JPH0834066B2 - Electrical insulating oil - Google Patents

Electrical insulating oil

Info

Publication number
JPH0834066B2
JPH0834066B2 JP2019406A JP1940690A JPH0834066B2 JP H0834066 B2 JPH0834066 B2 JP H0834066B2 JP 2019406 A JP2019406 A JP 2019406A JP 1940690 A JP1940690 A JP 1940690A JP H0834066 B2 JPH0834066 B2 JP H0834066B2
Authority
JP
Japan
Prior art keywords
oil
insulating oil
additive
breakdown voltage
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2019406A
Other languages
Japanese (ja)
Other versions
JPH03225704A (en
Inventor
元晴 寒作
晃 土山
晃男 宮本
基夫 土江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI TETSUKU KK
Mitsubishi Electric Corp
Original Assignee
KANSAI TETSUKU KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI TETSUKU KK, Mitsubishi Electric Corp filed Critical KANSAI TETSUKU KK
Priority to JP2019406A priority Critical patent/JPH0834066B2/en
Priority to GB9020745A priority patent/GB2240340B/en
Priority to KR1019910000558A priority patent/KR940003803B1/en
Publication of JPH03225704A publication Critical patent/JPH03225704A/en
Publication of JPH0834066B2 publication Critical patent/JPH0834066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/02Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon well-defined aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • C10M133/18Amides; Imides of carbonic or haloformic acids
    • C10M133/20Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/06Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/02Natural products
    • C10M159/08Fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/04Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • C10M2215/122Phtalamic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/17Electric or magnetic purposes for electric contacts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は絶縁破壊電圧特性の優れた電気絶縁油に関す
る。さらに詳しくは、鉱油系絶縁油、鉱油系絶縁油とア
ルキルベンゼンとの混合油などに絶縁破壊電圧を改善す
るための添加剤が添加された電気絶縁油に関する。
TECHNICAL FIELD The present invention relates to an electric insulating oil having excellent dielectric breakdown voltage characteristics. More specifically, the present invention relates to an electric insulating oil in which an additive for improving a dielectric breakdown voltage is added to a mineral oil-based insulating oil, a mixed oil of a mineral oil-based insulating oil and an alkylbenzene.

[従来の技術] 近年、油入電気機器は大容量化、高電圧化の趨勢にあ
るが、一方では小型軽量化の要求もあり、従来に増して
さらに信頼性確保が望まれている。そのため、絶縁面か
らは特性の優れた絶縁油の選択、電気機器の乾燥度の向
上、油中塵埃の除去などの種々の改善努力が払われてい
る。
[Prior Art] In recent years, oil-filled electrical devices have tended to have larger capacities and higher voltages, but on the other hand, there is also a demand for smaller size and lighter weight, and there is a demand for more reliable reliability than ever. Therefore, various efforts have been made in terms of insulating properties such as selection of insulating oil having excellent characteristics, improvement of dryness of electric equipment, and removal of dust in oil.

絶縁油の絶縁破壊電圧特性を向上させる方法として
は、絶縁油にある種の化合物を添加する方法がすでに報
告されている。
As a method for improving the dielectric breakdown voltage characteristics of insulating oil, a method of adding a certain compound to the insulating oil has already been reported.

たとえば、特公昭63−4286号公報には鉱油系絶縁油に
ヘキサフルオロプロピレンオリゴマーの誘導体を添加す
ること、特開昭50−86698号公報にはトリアリールジメ
タンを絶縁油に添加してガス吸収性を改善したときに絶
縁破壊電圧の改善も付随して見られること、特開昭52−
42478号公報にはアルキルナフタリンとポリブテンとの
混合油で絶縁破壊電圧の改善を図ったコンデンサー油、
特開昭60−84714号公報には鉱油とリン酸エステルとの
混合油に非イオン性界面活性剤を添加すること、特開昭
55−41667号公報にはパラフィン系絶縁油とアルキルベ
ンゼンとの混合油にジアリールアルカンを添加すること
などが開示されている。
For example, in JP-B-63-4286, a derivative of hexafluoropropylene oligomer is added to mineral oil-based insulating oil, and in JP-A-50-86698, triaryldimethane is added to the insulating oil to absorb gas. The improvement of the dielectric breakdown voltage is also accompanied by the improvement of the electrical conductivity.
No. 42478 discloses a condenser oil which has a dielectric breakdown voltage improved by a mixed oil of alkylnaphthalene and polybutene,
JP-A-60-84714 discloses adding a nonionic surfactant to a mixed oil of mineral oil and a phosphoric ester.
JP-A-55-41667 discloses adding a diarylalkane to a mixed oil of paraffinic insulating oil and alkylbenzene.

[発明が解決しようとする課題] しかし、特開昭60−84714号公報に開示されている界
面活性剤には、たとえば絶縁油の界面張力の著しい低下
をもたらし、絶縁油の管理基準に不適合なものになると
いう問題があり、界面活性剤が絶縁紙に吸着されて油入
電気機器の運転中に濃度変化を起こすおそれもある。ま
た、特開昭63−4286号公報に開示されているフッ素系化
合物には、たとえ添加量が1%前後と少なくても高価で
あるうえ、鉱油系絶縁油には溶解しにくいなどの問題が
あり、これらは絶縁破壊電圧特性を向上させるためには
使用しにくい。
[Problems to be Solved by the Invention] However, the surfactant disclosed in JP-A-60-84714 brings about a significant decrease in the interfacial tension of insulating oil, for example, and thus is incompatible with the management standard of insulating oil. There is also a problem that the surfactant is adsorbed by the insulating paper and the concentration may change during the operation of the oil-filled electrical device. Further, the fluorine-based compound disclosed in Japanese Patent Laid-Open No. 63-4286 has a problem that it is expensive even if the addition amount is as small as about 1%, and it is difficult to dissolve in mineral oil-based insulating oil. However, these are difficult to use for improving the dielectric breakdown voltage characteristics.

一方、特開昭50−86698号公報、特開昭52−42478号公
報および特開昭55−41667号公報に開示されている添加
剤は、いずれもベンゼン環を有する化合物であり、分子
量に占める二重結合割合が多いと絶縁破壊電圧の向上が
期待できると考えられる。
On the other hand, the additives disclosed in JP-A-50-86698, JP-A-52-42478 and JP-A-55-41667 are all compounds having a benzene ring and account for the molecular weight. It is considered that when the double bond ratio is high, improvement of the dielectric breakdown voltage can be expected.

そこで本発明者らは、たとえば添加剤として多環油を
種々試したが、1分子中に占めるベンゼン環の割合が多
いからといって、絶縁破壊電圧は必ずしも向上しなかっ
た。
Therefore, the inventors of the present invention tried various polycyclic oils as additives, for example, but did not necessarily improve the dielectric breakdown voltage because the ratio of benzene rings in one molecule was large.

前記の従来技術から推察されるように、添加剤が単品
に限られているのは、絶縁破壊のメカニズムに関する理
論的な理解が充分にえられていないためである。今のと
ころこの絶縁破壊電圧向上剤を探索は、試行錯誤の域を
出ていない。そのため、従来の例から前記の問題点を解
消しうる添加剤を推測することは大変難しい。
As inferred from the above-mentioned prior art, the reason why the additive is limited to a single product is that the theoretical understanding of the mechanism of dielectric breakdown is not sufficiently obtained. So far, the search for this dielectric breakdown voltage improver has gone through trial and error. Therefore, it is very difficult to estimate an additive that can solve the above problems from the conventional examples.

