that silicon alkoxide has a lower hydrolysis reaction rate than other metal alkoxides, and by hydrolyzing those with a lower rate, the composition can be changed. This is because a homogeneous sol can be obtained, and as a result, a dry gel with a homogeneous composition can be obtained, and the functions of the glass can be further improved. That is, if other metal alkoxides are hydrolyzed first, they will become sol quickly, so when silicon alkoxide is added, it will not be mixed uniformly and it will be difficult to obtain a homogeneous sol, and hydrolysis will start at the same time. Even if this is done, it becomes difficult to obtain a homogeneous sol. As a result, the sol and dry gel according to the present invention have a homogeneous composition.

一方、前記有機高分子は長さ5〜20人程度の細長状の
極小物質てあり、シリコンアルコキシド含有溶液中に均
一分散し得、その結果として組成を均質と成すと共に有
機高分子を均一分散させた乾燥ゲルか得られる。
On the other hand, the organic polymer is an extremely small substance with a length of about 5 to 20 molecules, and can be uniformly dispersed in a silicon alkoxide-containing solution, resulting in a homogeneous composition and uniform dispersion of the organic polymer. A dry gel is obtained.

次に、上記乾燥ゲルを500〜800℃の温度で加熱し
て脱水縮合反応によりガラス化すると共に該乾燥ゲル中
の有機高分子を除去するようにしているので、該除去に
より下記の如く微細孔か形成される。
Next, the dried gel is heated at a temperature of 500 to 800°C to vitrify it by a dehydration condensation reaction, and the organic polymer in the dried gel is removed. or formed.

即ち、乾燥ゲルは有機高分子を含んだ多孔質であり、有
機高分子はゲル自体の細孔と共存しているため、上記加
熱により有機高分子は、先ずゲルの細孔表面近傍のもの
からガス化してゲル外に排出されると共にガラス化過程
のゲル中にガス通路を形成し、それを介して有機高分子
は順次ガラス外へ排出(除去)される。
In other words, the dry gel is porous and contains organic polymers, and since the organic polymers coexist with the pores of the gel itself, the heating described above first removes the organic polymers from those near the pore surface of the gel. The organic polymer is gasified and discharged from the gel, and a gas passage is formed in the gel during the vitrification process, through which the organic polymer is sequentially discharged (removed) from the glass.

かかる有機高分子の加熱除去により、除去された部分自
体か細長状極小の空孔として残留し、細長状の微細孔か
形成される他、乾燥ゲル自体の微細孔も無孔化すること
なく残留し、より多くの微細孔か形成されるので、細孔
半径は5〜lO人程度にし得る。尚、前記の微細孔生成
・残留の理由はよく判らないか、有機高分子の触媒作用
か、もしくは前記ガス通路の作用により、乾燥ゲル自体
の微細孔形成か助長されると共に微細孔の消失か抑制さ
れるためと考えられる。
By heating and removing the organic polymer, the removed portion itself remains as elongated and extremely small pores, and in addition to forming elongated micropores, the micropores of the dried gel itself remain without becoming porous. However, since more micropores are formed, the pore radius can be about 5 to 10 pores. It should be noted that the reason for the above-mentioned micropore formation/remaining is not well understood, or it may be due to the catalytic action of the organic polymer, or the action of the gas passages, which promotes the formation of micropores in the dried gel itself and causes the micropores to disappear. This is thought to be because it is suppressed.

このようにして微細孔か形成されるで、細孔半径分布の
狭い微細孔を多数有するSiO□系多孔質ガラスか得ら
れる。このとき上記乾燥ゲルを前記の如く有機高分子を
均一分散させたものにしておくと、上記ガラスの微細孔
を均一分散したものにし得る。
By forming micropores in this manner, a SiO□-based porous glass having a large number of micropores with a narrow pore radius distribution can be obtained. At this time, if the dried gel has organic polymers uniformly dispersed in it as described above, the micropores of the glass can be uniformly dispersed.

