JPH0834427B2 - Logic circuit - Google Patents
Logic circuitInfo
- Publication number
- JPH0834427B2 JPH0834427B2 JP60253953A JP25395385A JPH0834427B2 JP H0834427 B2 JPH0834427 B2 JP H0834427B2 JP 60253953 A JP60253953 A JP 60253953A JP 25395385 A JP25395385 A JP 25395385A JP H0834427 B2 JPH0834427 B2 JP H0834427B2
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- buffer
- load
- buffers
- output terminals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000872 buffer Substances 0.000 claims description 31
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/1733—Controllable logic circuits
- H03K19/1735—Controllable logic circuits by wiring, e.g. uncommitted logic arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
- H01L27/118—Masterslice integrated circuits
- H01L27/11898—Input and output buffer/driver structures
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Logic Circuits (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computing Systems (AREA)
- Amplifiers (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路における論理回路に関し、特
にゲートアレーにおけるバファーの構成に方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a logic circuit in a semiconductor integrated circuit, and more particularly to a method for forming a buffer in a gate array.
近年、集積回路の集積規模の拡大に伴ないLSIの素
子、配線等の微細化が行なわれている。ゲートアレーに
おいても同様に素子、配線等の微細化が進むのに伴ない
エレクトロマイグレーションによる配線の短命化が問題
となっており、電源の配線のみならず信号の配線も配線
巾の縮小に伴ない、その配線寿命が問題となって来てい
る。2. Description of the Related Art In recent years, as the scale of integration of integrated circuits has expanded, LSI elements, wiring, etc. have been miniaturized. In the gate array as well, the shortening of the wiring due to electromigration has become a problem with the progress of miniaturization of elements and wiring, and the wiring width of not only the power supply wiring but also the signal wiring has been reduced. , Its wiring life is becoming a problem.
一般にこのエレクトロマイグレーションは配線の材質
によって差があるが、配線の巾(断面積)が小さい程、
また、その配線に流れる電流密度が大きい程著しく起こ
り、配線寿命が短くなる。Generally, this electromigration differs depending on the material of the wiring, but the smaller the width (cross-sectional area) of the wiring,
Further, the higher the current density flowing in the wiring, the more remarkable it occurs, and the life of the wiring becomes shorter.
ゲートアレーにおいてはCAD上の制限によってすべて
一律の配線巾で自動配線処理が行なわれている為、その
信号配線に流す事が出来る電流値はすべて一律である。
また、ゲートアレーにおいてはさまざまな回路が実現さ
れ、必ずといってよい程内部にバッファー回路が使用さ
れており、特にCMOSゲートアレーにおいては、そのバッ
ファーの負荷に応じて負荷ドライブ能力の異なるバッフ
ァーを使用する事が多い。しかし、負荷ドライブ能力の
大きなバッファーにはより多くの負荷が接続される為、
その出力信号配線にはより多くの電流が流れ、ある程度
以上の負荷ドライブ能力を持ったバッファは配線寿命の
点から実現不可能となっていた。In the gate array, because of the restrictions on CAD, automatic wiring processing is performed with a uniform wiring width, so the current value that can be passed to the signal wiring is all uniform.
In addition, various circuits have been realized in the gate array, and buffer circuits are used inside the gate array, and especially in the CMOS gate array, buffers with different load drive capacity are used according to the load of the buffer. Often used. However, since more load is connected to the buffer with a large load drive capacity,
A larger amount of current flows through the output signal wiring, and a buffer having a load driving capability above a certain level cannot be realized from the viewpoint of wiring life.
従って、従来は負荷が多くなると、第5図に示すよう
に、複数のバッファーを用いて負荷を分割して、信号配
線に流れる電流を分割してした。第5図においては、同
一の入力端子4からの信号をバッファ1a,1bに入力し、
バッファ1aの負荷としてNORゲート20とNANDゲート21が
接続され、バッファ1bの負荷としてフリップフロップ22
が接続されている。Therefore, conventionally, when the load increases, the load is divided by using a plurality of buffers to divide the current flowing through the signal wiring, as shown in FIG. In FIG. 5, the signals from the same input terminal 4 are input to the buffers 1a and 1b,
The NOR gate 20 and the NAND gate 21 are connected as the load of the buffer 1a, and the flip-flop 22 is connected as the load of the buffer 1b.
Is connected.