[課題を解決するための手段] 本発明者らは、このような状況に鑑みて鋭意検討を重
ねた結果、特定の物質が鉱油系絶縁油などに対して溶解
性がよく、安価であり、しかも絶縁油の一般特性を損な
わずに絶縁油の絶縁破壊電圧を向上させることを見出
し、本発明を完成するに至った。
[Means for Solving the Problem] As a result of intensive studies in view of such a situation, the present inventors have found that a specific substance has good solubility in mineral oil-based insulating oil and the like, is inexpensive, Moreover, they have found that the dielectric breakdown voltage of the insulating oil is improved without impairing the general characteristics of the insulating oil, and have completed the present invention.

すなわち本発明は、 絶縁油に、添加剤として (A)一般式(I): CH3CH2 mCH=CH2 (I) (式中、mは30以下の整数を示す)で表わされる化合
物、 (B)水酸基、酸基またはその両方がエステル化された
ヒドロキシ脂肪酸のエステル、 (C)一般式(II): (式中、nは整数を示す)で表わされる化合物または該
化合物の混合物であって、かつ沸点が120〜300℃のも
の、 (D)DL−p−メンタ−1,8−ジエン、 (E)ジフェニルカルバジドまたは (F)p−ヒドロキシフェニルアセトアミド が添加されてなる電気絶縁油であって、前記添加剤の電
気絶縁油中の割合が、(A)の添加剤は0.01〜10%(重
量%、以下同様)、(B)の添加剤は0.01〜1%、
(C)の添加剤は0.01〜1%、(D)の添加剤は0.01〜
1%、(E)の添加剤は0.1〜0.8%、(F)の添加剤は
0.01〜0.1%である電気絶縁油に関する。
That is, the present invention provides a compound represented by (A) general formula (I): CH 3 CH 2 m CH = CH 2 (I) (wherein m represents an integer of 30 or less) as an additive in insulating oil. (B) an ester of a hydroxy fatty acid in which a hydroxyl group, an acid group or both are esterified, (C) a general formula (II): (D) DL-p-menta-1,8-diene, which is a compound represented by the formula (n represents an integer) or a mixture of the compounds and has a boiling point of 120 to 300 ° C. ) Diphenylcarbazide or (F) p-hydroxyphenylacetamide is added to the electrical insulating oil, and the proportion of the additive in the electrical insulating oil is 0.01 to 10% by weight. %, The same below), the additive of (B) is 0.01 to 1%,
The additive of (C) is 0.01 to 1%, the additive of (D) is 0.01 to 1%.
1%, (E) additive 0.1-0.8%, (F) additive
0.01 to 0.1% electrical insulating oil.

[実施例] 本発明に用いられる絶縁油にとくに限定はなく、電気
絶縁油として一般に使用されている絶縁油を用いること
ができる。
[Example] The insulating oil used in the present invention is not particularly limited, and an insulating oil generally used as an electric insulating oil can be used.

このような絶縁油の具体例としては、たとえばJIS C
2320 1種の1号油、2号油、3号油、4号油などの鉱油
系絶縁油;JIS C 2320 2種の1号油、2号油、3号油、
4号油などのアルキルベンゼン;JIS C 2320 7種の1号
油、2号油、3号油、4号油などの鉱油系絶縁油とアル
キルベンゼンとの混合油;火災、爆発などの災害をさけ
るために高引火点化、難燃化、不燃化などを目的とした
ポリオールエーテル;JIS C 2320 6種のシリコーン油;
フッ素化油;リン酸エステル油などがあげられる。
Specific examples of such insulating oil include JIS C
2320 Mineral oil type insulating oil such as 1st type oil 1st oil, 2nd oil, 3rd oil, 4th oil; JIS C 2320 2nd type 1st oil, 2nd oil, 3rd oil,
Alkylbenzene such as No. 4 oil; JIS C 2320 7 type No. 1 oil, No. 2 oil, No. 3 oil, oil mixture of mineral oil type insulating oil such as No. 4 oil and alkylbenzene; for avoiding disasters such as fire and explosion Polyol ether for high flash point, flame retardancy, non-combustibility, etc .; JIS C 2320 6 kinds of silicone oil;
Fluorinated oil; phosphate ester oil and the like.

これらの中では、前記(A)〜(F)の添加剤の溶解
性、絶縁油の各種特性への悪影響がないという点から、
鉱油系絶縁油または鉱油系絶縁油とアルキルベンゼンと
の混合油が好ましい。
Among these, from the viewpoint that the solubility of the additives (A) to (F) and the various properties of the insulating oil are not adversely affected,
Mineral oil-based insulating oil or a mixed oil of mineral oil-based insulating oil and alkylbenzene is preferable.

本発明の電気絶縁油に添加される添加剤は絶縁油の絶
縁破壊電圧を大きくするためのものであり、このような
添加剤として、前記(A)〜(F)の添加剤が用いられ
る。
The additive added to the electric insulating oil of the present invention is for increasing the dielectric breakdown voltage of the insulating oil, and the additives (A) to (F) are used as such an additive.

前記(A)の添加剤は、一般式(I): CH3CH2 mCH=CH2 (I) で表わされる化合物であるが、一般式(I)中のmは30
以下、好ましくは10〜30、さらに好ましくは10〜20の整
数である。mが30をこえると絶縁破壊電圧特性の向上が
小さくなる。一般式(I)で表わされる化合物は、1種
を用いてもよく、2種以上を併用してもよい。
The additive (A) is a compound represented by the general formula (I): CH 3 CH 2 m CH═CH 2 (I), where m in the general formula (I) is 30.
Below, it is preferably an integer of 10 to 30, and more preferably 10 to 20. When m exceeds 30, the improvement in dielectric breakdown voltage characteristics becomes small. The compound represented by the general formula (I) may be used alone or in combination of two or more kinds.

前記(B)の添加剤であるヒドロキシ脂肪酸のエステ
ルは、リシノール酸、12−ヒドロキシステアリン酸など
のヒドロキシ脂肪酸と、メタノール、エタノール、ブタ
ノールなどのアルコール成分とのエステル化やアセチル
化によってえられるものである。該ヒドロキシ脂肪酸は
絶縁油に添加すると、水酸基や酸基の影響によって、絶
縁油の界面張力や全酸価などを著しく低下させるため、
水酸基および酸基のいずれか一方、好ましくはその両方
がエステル化されたものが本発明に用いられる。ヒドロ
キシ脂肪酸のエステルは1種を用いてもよく、2種以上
を併用してもよい。
The ester of hydroxy fatty acid which is the additive (B) is obtained by esterification or acetylation of a hydroxy fatty acid such as ricinoleic acid or 12-hydroxystearic acid with an alcohol component such as methanol, ethanol or butanol. is there. When the hydroxy fatty acid is added to the insulating oil, the interfacial tension and the total acid value of the insulating oil are significantly reduced due to the influence of hydroxyl groups and acid groups.
Either the hydroxyl group or the acid group, and preferably both of them are esterified and used in the present invention. The ester of hydroxy fatty acid may be used alone or in combination of two or more kinds.

このようなヒドロキシ脂肪酸のエステルの具体例とし
ては、たとえばメチルリシノレート、ブチルリシノレー
ト、メチルアセチルリシノレート、ブチルアセチルリシ
ノレートなどがあげられる。
Specific examples of such esters of hydroxy fatty acids include methyl ricinoleate, butyl ricinoleate, methyl acetyl ricinoleate, and butyl acetyl ricinoleate.

なお、ヒドロキシ脂肪酸のエステルは、絶縁油の界面
張力および酸価安定度への影響の点から、精製して使用
するのが好ましい。該精製は諸特性、とくに界面張力の
改善効果を上げるという点から、ヒドロキシ脂肪酸のエ
ステル単独で精製するよりも絶縁油に添加した状態で行
なうのが好ましく、精製法の簡易な例としては、活性白
土、活性アルミナなどを用いて化学吸着処理を行なう方
法などが採用しうる。
The ester of hydroxy fatty acid is preferably purified before use from the viewpoints of influence on the interfacial tension and the acid value stability of the insulating oil. From the viewpoint of improving the various properties, particularly the effect of improving the interfacial tension, it is preferable to carry out the purification in the state of being added to the insulating oil rather than the purification of the hydroxy fatty acid ester alone. A method of performing chemical adsorption treatment using clay, activated alumina or the like can be adopted.

前記(C)の添加剤は、一般式(II): (式中、nは整数を示す)で表わされる化合物の1種ま
たは該化合物の2種以上の混合物であって、沸点が120
〜300℃、好ましくは123〜263℃のものである。沸点が1
20℃未満のばあいには引火点の低下や蒸発量の増大など
絶縁油への影響が大となり、300℃をこえると、絶縁破
壊電圧特性の向上が小さくなる。
The additive (C) has the general formula (II): One of the compounds represented by the formula (wherein n represents an integer) or a mixture of two or more of the compounds having a boiling point of 120.
~ 300 ° C, preferably 123-263 ° C. Boiling point 1
When the temperature is lower than 20 ° C, the influence on the insulating oil becomes large, such as the lowering of the flash point and the increase of the evaporation amount, and when it exceeds 300 ° C, the improvement of the dielectric breakdown voltage characteristic becomes small.

前記(D)の添加剤であるDL−p−メンタ−1,8−ジ
エンは、他の添加剤にくらべて少量で、同程度の添加効
果をあげることができる。
The amount of DL-p-mentha-1,8-diene, which is the additive (D), is small compared to the other additives, and the same effect can be obtained.

つぎに前記添加剤の電気絶縁油中の割合を説明する。 Next, the proportion of the additive in the electric insulating oil will be described.

添加剤が一般式(I)で表わされる化合物であるばあ
いには、該割合は0.01〜10%、好ましくは0.1〜2%、
さらには好ましくは0.3〜1%であり、0.01%未満では
添加による効果が充分えられず、10%をこえると絶縁破
壊電圧の向上が小さくなる。
When the additive is a compound represented by the general formula (I), the proportion is 0.01 to 10%, preferably 0.1 to 2%,
Further, it is preferably 0.3 to 1%, and if it is less than 0.01%, the effect due to the addition is not sufficiently obtained, and if it exceeds 10%, the improvement of the dielectric breakdown voltage becomes small.

添加剤が水酸基、酸基またはその両方がエステル化さ
れたヒドロキシ脂肪酸のエステルのばあいには、該割合
は0.01〜1%、好ましくは0.05〜0.8%、さらに好まし
くは0.1〜0.5%であり、0.01%未満では、添加による効
果が充分えられず、1%をこえると酸化安定度、界面張
力が低下する。
When the additive is an ester of hydroxy fatty acid in which hydroxyl groups, acid groups or both are esterified, the ratio is 0.01 to 1%, preferably 0.05 to 0.8%, more preferably 0.1 to 0.5%, If it is less than 0.01%, the effect of the addition is not sufficiently obtained, and if it exceeds 1%, the oxidation stability and the interfacial tension are lowered.

添加剤が一般式(II)で表わされる化合物またはその
混合物であって、沸点が120〜300℃のもののばあいに
は、該割合は0.01〜1%、好ましくは0.05〜0.8%、さ
らに好ましくは0.4〜0.5%であり、0.01%未満では添加
による効果が充分えられず、1%をこえると引火点が低
下し、蒸発量が多くなる。
When the additive is a compound represented by the general formula (II) or a mixture thereof and has a boiling point of 120 to 300 ° C., the ratio is 0.01 to 1%, preferably 0.05 to 0.8%, more preferably It is 0.4 to 0.5%, and if it is less than 0.01%, the effect due to addition is not sufficiently obtained, and if it exceeds 1%, the flash point is lowered and the evaporation amount is increased.

添加剤がDL−p−メンタ−1,8−ジエンのばあいに
は、該割合は0.01〜1%、好ましくは0.02〜0.5%、さ
らに好ましくは0.04〜0.3%であり、0.01%未満では添
加による効果が充分えられず、1%をこえると引火点の
低下が著しくなるとともに蒸発量が多くなる。
When the additive is DL-p-mentha-1,8-diene, the ratio is 0.01 to 1%, preferably 0.02 to 0.5%, more preferably 0.04 to 0.3%. The effect is not sufficiently obtained, and if it exceeds 1%, the flash point is significantly lowered and the evaporation amount is increased.

添加剤がジフェニルカルバジドのばあいには、該割合
は0.1〜0.8%、好ましくは0.2〜0.6%、さらに好ましく
は0.3〜0.6%であり、0.1%未満では添加による効果が
充分えられず、0.8%をこえても絶縁破壊電圧はあまり
向上しなくなる。
When the additive is diphenylcarbazide, the ratio is 0.1 to 0.8%, preferably 0.2 to 0.6%, more preferably 0.3 to 0.6%, if less than 0.1%, the effect due to the addition is not sufficiently obtained, Even if it exceeds 0.8%, the dielectric breakdown voltage does not improve so much.

添加剤がp−ヒドロキシフェニルアセトアミドのばあ
いには、該割合は001〜0.1%であり、0.01%未満では添
加による効果が充分えられず、0.1%をこえても絶縁破
壊電圧はあまり向上しなくなる。
When the additive is p-hydroxyphenylacetamide, the ratio is 001 to 0.1%, and if it is less than 0.01%, the effect due to the addition is not sufficiently obtained, and even if it exceeds 0.1%, the dielectric breakdown voltage is much improved. Disappear.

本発明の電気絶縁油は、前記のごとき絶縁油と添加剤
とを(常法により)混合することによりうることができ
る。
The electric insulating oil of the present invention can be obtained by mixing the insulating oil as described above and an additive (by a conventional method).

つぎに本発明の電気絶縁油を実施例に基づき、さらに
具体的に説明するが、本発明はかかる実施例のみに限定
されるものではない。
Next, the electrical insulating oil of the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.

実施例1および比較例1 鉱油のみからなる絶縁油(JIS C 2320 1種2号油(以
下、JIS1種2号油という))にα−オレフィン(一般式
(I)中のmが16の化合物)を、えられる電気絶縁油中
の割合がそれぞれ0.005%、0.05%、0.1%、0.5%、1.0
%、3.0%、5.0%、10%になるように添加し、混合して
ブランク(0%)を含めて9種類の電気絶縁油をえた。
なお、えられた電気絶縁油の油中粒子数は約5000個/油
100ml、油中水分は7〜9ppmである。
Example 1 and Comparative Example 1 Insulating oil consisting only of mineral oil (JIS C 2320 Type 1 No. 2 oil (hereinafter referred to as JIS Type 1 No. 2 oil)) and α-olefin (where m in the general formula (I) is 16) ) In the electric insulating oil obtained are 0.005%, 0.05%, 0.1%, 0.5% and 1.0, respectively.
%, 3.0%, 5.0%, 10% were added and mixed to obtain 9 kinds of electrical insulating oil including a blank (0%).
The number of particles in the obtained electrical insulating oil is approximately 5000 / oil
100 ml, water content in oil is 7-9 ppm.

えられた電気絶縁油の絶縁破壊電圧を以下に示す方法
によって測定し、絶縁破壊電圧に及ぼす添加剤(α−オ
レフィン)の濃度依存性を調べた。結果を第1図に示
す。
The breakdown voltage of the obtained electric insulating oil was measured by the method described below, and the dependency of the additive (α-olefin) concentration on the breakdown voltage was examined. The results are shown in Fig. 1.

(絶縁破壊電圧) 直径12.5mm球電極の電極間隙2.5mmに、3kV/sの昇圧速
度で交流電圧を印加して行なう。なお、油が絶縁破壊す
ると、カーボンが発生して油中にカーボンなどの粒子数
が増加する。この油中粒子は、後述する第3図に示すよ
うに絶縁破壊電圧に影響するので、1試料油につき破壊
電圧値を1回のみ測定した。
(Dielectric breakdown voltage) An AC voltage is applied at a boosting rate of 3 kV / s to an electrode gap of 2.5 mm in diameter of a 12.5 mm spherical electrode. When oil has a dielectric breakdown, carbon is generated and the number of particles such as carbon in the oil increases. Since the particles in oil influence the dielectric breakdown voltage as shown in FIG. 3 described later, the breakdown voltage value was measured only once for each sample oil.

実施例2および比較例2 鉱油とアルキルベンゼンとの混合油(JIS C 2320 7種
2号油(以下、JIS7種2号油という))に実施例1で用
いたα−オレフィンを、えられる電気絶縁油中の割合が
それぞれ0.05%、0.1%、0.5%、1.0%、3.0%、5.0
%、10%になるように添加し、混合してブランク(0
%)を含めて8種類の電気絶縁油を調製し、実施例1と
同様にして絶縁破壊電圧を測定した。結果を第1図に示
す。
Example 2 and Comparative Example 2 A mixed oil of mineral oil and alkylbenzene (JIS C 2320 No. 7 oil No. 2 (hereinafter referred to as JIS No. 2 oil)) was obtained with the electrical insulation of the α-olefin used in Example No. 1. The proportion in oil is 0.05%, 0.1%, 0.5%, 1.0%, 3.0%, 5.0
%, 10% so that they are mixed and mixed with blank (0
%), And 8 types of electrical insulating oils were prepared, and the breakdown voltage was measured in the same manner as in Example 1. The results are shown in Fig. 1.

第1図からわかるように、添加剤の濃度とともに絶縁
破壊電圧は増加し、約0.5%をピークに低下傾向を示し
ている。また、油種が異なっても、添加効果は同じよう
にえられた。
As can be seen from FIG. 1, the dielectric breakdown voltage increases with the concentration of the additive, and tends to decrease with a peak at about 0.5%. Moreover, the same effect was obtained even if the oil type was different.

実施例3 JIS1種2号絶縁油に一般式(I)中のmが10、16、1
8、20または30であるα−オレフィンを、えられる電気
絶縁油中の割合が約0.5%となるように添加し、混合し
て5種類の電気絶縁油をえた。
Example 3 In JIS type 1 No. 2 insulating oil, m in general formula (I) is 10, 16, 1
The α-olefin of 8, 20 or 30 was added so that the ratio in the obtained electric insulating oil was about 0.5%, and mixed to obtain 5 kinds of electric insulating oil.

えられた電気絶縁油の絶縁破壊電圧を実施例1と同様
にして測定し、α−オレフィンの含有率が0.5%のとき
の絶縁破壊電圧の炭素数(m)依存性を調べた。結果を
第2図に示す。
The breakdown voltage of the obtained electric insulating oil was measured in the same manner as in Example 1 to examine the carbon number (m) dependency of the breakdown voltage when the content of α-olefin was 0.5%. Results are shown in FIG.

第2図からわかるように、炭素数(m)が30以下でα
−オレフィンを添加したことによる顕著な効果が見られ
た。
As can be seen from Fig. 2, when the carbon number (m) is 30 or less, α
-The significant effect of adding olefins was seen.

第1図および第2図からわかるように、特定の添加濃
度または特定の炭素数(m)のとき、絶縁破壊電圧は最
大になっている。
As can be seen from FIG. 1 and FIG. 2, the dielectric breakdown voltage is maximum at a specific addition concentration or a specific carbon number (m).

実施例4 絶縁破壊電圧に及ぼす添加剤の効果が最も大きくなる
α−オレフィン濃度を、新油、劣化油、油入電気機器か
らの採取油および油中粒子数の多い絶縁油について実施
例1と同様にして調べたところ、実施例1と同様の結果
がえられた。したがって、α−オレフィンの添加によっ
て絶縁破壊電圧が向上する現象の両現性は良好であるこ
とがわかった。
Example 4 The α-olefin concentration at which the effect of the additive on the dielectric breakdown voltage was the largest was determined as in Example 1 for new oil, deteriorated oil, oil taken from oil-filled electrical equipment and insulating oil having a large number of particles in oil. When examined in the same manner, the same results as in Example 1 were obtained. Therefore, it was found that the duality of the phenomenon that the dielectric breakdown voltage is improved by the addition of α-olefin is good.

実施例1〜4および比較例1〜2の結果から、一般式
(I)で表わされるα−オレフィンは、mが18で電気絶
縁油中の濃度が0.5%のとき、絶縁破壊電圧向上に最適
であることがわかったので、つぎにこの条件のときの添
加効果を調べた。
From the results of Examples 1 to 4 and Comparative Examples 1 and 2, the α-olefin represented by the general formula (I) is most suitable for improving the dielectric breakdown voltage when m is 18 and the concentration in the electric insulating oil is 0.5%. Then, the effect of addition under these conditions was investigated.

実施例5および比較例3 油中粒子数が750〜9000個/油100mlで油中水分量が7
〜9ppmの絶縁油(JIS1種2号油)に、α−オレフィン
(一般式(I)中のmが18の化合物)を、えられる電気
絶縁油中の割合が0.5%となるように添加したもの(実
施例5)、および油中粒子数が750〜10000個/油100ml
で油中水分量が7〜9ppmの絶縁油(JIS1種2号油)(比
較例3)の絶縁破壊電圧を、それぞれ実施例1と同様に
して調べた。結果を第3図に示す。
Example 5 and Comparative Example 3 The number of particles in oil is 750 to 9,000 / 100 ml of oil and the water content in oil is 7
To 9 ppm of insulating oil (JIS Class 1 No. 2 oil), α-olefin (a compound of m in the general formula (I) of 18) was added so that the ratio of the obtained electrical insulating oil was 0.5%. (Example 5), and the number of particles in oil is 750 to 10000/100 ml of oil
Then, the dielectric breakdown voltage of the insulating oil (JIS type 1 No. 2 oil) (Comparative Example 3) having a water content in the oil of 7 to 9 ppm was examined in the same manner as in Example 1. Results are shown in FIG.

第3図からわかるように、油中粒子数の減少とともに
絶縁破壊電圧は増加しているが、添加油と無添加油の差
は維持されている。この現象は、劣化油についても観察
された。
As can be seen from FIG. 3, the dielectric breakdown voltage increased as the number of particles in the oil decreased, but the difference between the added oil and the non-added oil was maintained. This phenomenon was also observed for degraded oil.

実施例6および比較例4 JIS1種2号油およびJIS7種2号油にα−オレフィン
(一般式(I)中のmが18の化合物)を、えられる電気
絶縁油中の割合が0.5%になるように添加し、混合した
添加油と無添加油の特性をJIS C 2101にしたがって調べ
た。結果を第1表に示す。
Example 6 and Comparative Example 4 JIS 1 type 2 oil and JIS 7 type 2 oil were mixed with α-olefin (compound of m in the general formula (I) is 18) in the obtained electric insulating oil to 0.5%. The properties of the added oil and the additive-free oil that were added and mixed as described above were examined according to JIS C 2101. The results are shown in Table 1.

ここで用いたα−オレフィンは、絶縁油とほぼ同じ分
子量(α−オレフィン:252、JIS1種2号油:約250、JIS
7種2号油:約250)の炭化水素液体なので、添加による
絶縁油特性におよぼす悪影響は全く見られなかった。
The α-olefin used here has almost the same molecular weight as the insulating oil (α-olefin: 252, JIS Class 1 No. 2 oil: about 250, JIS
Since it is a hydrocarbon liquid of 7 type 2 oil: approx. 250), no adverse effect on the insulating oil properties was observed by the addition.

実施例7および比較例5 鉱油系絶縁油(JIS1種2号油)にヒドロキシ脂肪酸の
エステルとしてメチルリシノレート、ブチルリシノレー
ト、メチルアセチルリシノレートを、それぞれえられる
電気絶縁油中の割合が0.01%、0.05%、0.1%、0.5%、
1.0%、5%、10%になるように添加し、混合してブラ
ンク(0%)を含めて24種類の絶縁油を調製し、実施例
1と同様にして絶縁破壊電圧試験を行なった。なお、こ
のときの絶縁破壊電圧は油中水分量により影響を受ける
ことから、油中水分量を8〜11ppmに調整した。結果を
第4図に示す。第4図中、MRはメチルリシノレート、BR
はブチルリシノレート、MARはメチルアセチルリシノレ
ートを示す。
Example 7 and Comparative Example 5 Methyl ricinoleate, butyl ricinoleate, and methyl acetyl ricinoleate as esters of hydroxy fatty acid were added to mineral oil type insulating oil (JIS type 1 No. 2 oil) in a proportion of 0.01% in the electric insulating oil. , 0.05%, 0.1%, 0.5%,
Twenty-four types of insulating oil including blanks (0%) were prepared by adding 1.0%, 5% and 10% and mixing, and a dielectric breakdown voltage test was performed in the same manner as in Example 1. Since the dielectric breakdown voltage at this time is affected by the water content in oil, the water content in oil was adjusted to 8 to 11 ppm. Results are shown in FIG. In Figure 4, MR is methylricinolate, BR
Indicates butyl ricinoleate, and MAR indicates methyl acetyl ricinoleate.

第4図からわかるように、いずれの添加剤も絶縁破壊
電圧を向上させる効果は含有率0.01%から顕著に認めら
れ、0.5%でピークとなり、10%でも添加効果が明瞭で
あった。なかでもメチルアセチルリシノレートの添加効
果は著しかった。
As can be seen from FIG. 4, the effect of improving the dielectric breakdown voltage of any of the additives was remarkably recognized from the content rate of 0.01%, peaked at 0.5%, and the addition effect was clear even at 10%. Above all, the effect of adding methylacetylricinoleate was remarkable.

実施例8および比較例6 ヒドロキシ脂肪酸のエステルは絶縁油の絶縁破壊電圧
特性を向上させるが、添加量が多くなると絶縁油に要求
される諸特性への悪影響が懸念される。そこで実施例7
で用いた絶縁油にメチルリシノレート、ブチルリシノレ
ート、メチルアセチルリシノレートを、えられる電気絶
縁油中の割合がそれぞれ第2〜4表に示す割合になるよ
うに添加し、混合してえられた油中水分量8〜11ppmの
絶縁油試料について、溶解性、界面張力および酸化安定
度を測定した。結果を第2〜4表に示す。
Example 8 and Comparative Example 6 The ester of hydroxy fatty acid improves the dielectric breakdown voltage characteristics of insulating oil, but if the amount of addition is large, there is a concern that various characteristics required for insulating oil may be adversely affected. Therefore, Example 7
Methyl ricinoleate, butyl ricinoleate, and methyl acetyl ricinoleate were added to the insulating oil used in the above so that the ratio in the obtained electric insulating oil would be the ratios shown in Tables 2 to 4, respectively. Solubility, interfacial tension and oxidation stability were measured for insulating oil samples having a water content in oil of 8 to 11 ppm. The results are shown in Tables 2-4.

なお、界面張力については、前記絶縁油にヒドロキシ
脂肪酸のエステルを添加したのち、活性白土と活性アル
ミナの1:2混合物を用いて化学吸着処理して精製したも
のと未精製のものについて測定した。
The interfacial tension was measured for the purified and unpurified ones after the ester of hydroxy fatty acid was added to the insulating oil, followed by chemical adsorption treatment with a 1: 2 mixture of activated clay and activated alumina.

第2〜4表から、ヒドロキシ脂肪酸のエステルを添加
した絶縁油は、溶解性になんら悪影響が認められないこ
とがわかる。
It can be seen from Tables 2 to 4 that the insulating oil to which the ester of hydroxy fatty acid is added has no adverse effect on the solubility.

さらに、前記精製を行なった結果、諸特性は改善さ
れ、とくに界面張力は大きく向上した。なお、ヒドロキ
シ脂肪酸のエステルのみを前記精製法によって精製した
のち絶縁油に添加したものは、それらの特性を大きく改
善することはできなかった。
Further, as a result of the above-mentioned purification, various properties were improved, and especially the interfacial tension was greatly improved. It should be noted that those obtained by purifying only the ester of hydroxy fatty acid by the above-described refining method and then adding it to the insulating oil could not significantly improve those characteristics.

この精製により、本実施例ではヒドロキシ脂肪酸のエ
ステルは含有率1%まで使用可能となった。
By this purification, the ester of hydroxy fatty acid can be used up to a content rate of 1% in this example.

実施例9および比較例7 鉱油系絶縁油(JIS1種2号油)に一般式(II)で表わ
される化合物で沸点123〜263℃のポリブテンの混合物
(平均分子量212)を、えられる電気絶縁油中の割合が
それぞれ0.01%、0.05%、0.1%、0.5%、1%、5%、
10%になるように添加し、混合してブランク(0%)を
含めて8種類の電気絶縁油を調製し、実施例1と同様に
して絶縁破壊電圧試験を行なった。このときの絶縁破壊
電圧は油中水分量により影響を受けることから、油中水
分量を7〜10ppmに調整した。結果を第5図に示す。
Example 9 and Comparative Example 7 An electrical insulating oil was obtained by adding a mixture of polybutene (average molecular weight 212) having a boiling point of 123 to 263 ° C. with a compound represented by the general formula (II) to a mineral oil type insulating oil (JIS type 1 No. 2 oil). 0.01%, 0.05%, 0.1%, 0.5%, 1%, 5%,
Eight kinds of electrical insulating oils including blank (0%) were prepared by adding so as to be 10% and mixed, and a dielectric breakdown voltage test was conducted in the same manner as in Example 1. Since the dielectric breakdown voltage at this time is affected by the water content in the oil, the water content in the oil was adjusted to 7 to 10 ppm. Results are shown in FIG.

第5図からわかるように、絶縁破壊電圧を向上させる
効果は含有率0.01%から顕著に認められ、0.5%でピー
クを示し、5%でもその効果は大きかった。
As can be seen from FIG. 5, the effect of improving the dielectric breakdown voltage was remarkably recognized from the content rate of 0.01%, and showed a peak at 0.5%, and the effect was large even at 5%.

実施例10および比較例8 実施例9で用いたポリブテンの混合物は絶縁油の絶縁
破壊電圧特性を向上させるが、添加量が多くなると絶縁
油に要求される溶解性、界面張力、引火点、蒸発量、酸
化安定度などの諸特性への影響が懸念される。そこで実
施例9で用いた絶縁油に該ポリブテンを、えられる電気
絶縁油中の割合がそれぞれ第5表に示す割合になるよう
に添加し、混合してえられた油中水分量7〜10ppmの絶
縁油試料について、これらの特性試験も併せて実施し
た。結果を第5表に示す。
Example 10 and Comparative Example 8 The mixture of polybutene used in Example 9 improves the dielectric breakdown voltage characteristics of insulating oil, but the solubility, interfacial tension, flash point, and evaporation required for insulating oil increase with increasing addition amount. There is concern about the effects on various properties such as the amount and oxidation stability. Therefore, the polybutene was added to the insulating oil used in Example 9 so that the ratio in the obtained electric insulating oil was the ratio shown in Table 5, and the water content in the oil obtained by mixing was 7 to 10 ppm. These characteristics tests were also conducted on the insulating oil sample of No. 1. The results are shown in Table 5.

ここで用いたポリブテンのうち、平均分子量の大きい
(平均分子量にして300程度以上)化合物は絶縁油(JIS
3種絶縁油)として使用されており、炭化水素からなる
液体で、炭化水素である鉱油系絶縁油との混合では、溶
解性、界面張力および酸化安定度への悪影響が認められ
なかった。
Of the polybutene used here, compounds with a large average molecular weight (average molecular weight of about 300 or more) are insulating oils (JIS
It is used as a type 3 insulating oil) and is a liquid consisting of hydrocarbons, and when mixed with a hydrocarbon mineral oil type insulating oil, adverse effects on solubility, interfacial tension and oxidation stability were not observed.

しかし、使用したポリブテンの混合物は引火点が87℃
と低く、含有率が5%になると、引火点がJIS C 2320の
規格値(130℃以上)からはずれる。また、蒸発量は添
加量が増すとともに増加傾向を示すが、JI規格値には適
合している。
However, the mixture of polybutene used had a flash point of 87 ° C.
When the content rate is 5%, the flash point deviates from the standard value of JIS C 2320 (130 ° C or higher). The amount of evaporation shows an increasing tendency as the amount of addition increases, but it complies with the JI standard value.

以上のことから、本実施例では引火点を考慮すると前
記ポリブテンの混合物は、最大含有率は2%であった。
From the above, in consideration of the flash point in this example, the maximum content of the polybutene mixture was 2%.

実施例11および比較例9 鉱油系絶縁油(JIS1種2号油)にDL−p−メンタ−1,
8−ジエンを、えられる電気絶縁油中の割合がそれぞれ
0.01%、0.05%、0.1%、0.5%、1.0%、5%、10%と
なるように添加し、混合してブランク(0%)を含めて
8種類の電気絶縁油を調製し、実施例1と同様にして絶
縁破壊電圧試験を行なった。このときの絶縁破壊電圧は
油中水分量により影響を受けることから、油中水分量を
7〜9ppmに調整した。結果を第6図に示す。
Example 11 and Comparative Example 9 Mineral oil type insulating oil (JIS type 1 No. 2 oil) was added with DL-p-mentor-1,
The proportion of 8-diene in the obtained electric insulating oil is
0.01%, 0.05%, 0.1%, 0.5%, 1.0%, 5%, 10% were added and mixed to prepare 8 kinds of electrical insulating oil including blank (0%). A dielectric breakdown voltage test was conducted in the same manner as in 1. Since the breakdown voltage at this time is affected by the water content in oil, the water content in oil was adjusted to 7 to 9 ppm. Results are shown in FIG.

第6図から、絶縁破壊電圧を向上させる効果は含有率
0.01%から顕著に認められ、0.05%でピークとなり、5
%までその効果が明瞭であることがわかる。
From FIG. 6, the effect of improving the dielectric breakdown voltage is the content rate.
Remarkably recognized from 0.01%, peaking at 0.05%, 5
It can be seen that the effect is clear up to%.

このように、DL−p−メンタ−1,8−ジエンの最適含
有率は、本発明に用いる他の添加剤の最適含有率0.5〜
1%に比べ、0.05%と非常に小さい割合で効果が認めら
れることが特徴的である。
Thus, the optimum content of DL-p-mentha-1,8-diene is 0.5 to 0.5% for the other additives used in the present invention.
It is characteristic that the effect is recognized at a very small ratio of 0.05% compared to 1%.

実施例12および比較例10 DL−p−メンタ−1,8−ジエンの引火点は45℃と低
く、DL−p−メンタ−1,8−ジエンを添加することによ
って、電気絶縁油の引火点や蒸発量に悪影響を与えるこ
とが予想される。そこでJIS1種2号油にDL−p−メンタ
−1,8−ジエンを、えられる電気絶縁油中の割合が第6
表に示す割合になるように添加し、混合してえられた油
中水分量7〜9ppmの絶縁油試料について、それらの特性
試験、さらに長期間使用時の影響評価として酸化安定度
試験を行なった。結果を第6表に示す。
Example 12 and Comparative Example 10 The flash point of DL-p-menta-1,8-diene was as low as 45 ° C., and by adding DL-p-menta-1,8-diene, the flash point of electrically insulating oil was obtained. And the amount of evaporation is expected to be adversely affected. Therefore, DL-p-mentor-1,8-diene was added to JIS Class 1 No. 2 oil, and the ratio of the obtained electrical insulating oil was 6th.
An insulating oil sample with a water content of 7 to 9 ppm obtained by adding and mixing it in the proportions shown in the table was subjected to a characteristic test and an oxidation stability test as an effect evaluation during long-term use. It was The results are shown in Table 6.

第6表から、DL−p−メンタ−1,8−ジエンの添加は
添加量が1%より多くなると、引火点の低下が著しくな
るとともに、蒸発量も増加傾向を示すことがわかる。し
かし、酸化安定度への影響は全く認められず、DL−p−
メンタ−1,8−ジエンを添加した絶縁油の長期間使用に
よる問題はないと考えられる。この添加効果は、JIS7種
2号油についてもまったく同様に認められた。
It can be seen from Table 6 that when the amount of DL-p-mentha-1,8-diene added is more than 1%, the flash point decreases remarkably and the amount of evaporation also tends to increase. However, no effect on oxidative stability was observed, and DL-p-
It is considered that there is no problem with long-term use of insulating oil containing mentha-1,8-diene. This addition effect was confirmed in the same manner for JIS 7 type 2 oil.

実施例13および比較例11 JIS1種2号油およびJIS7種2号油にジフェニルカルバ
ジドを、えられる電気絶縁油中の割合がそれぞれ0.1
%、0.4%、0.5%、0.7%、0.8%、1.0%となるように
添加し、混合してブランク(0%)を含めて14種の電気
絶縁油を油中水分7〜11ppmで調製し、実施例1と同様
にして絶縁破壊電圧を測定した。結果を第7図に示す。
これらの結果は、第1図と同様にJIS1種2号油とJIS7種
2号油について、絶縁破壊電圧におよぼす添加剤の濃度
依存性を示している。
Example 13 and Comparative Example 11 Diphenylcarbazide was added to JIS No. 1 No. 2 oil and JIS No. 7 No. 2 oil, and the ratio in the obtained electric insulating oil was 0.1, respectively.
%, 0.4%, 0.5%, 0.7%, 0.8%, 1.0% were added and mixed to prepare 14 kinds of electrical insulating oil including blank (0%) with water content of 7 to 11 ppm. The dielectric breakdown voltage was measured in the same manner as in Example 1. The results are shown in Fig. 7.
These results show the dependency of the additive concentration on the dielectric breakdown voltage for JIS 1 type 2 oil and JIS 7 type 2 oil, as in FIG.

第7図からわかるように、添加剤の添加濃度とともに
絶縁破壊電圧は増加し、約0.4%をピークにその後低下
傾向を示している。JIS1種2号油とJIS7種2号油とは油
種が異なっても、添加効果は同じように見られる。第7
図から、本実施例ではジフェニルカルバジド含有率は0.
1〜0.5%が好ましいことがわかる。
As can be seen from FIG. 7, the dielectric breakdown voltage increases with the concentration of the additive added, and shows a decreasing tendency after peaking at about 0.4%. Even if the oil types of JIS Type 1 No. 2 oil and JIS No. 7 type 2 oil are different, the addition effect is similar. Seventh
From the figure, in the present example, the diphenylcarbazide content is 0.
It can be seen that 1 to 0.5% is preferable.

実施例14および比較例12 JIS1種2号油にジフェニルカルバジドを、電気絶縁油
中の割合が0.4%になるように添加した添加油と無添加
油の特性を調べた。結果を第7表に示す。
Example 14 and Comparative Example 12 The characteristics of the additive oil and the additive-free oil in which diphenylcarbazide was added to JIS Type 1 No. 2 oil so that the ratio in the electrically insulating oil was 0.4% were investigated. The results are shown in Table 7.

第7表からわかるように、添加による絶縁油特性にお
よぼす悪影響は全く見られない。第7表はJIS1種2号油
についての結果であるが、JIS7種2号油についても第7
表と同様の良好な結果がえられた。
As can be seen from Table 7, no adverse effect of the addition on the insulating oil characteristics was observed. Table 7 shows the results for JIS Class 1 and 2 oils, but also for JIS Class 7 and 2 oils.
Good results similar to those in the table were obtained.

実施例15および比較例13 JIS1種2号油にp−ヒドロキシフェニルアセトアミド
を、えられる電気絶縁油中の割合が0.01%、0.05%、0.
1%、1.0%となるよう添加し、混合してブランク(0
%)を含めて5種類の電気絶縁油を調製し、実施例1と
同様にして絶縁破壊電圧を測定した。結果を第8図に示
す。
Example 15 and Comparative Example 13 JIS Type 1 No. 2 oil was added with p-hydroxyphenylacetamide, and the ratio in the obtained electric insulating oil was 0.01%, 0.05%, 0.
Add 1% and 1.0%, mix and add blank (0
%) Was prepared and five types of electrical insulating oils were prepared, and the dielectric breakdown voltage was measured in the same manner as in Example 1. The results are shown in Fig. 8.

第8図に示すように、絶縁破壊電圧は添加濃度が0.05
%前後でピークになっており、明確に添加効果が見られ
る。第8図から、本実施例における添加量は0.01〜0.1
%が好ましいことがわかる。
As shown in Fig. 8, the breakdown voltage is 0.05 when the added concentration is
There is a peak around 10%, and the effect of addition is clearly seen. From FIG. 8, the addition amount in this example is 0.01 to 0.1.
It turns out that% is preferable.

実施例16および比較例14 JIS1種2号油にp−ヒドロキシアセトアミドを、えら
れる電気絶縁油中の割合が0.05%になるように添加した
添加油と無添加油との特性を調べた。結果を第8表に示
す。
Example 16 and Comparative Example 14 The characteristics of added oil and non-added oil in which p-hydroxyacetamide was added to JIS No. 1 No. 2 oil so that the ratio in the obtained electric insulating oil was 0.05% were examined. The results are shown in Table 8.

第8表からわかるように、p−ヒドロキシフェニルア
セトアミドの添加による悪影響もなく、p−ヒドロキシ
フェニルアセトアミドは有用な絶縁油用添加剤であるこ
とが認められる。
As can be seen from Table 8, p-hydroxyphenylacetamide is recognized as a useful additive for insulating oil without adverse effects due to the addition of p-hydroxyphenylacetamide.

前記実施例1〜16では鉱油系絶縁油および鉱油系絶縁
油とアルキルベンゼンとの混合油に添加剤を添加したば
あいについて説明したが、アルキルベンゼン、ポリオー
ル、シリコーン油、フッ素化油、リン酸エステルなどの
絶縁油についても同様の効果をうることができる。
In Examples 1 to 16 described above, the case where the additive was added to the mineral oil-based insulating oil and the mixed oil of the mineral oil-based insulating oil and the alkylbenzene was described, but alkylbenzene, polyol, silicone oil, fluorinated oil, phosphate ester, etc. The same effect can be obtained with this insulating oil.

[発明の効果] 本発明の電気絶縁油は、前記一般式(I)で表わされ
る化合物、ヒドロキシ脂肪酸のエステル、前記一般式
(II)で表わされる化合物、DL−p−メンタ−1,8−ジ
エン、ジフェニルカルバジドまたはp−ヒドロキシフェ
ニルアセトアミドを、絶縁油に一定量添加したものであ
り、それらの添加により絶縁油に要求される諸特性を低
下させることなく絶縁破壊電圧を向上させるという効果
を奏する。
[Effects of the Invention] The electrically insulating oil of the present invention comprises a compound represented by the general formula (I), an ester of hydroxy fatty acid, a compound represented by the general formula (II), and DL-p-menta-1,8-. Diene, diphenylcarbazide or p-hydroxyphenylacetamide is added to the insulating oil in a fixed amount, and the addition of them has the effect of improving the dielectric breakdown voltage without deteriorating the various characteristics required of the insulating oil. Play.

【図面の簡単な説明】[Brief description of drawings]

第1図はα−オレフィンの含有率と絶縁破壊電圧との関
係を示すグラフ、第2図はα−オレフィンの炭素数
(m)と絶縁破壊電圧との関係を示すグラフ、第3図は
電気絶縁油中の油中粒子数と絶縁破壊電圧との関係を示
すグラフ、第4図はヒドロキシ脂肪酸のエステルの含有
率と絶縁破壊電圧との関係を示すグラフ、第5図はポリ
ブテンの混合物の含有率と絶縁破壊電圧との関係を示す
グラフ、第6図はDL−p−メンタ−1,8−ジエンの含有
率と絶縁破壊電圧との関係を示すグラフ、第7図はジフ
ェニルカルバジドの含有率と絶縁破壊電圧との関係を示
すグラフ、第8図はp−ヒドロキシフェニルアセトアミ
ドの含有率と絶縁破壊電圧との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the content rate of α-olefin and the breakdown voltage, FIG. 2 is a graph showing the relationship between the carbon number (m) of α-olefin and the breakdown voltage, and FIG. 3 is electric. A graph showing the relationship between the number of particles in oil in the insulating oil and the dielectric breakdown voltage, FIG. 4 is a graph showing the relationship between the content ratio of the ester of hydroxy fatty acid and the dielectric breakdown voltage, and FIG. 5 is the content of the mixture of polybutene. 6 is a graph showing the relationship between the breakdown rate and the breakdown voltage, FIG. 6 is a graph showing the relationship between the content rate of DL-p-menta-1,8-diene and the breakdown voltage, and FIG. 7 is the content of diphenylcarbazide. FIG. 8 is a graph showing the relationship between the rate and the breakdown voltage, and FIG. 8 is a graph showing the relationship between the content rate of p-hydroxyphenylacetamide and the breakdown voltage.

フロントページの続き (72)発明者 土江 基夫 兵庫県赤穂市天和651番地 三菱電機株式 会社赤穂製作所内 (56)参考文献 特開 昭59−128708(JP,A)Front Page Continuation (72) Inventor Motoo Doe 651 Tenwa, Awa City, Ako City, Hyogo Prefecture Inside the Ako Works, Mitsubishi Electric Corporation (56) Reference JP-A-59-128708 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】絶縁油に、添加剤として(A)一般式
(I): CH3CH2 mCH=CH (I) (式中、mは30以下の整数を示す)で表わされる化合物
が添加されてなる電気絶縁油であって、前記添加剤の電
気絶縁油中の割合が0.01〜10重量%である電気絶縁油。
1. A compound represented by the general formula (A): CH 3 CH 2 m CH═CH (I) (wherein m represents an integer of 30 or less) as an additive in insulating oil. An electrically insulating oil which is added, wherein the ratio of the additive in the electrically insulating oil is 0.01 to 10% by weight.
【請求項2】絶縁油に、添加剤として(B)水酸基、酸
基またはその両方がエステル化されたヒドロキシ脂肪酸
のエステルが添加されてなる電気絶縁油であって、前記
添加剤の電気絶縁油中の割合が0.01〜1重量%である電
気絶縁油。
2. An electrical insulating oil comprising an insulating oil to which (B) an ester of a hydroxy fatty acid in which a hydroxyl group, an acid group or both are esterified is added as an additive. Electrical insulating oil whose content is 0.01-1% by weight.
【請求項3】絶縁油に、添加剤として(C)一般式(I
I): (式中、nは整数を示す)で表わされる化合物または該
化合物の混合物であって、かつ沸点が120〜300℃のもの
が添加されてなる電気絶縁油であって、前記添加剤の電
気絶縁油中の割合が0.01〜1重量%である電気絶縁油。
3. Insulating oil containing (C) general formula (I) as an additive.
I): An electrically insulating oil comprising a compound represented by the formula (n is an integer) or a mixture of the compounds and having a boiling point of 120 to 300 ° C. Electrical insulating oil whose ratio in oil is 0.01 to 1% by weight.
【請求項4】絶縁油に、添加剤として(D)DL−p−メ
ンタ−1,8−ジエンが添加されてなる電気絶縁油であっ
て、前記添加剤の電気絶縁油中の割合が0.01〜1重量%
である電気絶縁油。
4. An electric insulating oil comprising (D) DL-p-mentha-1,8-diene as an additive added to an insulating oil, wherein the ratio of the additive to the electric insulating oil is 0.01. ~ 1% by weight
Electrical insulating oil that is.
【請求項5】絶縁油に、添加剤として(E)ジフェニル
カルバジドが添加されてなる電気絶縁油であって、前記
添加剤の電気絶縁油中の割合が0.1〜0.8重量%である電
気絶縁油。
5. An electric insulating oil comprising (E) diphenylcarbazide as an additive added to the insulating oil, wherein the ratio of the additive to the electric insulating oil is 0.1 to 0.8% by weight. oil.
【請求項6】絶縁油に、添加剤として(F)p−ヒドロ
キシフェニルアセトアミドが添加されてなる電気絶縁油
であって、前記添加剤の電気絶縁油中の割合が0.01〜0.
1重量%である電気絶縁油。
6. An electrical insulating oil comprising (F) p-hydroxyphenylacetamide as an additive added to the insulating oil, wherein the ratio of the additive to the electrical insulating oil is 0.01-0.
Electrical insulating oil that is 1% by weight.
JP2019406A 1990-01-29 1990-01-29 Electrical insulating oil Expired - Lifetime JPH0834066B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019406A JPH0834066B2 (en) 1990-01-29 1990-01-29 Electrical insulating oil
GB9020745A GB2240340B (en) 1990-01-29 1990-09-24 Electric insulating oil
KR1019910000558A KR940003803B1 (en) 1990-01-29 1991-01-15 Electric insulating oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019406A JPH0834066B2 (en) 1990-01-29 1990-01-29 Electrical insulating oil

Publications (2)

Publication Number Publication Date
JPH03225704A JPH03225704A (en) 1991-10-04
JPH0834066B2 true JPH0834066B2 (en) 1996-03-29

Family

ID=11998378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019406A Expired - Lifetime JPH0834066B2 (en) 1990-01-29 1990-01-29 Electrical insulating oil

Country Status (3)

Country Link
JP (1) JPH0834066B2 (en)
KR (1) KR940003803B1 (en)
GB (1) GB2240340B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214105A (en) * 2021-12-17 2022-03-22 马鞍山中集瑞江润滑油有限公司 Capacitor circulating oil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB742922A (en) * 1950-08-22 1956-01-04 Siemens Ag Improvements in or relating to electrically insulating liquid for electrical high-tension devices
GB1271981A (en) * 1969-01-09 1972-04-26 British Insulated Callenders Improvements in and relating to electrical insulating oils and to electrical apparatus incorporating them
JPS5242478A (en) * 1975-10-01 1977-04-02 Ebara Infilco Co Ltd Tubular membrane unit
JPS5320320A (en) * 1976-08-09 1978-02-24 Sato Koki Kk Automatic strobe power supply opening device
JPS553765A (en) * 1978-06-23 1980-01-11 Kazuo Yoshitake Apparatus for upwardly and downwardly moving and opening and closing curtain for greenhouse
JPS5773085A (en) * 1980-10-24 1982-05-07 Sanyo Chem Ind Ltd Pour point reducing agent and insulating oil composition
JPS59128708A (en) * 1983-01-13 1984-07-24 三菱電機株式会社 Oil-immersed electric device

Also Published As

Publication number Publication date
GB9020745D0 (en) 1990-11-07
GB2240340A (en) 1991-07-31
JPH03225704A (en) 1991-10-04
KR910014962A (en) 1991-08-31
GB2240340B (en) 1994-02-23
KR940003803B1 (en) 1994-05-03

Similar Documents

Publication Publication Date Title
TWI344653B (en)
US8440116B2 (en) Low viscosity mono-unsaturated acid-containing oil-based dielectric fluids
AU780896B2 (en) Method for producing ester
US20060030499A1 (en) Electrical transformer with vegetable oil dielectric fluid
CN106986765B (en) High-temperature pentaerythritol ester and preparation method thereof
EP2758969B1 (en) Dielectric fluids comprising polyol esters, methods for preparing mixtures of polyol esters, and electrical apparatuses comprising polyol ester dielectric fluids
US3419497A (en) Electrical insulating oil
EP0518567B1 (en) Synthetic lubricant base stock formed from high content branched chain acid mixtures
JP2000090740A (en) Ester insulating oil and manufacture thereof and electrical equipment
JPH0834066B2 (en) Electrical insulating oil
JP3145301B2 (en) Electrical insulating oil and method for producing the same
JP2001234187A (en) Lubricating oil composition
CN118786202A (en) Additive for lubricating oil, lubricating oil composition and working fluid composition
WO1993012209A1 (en) Refrigeration working fluid
JPH11306864A (en) Insulating oil and its preparation
DE69602788T2 (en) Monocarbonates, their application and process for the preparation of compositions containing monocarbonates
FR2514935A1 (en) Dielectric fluid contg. methyl di:phenyl pentene - useful e.g. in capacitors, transformers etc.
JPH051567B2 (en)
JPH088012B2 (en) Electrical insulating oil
JPS59226096A (en) Electrical insulation oil
SG177539A1 (en) Electrical equipment containing erucic acid dielectric oil
KR20170117583A (en) Low-temperature insulation fluid composition
US3586752A (en) Electrical conduit containing hydrorefined oil
JPH0485396A (en) Fluorocarbon-resistant lubricating oil
AU2013204677A1 (en) Low Viscosity Vegetable Oil-Based Dielectric Fluids