ここで、乾燥ゲルの加熱温度を500〜800℃として
いるのは、500″C未満ではガラス化が不充分となっ
て強度や耐食性か悪くなり、800℃超では有機高分子
の除去後、微細孔が塞がれ、多孔質性が悪くなるからで
ある。
Here, the heating temperature of the dry gel is set at 500 to 800°C because if it is less than 500°C, vitrification will be insufficient and the strength and corrosion resistance will deteriorate, and if it exceeds 800°C, fine particles will be formed after the organic polymer is removed. This is because the pores are blocked and the porosity deteriorates.

上記の如く乾燥ゲルを500〜800℃の温度で加熱し
てガラス化するので、ゾル・ケル法による従来の多孔質
ガラス製造法の場合に比しガラス強度及び耐食性を向上
し得る。
Since the dried gel is vitrified by heating at a temperature of 500 to 800°C as described above, the glass strength and corrosion resistance can be improved compared to the conventional porous glass manufacturing method using the sol-kel method.

微細孔は乾燥ゲルの加熱による有機高分子の除去により
生成させるので、微細孔の状態は該生成条件、即ちゲル
加熱条件と有機高分子の量及び種類とにより定まり、こ
れらの条件の制御は極めて容易であり、従ってガラスの
微細孔の状態(微細孔半径及び比表面積等)を制御し易
く、その再現性に優れている。特に、有機高分子の添加
量を変えることにより、細孔径をほぼ一定とし細孔の数
(比表面積)を調節することも容易にてきる。
Since micropores are generated by removing organic polymers by heating a dry gel, the state of micropores is determined by the generation conditions, that is, gel heating conditions and the amount and type of organic polymers, and it is extremely difficult to control these conditions. Therefore, it is easy to control the state of the micropores in the glass (micropore radius, specific surface area, etc.) and has excellent reproducibility. In particular, by changing the amount of organic polymer added, the pore diameter can be kept approximately constant and the number of pores (specific surface area) can be easily adjusted.

乾燥ゲルの加熱の際、熱分解炭素は有機高分子のガス化
に伴って形成されるガス通路を介して、ガラス外へ排出
されるので、残留し難く、従って、長時間の水蒸気処理
をしなくても黒化を抑制し得るようになる。
When heating the dry gel, pyrolytic carbon is discharged out of the glass through the gas passage formed as the organic polymer gasifies, making it difficult for it to remain, and therefore making it difficult to carry out long steam treatment. Even without it, it becomes possible to suppress blackening.

故に、本発明に係るSiO□系多孔質ガラスの製造法に
よれば、細孔半径=5〜lO人程度の微細孔を有するも
のを製造し得ると共に、ゾル・ゲル法による従来の多孔
質ガラス製造法の場合に比し、ガラス強度及び耐食性を
向上し得、又、ガラスの微細孔の状態(特に比表面積)
を制御し易くその再現性に優れ、更には長時間の水蒸気
処理をせずともガラスの黒化を抑制し得るようになる。
Therefore, according to the method for producing SiO□-based porous glass according to the present invention, it is possible to produce a glass having micropores with a pore radius of about 5 to 1000 μm, and it is also possible to produce a SiO□-based porous glass using the sol-gel method. Compared to the manufacturing method, the glass strength and corrosion resistance can be improved, and the state of the micropores of the glass (especially the specific surface area) can be improved.
It is easy to control and has excellent reproducibility, and furthermore, it becomes possible to suppress the blackening of the glass without requiring a long steam treatment.

前記乾燥ゲルの加熱前に水蒸気中で温度を徐々に上昇さ
せ加熱する水蒸気処理を乾燥ゲルに施すと、ゲル加熱の
所要時間は長くなるか、ガラス黒化を確実に防止し得、
又、微細孔の比表面積を増大させ得るようになるので、
必要に応じて水蒸気処理するようにするとよい。
If the dry gel is subjected to a steam treatment in which the temperature is gradually raised and heated in steam before heating the dry gel, the time required for heating the gel becomes longer, or glass blackening can be reliably prevented,
Also, since it becomes possible to increase the specific surface area of micropores,
It is advisable to perform steam treatment if necessary.

前記シリコン以外の金属のアルコキシドとしてジルコニ
ウムアルコキシドを使用すると、ZrO2を多量に含有
するSiO□系多孔質ガラスとなり、耐アルカリ性を大
幅に向上し得るようになるのでよい。
When zirconium alkoxide is used as the alkoxide of a metal other than silicon, a SiO□-based porous glass containing a large amount of ZrO2 is obtained, and the alkali resistance can be greatly improved.

尚、前記有機高分子としては、例えばポリエチレングリ
コール等のポリプロピレングリコールやポリアクリル酸
、ポリビニルピロリドン、ポリビニルアルコール等を使
用すればよく、金属アルコキシド溶液に均一に混合でき
、加熱除去し易いものであれば、その他種々のものが使
用でき、限定されるものではない。
As the organic polymer, for example, polypropylene glycol such as polyethylene glycol, polyacrylic acid, polyvinylpyrrolidone, polyvinyl alcohol, etc. may be used, as long as it can be uniformly mixed into the metal alkoxide solution and can be easily removed by heating. , and various other types can be used without limitation.

前記シリコンアルコキシド含有溶液や他金属アルコキシ
ド含有溶液は、必要に応じて無機塩を含有させ得る。他
金属アルコキシド含有溶液は、他金属か1種類に限定さ
れず、2種類以上を同時に含有させ得る。いづれの溶液
もアルコキシドの加水分解のための溶媒を含有させるが
、該溶媒としてはアルコール及び/又は水を使用できる
The silicon alkoxide-containing solution and the other metal alkoxide-containing solution may contain an inorganic salt as necessary. The other metal alkoxide-containing solution is not limited to one kind of other metal, but can contain two or more kinds at the same time. Both solutions contain a solvent for hydrolysis of the alkoxide, which can be alcohol and/or water.

(実施例) 実施例1 シリコンエトキシド(以降SEという):20.8 g
r分子量600のポリエチレングリコール(以降PEG
600という) :14.6gr(SEに対し70wt
%に相当)。
(Example) Example 1 Silicon ethoxide (hereinafter referred to as SE): 20.8 g
r Polyethylene glycol (hereinafter referred to as PEG) with a molecular weight of 600
600): 14.6gr (70wt for SE
%).

エタノール:適量(相分離したSEとPEGとを均一混
合するに充分な量)になるアルコキシド含有溶液(al
と、水:1.8gr、エタノール: 4.6gr、  
塩酸:0、37grになる加水分解用溶媒(b)と、ジ
ルコニウムテトラn−プロポキシド:6.6grになる
溶液(C)と、水:3.6gr、エタノール:4.6g
r、塩酸: 0.37grになる加水分解用溶媒fdl
とを各々調整し準備した。
Ethanol: An alkoxide-containing solution (al
, water: 1.8gr, ethanol: 4.6gr,
Hydrolysis solvent (b) that becomes 0.37g of hydrochloric acid, solution (C) that becomes 6.6g of zirconium tetra-n-propoxide, water: 3.6g, and ethanol: 4.6g.
r, hydrochloric acid: 0.37gr hydrolysis solvent fdl
Each was adjusted and prepared.

次に、上記の溶媒(blに溶液(a)を攪拌しなからゆ
っくり添加し、室温で1時間攪拌し、次いて溶液(C1
を添加し、室温で1時間攪拌した後、さらに溶媒(dl
を添加し10分間攪拌した。かかる混合体をガラスピー
カに入れたまま、静置状態で室温で風乾した。
Next, solution (a) was slowly added to the above solvent (bl) without stirring, stirred at room temperature for 1 hour, and then solution (C1
was added and stirred at room temperature for 1 hour, and then the solvent (dl
was added and stirred for 10 minutes. The mixture was air-dried at room temperature while being left in the glass speaker.

数週間後、上記風乾したもの(ゲル)を600℃て約1
0時間加熱してガラス化すると共にPEG600をガラ
ス外へ除去した。
After a few weeks, the air-dried product (gel) was heated to 600°C for about 1
It was heated for 0 hours to vitrify and remove PEG600 from the glass.

このようにして得られたZrLを含有する5jtL系多
孔質ガラスについて、BET法により比表面積を測定し
、Cranston−Inkley法により細孔容積及
び細孔径分布を求めたところ、微細孔の比表面積は42
5m’/gr、微細孔容積は0.16cm’/gr、平
均微細孔半径は約6〜9人であった。
Regarding the 5jtL-based porous glass containing ZrL thus obtained, the specific surface area was measured by the BET method, and the pore volume and pore size distribution were determined by the Cranston-Inkley method. 42
5 m'/gr, the micropore volume was 0.16 cm'/gr, and the average micropore radius was about 6-9.

又、ガラス強度及び耐食性は、ゾル・ゲル法による従来
の多孔質ガラス製造法の場合に比し、優れていた。
Furthermore, the glass strength and corrosion resistance were superior to those obtained by the conventional porous glass manufacturing method using the sol-gel method.

更に、上記ガラスは黒化を生しておらず、透明で均質な
ものであった。
Furthermore, the above-mentioned glass had no blackening and was transparent and homogeneous.

実施例2 溶液fa)のSHに対するPEG600の量(wt%)
を変化させた。かかる点を除き実施例1と同様の方法に
よりZrO□を含有するSiO□系多孔質ガラスを作り
、細孔半径の分布及び比表面積を求めた。その結果を第
1図(al、(bi及び(C+、並びに第2図に示す。
Example 2 Amount of PEG600 (wt%) relative to SH in solution fa)
changed. A SiO□-based porous glass containing ZrO□ was prepared in the same manner as in Example 1 except for this point, and the pore radius distribution and specific surface area were determined. The results are shown in FIG. 1 (al, (bi and (C+), and FIG. 2).

第1図ta+、fbl、(C)からPEG600:30
.50.70wt%のいづれの場合も平均細孔半径か1
0Å以下のソヤーブな細孔径分布を示す事が判る。第2
図の曲線(a)から、細孔径分布か殆と同しであるのに
、PEG600量の増大に伴って比表面積か増大するこ
とか判る。
Figure 1 ta+, fbl, (C) to PEG600:30
.. In both cases of 50.70 wt%, the average pore radius is 1
It can be seen that it exhibits a Soyabean pore size distribution of 0 Å or less. Second
From the curve (a) in the figure, it can be seen that although the pore size distribution is almost the same, the specific surface area increases as the amount of PEG600 increases.

尚、第2図の曲線(b)は前記ゲル加熱の前に水蒸気処
理を施した場合の結果を示すものであり、曲線(a)に
比し比表面積か大きく、水蒸気処理により比表面積かさ
らに増大することか判る。
Note that the curve (b) in Figure 2 shows the results when water vapor treatment is performed before the gel heating, and the specific surface area is larger than that of curve (a), and the specific surface area is further increased by the water vapor treatment. I know it will increase.

以上の他、前記PEG600に代えて分子量か種々異な
るポリエチレングリコールを使用し、実施例2と同様の
方法により5I02系多孔質ガラスを作り、細孔半径の
分布及び比表面積を求めたところ、前記実施例2と略同
様の結果か得られた。
In addition to the above, 5I02 porous glasses were prepared in the same manner as in Example 2 using polyethylene glycols with various molecular weights in place of the PEG600, and the pore radius distribution and specific surface area were determined. Substantially the same results as in Example 2 were obtained.