上述した従来の論理回路では、複数のバッファを用
い、それぞれに負荷を分割する回路となっているので、
各バッファが同じ負荷駆動能力を持っていても、接続さ
れる負荷が全く同じではない為、各バッファの伝播遅延
時間(以下tpdと略す)が異なり、回路設計上の欠点と
なっている。Since the conventional logic circuit described above is a circuit that uses a plurality of buffers and divides the load into each,
Even if each buffer has the same load drive capability, the connected loads are not exactly the same, so the propagation delay time of each buffer (hereafter abbreviated as tpd) is different, which is a drawback in circuit design.
本発明の論理回路は、第1導電型の複数のMOSトラン
ジスタのソースを第1の電源に接続し、第2導電型の複
数のMOSトランジスタのソースを第2の電源に接続し、
前記複数の第1および第2導電型MOSトランジスタのド
レインを共通接続し、この共通接続されたドレインから
出力信号を取り出す出力回路が複数の出力端子を有する
ことを特徴とする。In the logic circuit of the present invention, the sources of the plurality of MOS transistors of the first conductivity type are connected to the first power supply, and the sources of the plurality of MOS transistors of the second conductivity type are connected to the second power supply,
The output circuit in which the drains of the plurality of first and second conductivity type MOS transistors are commonly connected and an output signal is taken out from the commonly connected drains has a plurality of output terminals.
次に、本発明について図面を参照し説明する。 Next, the present invention will be described with reference to the drawings.
第1図に本発明の一実施例の回路図を示す。また第2
図は第1図の回路をCMOSゲートアレーに適用した場合の
等価回路図である。第1図及び第2図においては、入力
端子4にインバータ2が接続され、インバータ2の出力
にバッファ3,3a,3b,3cの入力端が接続され、各バッファ
の出力端子5,5a,5b,5cはそれぞれ共通に接続されてい
る。インバータ2及びバッファ3,3a,3b,3cはPチャンネ
ル型トランジスタ6とNチャンネル型トランジスタ7が
電源8とGND9の間に直列接続されて構成されている。FIG. 1 shows a circuit diagram of an embodiment of the present invention. Also the second
The figure is an equivalent circuit diagram when the circuit of FIG. 1 is applied to a CMOS gate array. In FIG. 1 and FIG. 2, the inverter 2 is connected to the input terminal 4, the input ends of the buffers 3, 3a, 3b, 3c are connected to the output of the inverter 2, and the output terminals 5, 5a, 5b of the respective buffers are connected. , 5c are commonly connected. The inverter 2 and the buffers 3, 3a, 3b, 3c are configured by connecting a P-channel type transistor 6 and an N-channel type transistor 7 in series between a power source 8 and a GND 9.
また第3図には第2図のレイアウトの例を示す。図に
おいてAl配線11aは、他のAl配線11より配線巾を太くし
て、より多くの電流が流れても他の配線11と同等の配線
寿命が得られる様にしておく。そしてこの太いAl配線11
a上に出力端子5,5a,5b,5cを適当に設けておき、自動配
線プログラム等によって出力端子5〜5cの端子とそれぞ
れに接続される負荷とを配線する。Further, FIG. 3 shows an example of the layout of FIG. In the figure, the Al wiring 11a has a larger wiring width than the other Al wirings 11 so that a wiring life equivalent to that of the other wirings 11 can be obtained even when a larger amount of current flows. And this thick Al wiring 11
Output terminals 5, 5a, 5b and 5c are appropriately provided on a, and the terminals of output terminals 5 to 5c and the loads connected to them are wired by an automatic wiring program or the like.
尚、出力端子5〜5cの端子からの配線は各々の端子に
接続される負荷を制限する事によってその信号線に流れ
る電流をある程度におさえ配線寿命が悪化しない様にし
ておけば、自動配線される他の配線と同じ配線巾の配線
でよいことになる。従って第3図の様にそのバッファブ
ロック内でより多くの電流が流れる配線のみをあらかじ
め太い配線で行なっておけば配線寿命が落ちる事は無
い。Wiring from the terminals of output terminals 5 to 5c is automatically wired if the load connected to each terminal is limited so that the current flowing in the signal line is suppressed to some extent and the wiring life is not deteriorated. The wiring having the same wiring width as that of the other wirings will suffice. Therefore, as shown in FIG. 3, if the wiring in which a larger amount of current flows in the buffer block is made thick beforehand, the wiring life will not be reduced.