(発明の効果) 本発明に係る5in2系多孔質ガラスの製造法によれば
、ゾル・ゲル法により5te2系多孔質ガラスを製造す
るに際し、細孔半径:lO人程度の微細孔を有するもの
を製造し得ると共に、ゾル・ゲル法による従来法の場合
に比してガラス強度及び耐食性を向上し得、又、ガラス
の微細孔の状態(微細孔半径及び比表面積等)を制御し
易くその再現性に優れ、更には長時間の水蒸気処理をせ
ずどもガラスの黒化を抑制し得るようになる。
(Effects of the Invention) According to the method for producing 5in2 porous glass according to the present invention, when producing 5te2 porous glass by the sol-gel method, a material having micropores with a pore radius of about 1 In addition to improving the glass strength and corrosion resistance compared to the conventional method using the sol-gel method, it is also possible to easily control and reproduce the state of the micropores in the glass (micropore radius, specific surface area, etc.). Furthermore, it becomes possible to suppress the blackening of glass without requiring long-term steam treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、第1図(b)、第1図(C)は、実施例
2に係るSiO2系多孔質ガラスの細孔半径の分布であ
って、第1図(a)は該ガラス製造の際のPEG600
添加量:30wt%の場合の細孔半径分布、第1図(b
)はPEG600添加量:50wt%の場合の細孔半径
分布、第1図(C)はPEG600添加量ニア0wt%
の場合の細孔半径分布を示す図である。第2図は、実施
例2に係るPEG600添加量(wt%)と得られたガ
ラス微細孔の比表面積との関係を示す図である。尚、第
2図において、ゲル加熱に際し、曲線(alは通常の加
熱方式により600゛Cて加熱し、曲線(blはゲルを
水蒸気処理した後、600”Cて加熱したものである。
FIG. 1(a), FIG. 1(b), and FIG. 1(C) show the pore radius distribution of the SiO2-based porous glass according to Example 2, and FIG. 1(a) shows the pore radius distribution of the SiO2-based porous glass according to Example 2. PEG600 in glass manufacturing
Pore radius distribution when added amount: 30 wt%, Figure 1 (b
) is the pore radius distribution when the amount of PEG600 added is 50wt%, and Figure 1 (C) is the pore radius distribution when the amount of PEG600 added is near 0wt%.
FIG. 3 is a diagram showing the pore radius distribution in the case of FIG. FIG. 2 is a diagram showing the relationship between the amount of PEG600 added (wt%) and the specific surface area of the obtained glass micropores according to Example 2. In FIG. 2, when heating the gel, the curve (al) shows the gel heated to 600°C using a normal heating method, and the curve (bl) shows the gel heated to 600°C after steam treatment.

Claims (3)

【特許請求の範囲】[Claims] (1)ゾル・ゲル法によりSiO_2系多孔質ガラスを
製造するに際し、有機高分子を含有するシリコンアルコ
キシド溶液について該シリコンアルコキシドを加水分解
してゾル化し、次いで該ゾルにシリコン以外の金属のア
ルコキシドを含有する溶液を添加混合し、該金属アルコ
キシドを加水分解してゾル化した後ゲル化させ、これを
乾燥して乾燥ゲルと成し、該乾燥ゲルを500〜800
℃の温度で加熱してガラス化すると共に該乾燥ゲル中の
有機高分子を除去することを特徴とするSiO_2系多
孔質ガラスの製造法。
(1) When producing SiO_2-based porous glass by the sol-gel method, a silicon alkoxide solution containing an organic polymer is hydrolyzed to form a sol, and then an alkoxide of a metal other than silicon is added to the sol. The metal alkoxide is hydrolyzed to form a sol and then gelled, and this is dried to form a dry gel.
A method for producing SiO_2-based porous glass, characterized by vitrifying it by heating at a temperature of °C and removing organic polymers in the dried gel.
(2)前記乾燥ゲルの加熱前に水蒸気中で温度を徐々に
上昇させ加熱する水蒸気処理を乾燥ゲルに施す請求項1
に記載のSiO_2系多孔質ガラスの製造法。
(2) Claim 1, wherein the dried gel is subjected to a steam treatment in which the temperature is gradually raised and heated in steam before heating the dried gel.
A method for producing SiO_2-based porous glass as described in .
(3)前記シリコン以外の金属のアルコキシドがジルコ
ニウムアルコキシドである請求項1に記載のSiO_2
系多孔質ガラスの製造法。
(3) SiO_2 according to claim 1, wherein the alkoxide of metal other than silicon is zirconium alkoxide.
Method for manufacturing porous glass.
JP2253972A 1990-09-20 1990-09-20 Method for producing SiO 2 lower porous glass Expired - Lifetime JPH0794326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253972A JPH0794326B2 (en) 1990-09-20 1990-09-20 Method for producing SiO 2 lower porous glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253972A JPH0794326B2 (en) 1990-09-20 1990-09-20 Method for producing SiO 2 lower porous glass

Publications (2)

Publication Number Publication Date
JPH04130026A true JPH04130026A (en) 1992-05-01
JPH0794326B2 JPH0794326B2 (en) 1995-10-11

Family

ID=17258492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253972A Expired - Lifetime JPH0794326B2 (en) 1990-09-20 1990-09-20 Method for producing SiO 2 lower porous glass

Country Status (1)

Country Link
JP (1) JPH0794326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639544A3 (en) * 1993-08-17 1997-07-09 Rohm & Haas Reticulated ceramic particles.
US6448331B1 (en) * 1997-07-15 2002-09-10 Asahi Kasei Kabushiki Kaisha Alkoxysilane/organic polymer composition for thin insulating film production and use thereof
US6787191B2 (en) 2000-04-04 2004-09-07 Asahi Kasei Kabushiki Kaisha Coating composition for the production of insulating thin films

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693267B2 (en) * 2001-03-30 2011-06-01 京セラ株式会社 Inorganic porous material for gas separation filter, gas separation filter and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117443A (en) * 1984-07-02 1986-01-25 Agency Of Ind Science & Technol Porous glass and its production
JPS62123032A (en) * 1985-08-26 1987-06-04 Seiko Epson Corp Production of porous glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117443A (en) * 1984-07-02 1986-01-25 Agency Of Ind Science & Technol Porous glass and its production
JPS62123032A (en) * 1985-08-26 1987-06-04 Seiko Epson Corp Production of porous glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639544A3 (en) * 1993-08-17 1997-07-09 Rohm & Haas Reticulated ceramic particles.
US6448331B1 (en) * 1997-07-15 2002-09-10 Asahi Kasei Kabushiki Kaisha Alkoxysilane/organic polymer composition for thin insulating film production and use thereof
US6787191B2 (en) 2000-04-04 2004-09-07 Asahi Kasei Kabushiki Kaisha Coating composition for the production of insulating thin films

Also Published As

Publication number Publication date
JPH0794326B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US5250096A (en) Sol-gel method of making multicomponent glass
US4786618A (en) Sol-gel method for making ultra-low expansion glass
KR100230457B1 (en) Silica glass composition and manufacturing method of silica glass using the same
JPH04130026A (en) Production of sio2 porous glass
US8763430B2 (en) Method for manufacturing grin lens
JPH06199528A (en) Production of film and spherical fine particles of metal oxide glass
JPH0474289B2 (en)
JPH09202652A (en) Production of refractive distribution type optical element
JP2001048549A (en) Production of article
US20010015079A1 (en) Method for producing dopant doped high pure silica Glass
JPH03284330A (en) Production of inorganic asymmetric membrane
KR100549422B1 (en) silica glass composition and manufacturing method of silica glass using the same
JPH02199033A (en) Production of optical glass
KR100248062B1 (en) Composition for forming silica glass and the method for preparing silica glass using the same
US7305851B2 (en) Method for fabricating silica glass containing Bi and Ti using a sol-gel process
JPS63185837A (en) Production of silica glass
JPH03159924A (en) Production of quartz glass
JPH0416519A (en) Production of silica-based glass
JPH0834680A (en) Production of ceramic structure
JP2836138B2 (en) Method for manufacturing glass body
JPH05306126A (en) Distributed index optical element and its production
JPS627640A (en) Production of glass
JPH04119122A (en) Production of inorfil
JPS6144727A (en) Production of glass for optical fiber
Sano et al. AD-P006 409

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term