また出力端子5〜5cはそのバッファブロック内部で結
線されているので各々の端子の負荷が異なっても、tpd
は全く同じになる。The output terminals 5 to 5c are connected inside the buffer block, so even if the load on each terminal is different, tpd
Will be exactly the same.
また第1図の例ではバッファが4個並列に接続された
例であるが、並列に接続されるバッファの数は何個でも
よくその個数に見合うだけの出力端子を設け、ブロック
内の配線を十分に太くすればよい。The example of FIG. 1 is an example in which four buffers are connected in parallel, but the number of buffers connected in parallel may be any number and the output terminals corresponding to the number are provided and the wiring in the block is It should be thick enough.
第4図には、インバーディングバッファーの例を示
す。第4図においてはバッファ3〜3dの5個が並列に接
続され出力端子5,5a,5bの3つ設けた例である。この様
に並列に接続されるバッファの数と出力端子の数とは一
致する必要はなく、配線寿命が満足出来る様にバッファ
ブロック内のレイアウトを行ないかつ、各々出力端子に
接続される負荷の数を制限しておけばよい。FIG. 4 shows an example of the inverting buffer. FIG. 4 shows an example in which five buffers 3 to 3d are connected in parallel and three output terminals 5, 5a and 5b are provided. In this way, the number of buffers connected in parallel and the number of output terminals do not have to match, and the layout within the buffer block is performed so that the wiring life can be satisfied, and the number of loads connected to each output terminal. You should limit the.
以上説明した様に本発明は、ゲートアレーにおいて機
能ブロックを設計する際に複数個のバッファ(インバー
タ)を並列に接続し、その相互接続の配線を十分太く
し、かつ複数の出力端子を設ける事によって、そのゲー
トアレーの中に使用する信号配線を太くする必要もなく
なり、より細い信号配線が使用出来る為、それだけチッ
プサイズを小さくする事が出来、コストダウンができる
という効果がある。As described above, according to the present invention, when designing a functional block in a gate array, a plurality of buffers (inverters) are connected in parallel, the interconnection wiring is sufficiently thick, and a plurality of output terminals are provided. Therefore, it is not necessary to thicken the signal wiring used in the gate array, and thinner signal wiring can be used. Therefore, there is an effect that the chip size can be reduced accordingly and the cost can be reduced.
また、各々の出力端子はそのバッファーブロック内で
互いに接続されているので、それぞれに接続される負荷
が変ってもtpdは全く同じとなり、回路設計上問題とな
ることはない。さらに、自動配線をコンピューターを利
用して行なうに当っても信号配線の太さは一律の配線巾
で行なえるので処理が簡単となる効果がある。Further, since the respective output terminals are connected to each other in the buffer block, the tpd is exactly the same even if the load connected to each is changed, and there is no problem in circuit design. Furthermore, even when automatic wiring is performed using a computer, the thickness of the signal wiring can be set to a uniform wiring width, which has the effect of simplifying the processing.
第1図は本発明の一実施例のバッファブロックの回路
図、第2図は第1図の等価回路図、第3図は第2図のブ
ロックレイアウト図、第4図は本発明の他の実施例の回
路図、第5図は従来のバッファを使用した回路図であ
る。 1a,1b……バッファ、2……インバータ、3,3a,3b,3c,3d
……バッファ、4……入力端子、5,5a,5b,5c……出力端
子、6……Pチャンネル型トランジスタ、7……Nチャ
ンネル型トランジスタ、8……電源、8a……電源Al配
線、9……GND、9a……GNDAl配線、10……コンタクトホ
ール、11,11a……Al配線、20……NORゲート、21……NAN
Dゲート、22……フリップフロップ。FIG. 1 is a circuit diagram of a buffer block according to an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of FIG. 1, FIG. 3 is a block layout diagram of FIG. 2, and FIG. FIG. 5 is a circuit diagram of the embodiment, and FIG. 5 is a circuit diagram using a conventional buffer. 1a, 1b …… buffer, 2 …… inverter, 3,3a, 3b, 3c, 3d
... buffer, 4 ... input terminal, 5,5a, 5b, 5c ... output terminal, 6 ... P-channel type transistor, 7 ... N-channel type transistor, 8 ... power source, 8a ... power source Al wiring, 9 ... GND, 9a ... GND Al wiring, 10 ... contact hole, 11,11a ... Al wiring, 20 ... NOR gate, 21 ... NAN
D-gate, 22 ... Flip-flop.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03F 3/68 B H03K 19/173 9199−5K H01L 21/82 M P ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H03F 3/68 B H03K 19/173 9199-5K H01L 21/82 MP
Claims (1)
ース領域を第一の電源に接続し、第2導電型の複数のMO
Sトランジスタのソース領域を第2の電源に接続し、前
記複数の第1および第2導電型MOSトランジスタのドレ
イン領域を共通配線で共通接続してバッファー回路を構
成し、前記共通配線から複数の出力端子が取り出されて
それぞれ配線を介して複数の負荷の対応するものに接続
され、前記複数の出力端子からそれぞれ導出された前記
配線は互いに等しい巾で形成されていることを特徴とす
る論理回路。1. A source region of a plurality of MOS transistors of a first conductivity type is connected to a first power source, and a plurality of MO transistors of a second conductivity type are connected.
The source region of the S transistor is connected to a second power source, the drain regions of the plurality of first and second conductivity type MOS transistors are commonly connected by a common wiring to form a buffer circuit, and a plurality of outputs from the common wiring are provided. A logic circuit characterized in that terminals are taken out and connected to corresponding ones of a plurality of loads through wirings, respectively, and the wirings respectively led out from the plurality of output terminals are formed with equal widths.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60253953A JPH0834427B2 (en) | 1985-11-12 | 1985-11-12 | Logic circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60253953A JPH0834427B2 (en) | 1985-11-12 | 1985-11-12 | Logic circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62112420A JPS62112420A (en) | 1987-05-23 |
JPH0834427B2 true JPH0834427B2 (en) | 1996-03-29 |
Family
ID=17258268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60253953A Expired - Fee Related JPH0834427B2 (en) | 1985-11-12 | 1985-11-12 | Logic circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0834427B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3827802A1 (en) * | 1988-08-16 | 1990-02-22 | Siemens Ag | CHIPRESIDENT INTERMEDIATE DRIVERS FOR DISCRETE WSI SYSTEMS |
JP3844613B2 (en) | 1998-04-28 | 2006-11-15 | 株式会社半導体エネルギー研究所 | Thin film transistor circuit and display device using the same |
CN101779375A (en) | 2007-09-14 | 2010-07-14 | 松下电器产业株式会社 | pipelined ad converter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59156025A (en) * | 1983-02-25 | 1984-09-05 | Hitachi Ltd | Semiconductor integrated circuit |
-
1985
- 1985-11-12 JP JP60253953A patent/JPH0834427B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62112420A (en) | 1987-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2564787B2 (en) | Gate array large-scale integrated circuit device and manufacturing method thereof | |
US5119314A (en) | Semiconductor integrated circuit device | |
US20010043084A1 (en) | Semiconductor integrated circuit apparatus | |
US7081778B2 (en) | Semiconductor integrated circuit related to a circuit operating on the basis of a clock signal | |
US20210028162A1 (en) | Semiconductor integrated circuit device | |
JPH0818020A (en) | Semiconductor integrated circuit | |
EP0187698A2 (en) | Balanced full adder circuit | |
JPH0834427B2 (en) | Logic circuit | |
KR880010497A (en) | Master Slice Integrated Circuit | |
JP3651944B2 (en) | CMOS cell | |
US5422581A (en) | Gate array cell with predefined connection patterns | |
JP2590681B2 (en) | Semiconductor logic circuit device | |
JPS59220948A (en) | Semiconductor device | |
JPH10107152A (en) | Integrated circuit device and its power source wiring formation method | |
JPS626370B2 (en) | ||
JP3660184B2 (en) | Logic cell | |
JP2830244B2 (en) | Tri-state buffer circuit | |
JP3115743B2 (en) | LSI automatic layout method | |
Agbo et al. | Integrated Circuit Design | |
JPS6068718A (en) | Semiconductor integrated circuit | |
JPS6182455A (en) | Semiconductor integrated circuit device | |
JP2872174B2 (en) | Master slice type semiconductor integrated circuit and layout method thereof | |
JPH1140785A (en) | Automatic wiring and arrangement method of gate array | |
JP2574756B2 (en) | Complementary MOS integrated circuit | |
JP2752778B2 (en) | Semiconductor integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |