JPH08338678A - Refrigerating equipment - Google Patents

Refrigerating equipment

Info

Publication number
JPH08338678A
JPH08338678A JP14724695A JP14724695A JPH08338678A JP H08338678 A JPH08338678 A JP H08338678A JP 14724695 A JP14724695 A JP 14724695A JP 14724695 A JP14724695 A JP 14724695A JP H08338678 A JPH08338678 A JP H08338678A
Authority
JP
Japan
Prior art keywords
freezing
liquefied gas
temperature
refrigerator
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14724695A
Other languages
Japanese (ja)
Inventor
Hidenori Awata
秀則 粟田
Takeshi Tsuruya
毅 鶴谷
Yoshinobu Kano
吉信 加納
Takaaki Asakura
隆晃 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIQUID GAS KK
Original Assignee
LIQUID GAS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIQUID GAS KK filed Critical LIQUID GAS KK
Priority to JP14724695A priority Critical patent/JPH08338678A/en
Publication of JPH08338678A publication Critical patent/JPH08338678A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE: To provide refrigerating equipment which is capable of cooling and further freezing foodstuffs and insulating them in a frozen state to a satisfactory state and preferable in terms of their quality, and further, acceptable to a relatively small equipment area and easy to expand the equipment. CONSTITUTION: There are provided an electric type refrigerator 20 and a liquefied gas type refrigerator 1 in a freezer compartment 8 where there are provided a control means which controls the operation and shutdown both refrigerators respectively and a freezer compartment temperature detection mechanism 16 which detects the temperature in the freezer compartment and a memory means which stores a freezing temperature of frozen foodstuffs. There is also provided in the control means a freezing temperature passage freezing control means which operates the liquefied gas type refrigerator 1 in the case when the detected freezer compartment temperature is close to the freezing temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種の食品を冷凍庫内
で凍結する冷凍設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a freezing facility for freezing various foods in a freezer.

【0002】[0002]

【従来の技術】冷凍庫内で一度に大量の食品を凍結させ
る場合に使用される冷凍設備としては、冷凍庫に、所
謂、電気式冷凍機(蒸気圧縮式冷凍機)を備えたもの、
さらには、液化炭酸ガスや液化窒素ガス等の冷媒である
液化ガスを、ボンベ等の液化ガス源から冷凍庫内へ導く
とともに、これを噴射して、庫内を冷却する液化ガス式
冷凍機(噴射式冷凍機)を備えたものがある。
2. Description of the Related Art As a refrigerating facility used for freezing a large amount of food at a time in a freezer, a freezer provided with a so-called electric refrigerator (vapor compression refrigerator),
Furthermore, a liquefied gas refrigerant such as liquefied carbon dioxide gas or liquefied nitrogen gas is introduced into the freezer from a liquefied gas source such as a cylinder, and is injected to cool the inside of the refrigerator. Some refrigerators are equipped.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、夫々、以下のような欠点があった。 電気式冷凍機を備える冷凍設備の欠点 これは、冷媒と庫内の空気間の熱交換によって庫内を冷
却するため、所定の温度まで下げるのにかなりの時間を
要する。また、庫内が所定の温度まで下がったとして
も、庫内の食品はその冷やされた空気に触れて冷却され
るものであるから、その間の熱伝達率が悪く、食品を良
好かつ効率良く凍結することができない。従って、急速
凍結がおこなえず、冷凍食品として好ましい品質を備え
た製品を得にくい場合がある。 液化ガス式冷凍機を備える冷凍設備の欠点 これは、冷媒である液化ガスがノズルより噴出して、直
ちに気化して、そのガスの冷熱により食品を冷却すると
ともに凍結させるものであるが、液化ガスは消耗品であ
ることから凍結コストが電気式冷凍機に比べて高くつ
く。さらに、凍結後の食品を長時間保冷する場合、コス
トがかさみ、液化ガスが無くなると、単なる断熱収納容
器になるという問題がある。
However, each of the above prior arts has the following drawbacks. Disadvantages of refrigeration equipment provided with an electric refrigerator This is because cooling the inside of the refrigerator by heat exchange between the refrigerant and the air in the refrigerator requires a considerable amount of time to lower the temperature to a predetermined temperature. Further, even if the temperature inside the refrigerator drops to a predetermined temperature, the food in the refrigerator is cooled by touching the chilled air, so the heat transfer coefficient during that period is poor, and the food is frozen satisfactorily and efficiently. Can not do it. Therefore, rapid freezing cannot be performed and it may be difficult to obtain a product having a preferable quality as a frozen food. Disadvantages of refrigeration equipment equipped with a liquefied gas refrigerator This is because liquefied gas, which is a refrigerant, is jetted from a nozzle and immediately vaporized, which cools food and freezes it by the cold heat of the gas. Is a consumable item, the freezing cost is higher than that of an electric refrigerator. Further, when the frozen food is kept cold for a long time, the cost is high, and when the liquefied gas is used up, there is a problem that it becomes a mere heat insulation container.

【0004】以上が夫々の冷凍機を備えた冷凍設備の問
題点であるが、最近、冷凍食品の種類・需要が、ともに
急増し、各メーカーではこのような事情に対処するため
冷凍設備の拡充をせまられているが、いずれか一方の冷
凍機を備えた冷凍設備を、その構成のまま新たに増設す
るには設備費が高価となるうえ、比較的広い設置面積が
要る。従って、設備の増設が現実的な意味で不可能とな
ることが多い。
The above is the problem of the refrigerating equipment equipped with each refrigerator. Recently, the types and demands of frozen foods have rapidly increased, and each manufacturer has expanded the refrigerating equipment to cope with such a situation. However, in order to newly add a refrigerating facility equipped with either one of the refrigerators with the same configuration, the facility cost is high and a relatively large installation area is required. Therefore, it is often impossible to add equipment in a practical sense.

【0005】本発明の目的は、上記の課題を解決するこ
とにあり、食品の冷却、冷凍さらには、冷凍状態におけ
る保冷を良好におこなえるとともに、品質面でも好まし
く、比較的狭い設備面積で済み、設備拡充が容易な冷凍
設備を得ることにある。
An object of the present invention is to solve the above-mentioned problems, and it is possible to satisfactorily cool foods, freeze them, and keep them cold in a frozen state, and also in terms of quality, a relatively small equipment area is required. The purpose is to obtain refrigeration equipment that can be easily expanded.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
の本発明による請求項1に係わる冷凍設備の第1の特徴
構成は、蒸気圧縮式冷凍サイクルを構成する機器を備
え、且つ冷凍庫内に備えられる冷凍室を電気を動力源と
して冷凍可能な電気式冷凍機と、液化ガス源より前記冷
凍庫内に液化ガスを導入するとともに、前記液化ガスを
ノズルより噴射して、前記冷凍室を冷凍可能な液化ガス
式冷凍機とを備え、前記電気式冷凍機と前記液化ガス式
冷凍機とを各別に、運転、運転停止制御する制御手段
と、前記冷凍室内温度を検出する冷凍室温度検出機構と
を備え、前記冷凍室内で冷凍対象となる冷凍対象食品の
凍結温度を記憶する記憶手段を備え、前記冷凍室温度検
出機構により検出される前記冷凍室内温度が、前記凍結
温度の近傍にある場合に、前記液化ガス式冷凍機を運転
動作させる凍結温度通過冷凍制御手段を、前記制御手段
に備えたことにある。さらに、上記、本願第1の特徴構
成の冷凍設備において、前記ノズルが前記液化ガスを面
状に噴射する平面ノズルであり、前記冷凍室内に循環流
を誘起する強制循環ファンを前記冷凍庫内に備え、前記
平面ノズルより面状に拡散噴射される前記液化ガスの拡
散噴射面が、前記強制循環ファンの吹き出し方向を横断
して配設されていることが好ましい。これが、請求項2
に係わる冷凍設備の第2の特徴構成である。そして、そ
れらの作用・効果は次の通りである。
To achieve this object, a first characteristic configuration of a refrigerating facility according to claim 1 according to the present invention is provided with equipment constituting a vapor compression refrigeration cycle, and is provided in a freezer. An electric refrigerator capable of freezing the provided freezing room using electricity as a power source, and introducing the liquefied gas from the liquefied gas source into the freezer and injecting the liquefied gas from a nozzle to freeze the freezing room A liquefied gas type refrigerator, each of the electric refrigerator and the liquefied gas type refrigerator, operation means, control means for controlling the operation stop, a freezer compartment temperature detection mechanism for detecting the temperature of the freezer compartment, And a storage means for storing a freezing temperature of a frozen object food to be frozen in the freezing room, the freezing room temperature detected by the freezing room temperature detection mechanism is in the vicinity of the freezing temperature The freezing temperature passes the freezing control means for operating operates said liquefied gas chiller is to provided to the control means. Further, in the refrigeration equipment of the first characteristic configuration of the present application, the nozzle is a flat nozzle that ejects the liquefied gas in a planar manner, and a forced circulation fan that induces a circulation flow in the freezing chamber is provided in the freezer. It is preferable that a diffusion injection surface of the liquefied gas, which is diffused and ejected in a planar manner from the flat nozzle, is disposed across the blowing direction of the forced circulation fan. This is claim 2.
It is the second characteristic configuration of the refrigeration equipment related to. The actions and effects thereof are as follows.

【0007】[0007]

【作用】本願の第1の特徴構成を備えた冷凍設備には、
電気式冷凍機と液化ガス式冷凍機が共に備えられる。従
って、例えば、既存の電気式冷凍庫に液化ガス式冷凍機
を付設するだけの操作で、本願の冷凍設備を得ることが
できる。そして、制御手段を備えて、電気式冷凍機と液
化ガス式冷凍機との運転・運転停止を独立に制御できる
ため、冷凍負荷に応じて冷凍機を選択運転することによ
り冷凍能力が可変とできる。さらに、冷凍室温度検出機
構により冷凍室内温度を検出する。又、この設備には記
憶手段が備えられ、この記憶手段に冷凍対象となる食品
の凍結温度が記憶されている。そして、凍結温度通過冷
凍制御手段により、冷凍室内温度が前記凍結温度の近傍
にある場合に、液化ガス式冷凍機が運転される。従っ
て、本願の冷凍設備においては、冷凍操作を行う場合に
食品が凍結温度を通過する時点において、液化ガス式の
冷凍をおこなうこととなる。結果、例えば、食品の凍結
温度近傍までの冷却、冷凍状態における保冷を電気式冷
凍機でおこない、凍結温度通過冷凍制御手段により液化
ガス式冷凍機で凍結をおこなうようにすると、液化ガス
の消費を最小に抑えた状態で、良好な、冷却、冷凍保存
を継続的におこなうことができる。即ち、本願の冷凍設
備においては、経済的に稼働しうる電気式冷凍機と、負
荷に応じて冷熱を短時間に多量に供給できる液化ガス式
冷凍機のメリットを各々採り入れ、各種食品の冷凍に対
して最適な冷却速度と経済性とを両立させて、冷凍操作
を行うことが可能となる。
In the refrigerating equipment equipped with the first characteristic configuration of the present application,
Both an electric refrigerator and a liquefied gas refrigerator are provided. Therefore, for example, the refrigeration equipment of the present application can be obtained by simply attaching the liquefied gas refrigerator to the existing electric refrigerator. Further, since the control means can be provided to independently control the operation / stop of the electric refrigerator and the liquefied gas refrigerator, the refrigerating capacity can be varied by selectively operating the refrigerator according to the refrigerating load. . Further, the freezing room temperature detection mechanism detects the freezing room temperature. Further, this equipment is provided with a storage means, and the freezing temperature of the food to be frozen is stored in this storage means. Then, the liquefied gas refrigerator is operated by the freezing temperature passage freezing control means when the temperature of the freezing chamber is near the freezing temperature. Therefore, in the refrigeration equipment of the present application, liquefied gas type refrigeration is performed at the time when the food passes the freezing temperature when the refrigeration operation is performed. As a result, for example, when the food is cooled to near the freezing temperature and kept cold in the frozen state by the electric refrigerator, and the freezing temperature passage refrigeration control means freezes the liquefied gas refrigerator, the consumption of the liquefied gas is reduced. Good cooling, freezing and storage can be continuously performed with the amount kept to a minimum. That is, in the refrigeration equipment of the present application, the electric refrigerator that can be operated economically and the merits of the liquefied gas refrigerator that can supply a large amount of cold heat in a short time according to the load are respectively adopted to freeze various foods. On the other hand, it becomes possible to perform the refrigerating operation while making the optimum cooling rate compatible with the economical efficiency.

【0008】さらに、本願第2の特徴構成を備えた冷凍
設備においては、冷凍庫内に強制循環ファンを備えるこ
とにより、この強制循環ファンにより、冷凍室内を循環
する循環流が誘起される。液化ガス式冷凍機に備えられ
る液化ガス噴射用のノズルとしては、平面ノズルが採用
される。このノズルからは、液化ガスが面状に拡散噴射
される。そして、この拡散噴射の面が強制循環ファンの
吹き出し方向に対して、その横断方向とされる。よっ
て、ノズルより吹き出した液化ガスは、拡散された状態
で、循環流の方向にさらに拡散されて、冷凍室内を循環
する。従って、強制循環ファンと拡散噴射面との位置関
係を密に狭くすることができ、比較的狭い空間で、十分
且つ均等な拡散を伴った状態で液化ガスを噴霧でき、有
効に液化ガスによる冷却、冷凍をおこなうことができ
る。
Further, in the refrigerating equipment having the second characteristic constitution of the present application, by providing the forced circulation fan in the freezer, the forced circulation fan induces the circulation flow circulating in the freezing chamber. A flat nozzle is used as a nozzle for liquefied gas injection provided in the liquefied gas refrigerator. From this nozzle, the liquefied gas is diffused and ejected in a planar manner. Then, the surface of this diffusion injection is set to be a direction transverse to the blowing direction of the forced circulation fan. Therefore, the liquefied gas blown out from the nozzle is further diffused in the circulating flow direction in the diffused state and circulates in the freezing chamber. Therefore, the positional relationship between the forced circulation fan and the diffusion injection surface can be tightly narrowed, the liquefied gas can be sprayed in a relatively narrow space with sufficient and even diffusion, and the cooling by the liquefied gas can be effectively performed. , Can be frozen.

【0009】[0009]

【発明の効果】従って、例えば、冷凍に必要な液化ガス
量を冷凍対象食品の水分凍結に必要な量だけに抑える事
が可能となるとともに、最大氷結晶生成帯を通過する速
度を液化ガス式冷凍機だけで行った時と同様に急速化で
き、食品の品質を向上させることが可能となる。結果、
食品の冷却、冷凍さらには、冷凍状態における保冷を良
好且つ経済的におこなえるとともに、品質面でも好まし
く、さらには、比較的狭い設備面積で望ましい冷凍操作
を行え、例えば、既存の電気式冷凍庫に適応可能で、設
備拡充が容易な冷凍設備を得ることができた。
Therefore, for example, it becomes possible to suppress the amount of liquefied gas required for freezing to only the amount required for freezing the water content of the food to be frozen, and to control the speed of passing through the maximum ice crystal formation zone by the liquefied gas method. It can be accelerated as well as when using only a refrigerator, and the quality of food can be improved. result,
Cooling and freezing of foods, and moreover, cooling in a frozen state can be performed satisfactorily and economically, and in terms of quality, it is possible to perform a desired freezing operation in a relatively small equipment area. We were able to obtain a refrigeration facility that is capable and easy to expand.

【0010】[0010]

【実施例】以下、本発明の冷凍設備の一例を、図面に基
づき説明する。図1は、本発明の冷凍設備の主要部の構
成を示す系統説明図である。同図において、符号3は食
品の冷凍庫、8は冷凍室、20は電気式冷凍機(蒸気圧
縮式冷凍機)であり、1は液化ガス式冷凍機(噴射式冷
凍機)を示している。この例の電気式冷凍機20は、前
記冷凍庫3に既設のものである。さらに、図2に、この
設備の正面図が示されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the refrigerating equipment of the present invention will be described below with reference to the drawings. FIG. 1 is a system explanatory view showing the configuration of the main part of the refrigeration equipment of the present invention. In the figure, reference numeral 3 is a food freezer, 8 is a freezer compartment, 20 is an electric refrigerator (vapor compression refrigerator), and 1 is a liquefied gas refrigerator (injection refrigerator). The electric refrigerator 20 of this example is already installed in the freezer 3. Further, FIG. 2 shows a front view of this equipment.

【0011】前記電気式冷凍機20は、蒸気圧縮式冷凍
サイクルを構成する機器である蒸発器33、圧縮機3
0、凝縮器31、圧力センサー(図示せず)、膨張弁3
5及び受液タンク32等と、これらを介する配管系を備
えて構成されている。ここで、図示するように、蒸発器
33と膨張弁35は冷凍庫3内に、それ以外は冷凍庫3
外に設置されている。この蒸発器33には、蒸発器用フ
ァン34が備えられている。この蒸発器用ファン34
は、液化ガス式冷凍機1の運転と連動して、電気式冷凍
機20に備えられる他の機器とは独立に運転が可能な構
成が取られている。この構成を採用することにより、液
化ガス式冷凍機1の運転時に蒸発器用ファン34を運転
して、蒸発器33への液化ガスの固着の問題を解消でき
る。
The electric refrigerator 20 includes an evaporator 33 and a compressor 3 which are components of a vapor compression refrigeration cycle.
0, condenser 31, pressure sensor (not shown), expansion valve 3
5 and the liquid receiving tank 32 and the like, and a piping system through these. Here, as shown in the figure, the evaporator 33 and the expansion valve 35 are inside the freezer 3, and the other parts are inside the freezer 3.
Installed outside. The evaporator 33 is provided with an evaporator fan 34. This evaporator fan 34
Is configured so that it can be operated independently of other devices provided in the electric refrigerator 20 in conjunction with the operation of the liquefied gas refrigerator 1. By adopting this configuration, it is possible to operate the evaporator fan 34 during operation of the liquefied gas refrigerator 1 and solve the problem of liquefied gas sticking to the evaporator 33.

【0012】前記液化ガス式冷凍機1は、電気式冷凍機
20を備えた冷凍庫3に新たに追加されるものであり、
図1に示すようにノズル4、液化ガス源としての液化ガ
スボンベ2、液化ガス供給管7、液化ガス導入管6、電
磁弁5、液化ガスバイパス管9、安全弁10、強制循環
ファン12等を備えて構成されている。このうちノズル
4、液化ガス導入管6、強制循環ファン12は冷凍庫3
内に設置され、それ以外は冷凍庫3外に設置される。前
記強制循環ファン12は、電気式冷凍機20の動作とと
もに連動して動作することもできる構成が、取られてい
る。即ち、例えば電気式冷凍機20のみを運転して、食
品を凍結温度近傍まで冷却する場合にも、このファン1
2が運転される。この冷却工程では食品の凍結点以上の
温度における冷却を主としており、伝熱の推進力に相当
する温度差は充分確保できることから、強制循環ファン
12による空気流速の増加に伴う熱伝達率増加の効果が
大きく、初期温度の高い食品を凍結温度(凍結点)点付
近まで急速に冷却することが可能となる。前記ノズル4
は、液化ガスを面状に噴射する平面ノズルから構成され
ており、この平面ノズルより面状に拡散噴射される液化
ガス(具体的には窒素)の拡散噴射面が、前記強制循環
ファン12の吹き出し方向を横断するように構成されて
いる。具体的には、図1において、液化ガスは紙面表裏
方向に裏側から表側(図2において左側から右側)に向
けて噴射されており、紙面の上下方向に幅を有する面状
に拡散噴射される。
The liquefied gas refrigerator 1 is newly added to the freezer 3 having the electric refrigerator 20.
As shown in FIG. 1, a nozzle 4, a liquefied gas cylinder 2 as a liquefied gas source, a liquefied gas supply pipe 7, a liquefied gas introduction pipe 6, a solenoid valve 5, a liquefied gas bypass pipe 9, a safety valve 10, a forced circulation fan 12 and the like are provided. Is configured. Of these, the nozzle 4, the liquefied gas introduction pipe 6, and the forced circulation fan 12 are the freezer 3.
It is installed inside, and other than that is installed outside the freezer 3. The forced circulation fan 12 is configured so that it can operate in conjunction with the operation of the electric refrigerator 20. That is, even when, for example, only the electric refrigerator 20 is operated to cool food to a temperature near the freezing temperature, the fan 1
2 is driven. In this cooling process, the food is mainly cooled at a temperature equal to or higher than the freezing point, and the temperature difference corresponding to the driving force of heat transfer can be sufficiently secured. Therefore, the effect of increasing the heat transfer coefficient with the increase in the air flow velocity by the forced circulation fan 12 is achieved. It is possible to rapidly cool a food having a large temperature and a high initial temperature to near the freezing temperature (freezing point). The nozzle 4
Is composed of a flat nozzle for injecting liquefied gas in a plane shape. The diffusion injection surface of the liquefied gas (specifically, nitrogen) diffused and ejected in a plane shape by this plane nozzle is It is configured to traverse the blowing direction. Specifically, in FIG. 1, the liquefied gas is jetted from the back side to the front side (left side to right side in FIG. 2) in the front and back direction of the paper, and is diffused and jetted into a plane having a width in the vertical direction of the paper. .

【0013】前記冷凍庫3の壁面には排気口13が設け
られ、この排気口13に電動排気ダンパー14が備えら
れている。この電動排気ダンパー14は、液化ガス式冷
凍機1に備えられる電磁弁5と連動して開閉する。後述
するように、この構成を採用することにより、液化ガス
の消費量を低減化することができる。さらに、冷凍室8
内の右側面の中央で冷凍室8の半分の高さに、冷凍室温
度検出機構を成す温度センサ16が設置されている。こ
の温度センサ16は冷凍室8の温度を検出する。
An exhaust port 13 is provided on the wall surface of the freezer 3, and an electric exhaust damper 14 is provided at the exhaust port 13. The electric exhaust damper 14 opens and closes in conjunction with the solenoid valve 5 provided in the liquefied gas refrigerator 1. As will be described later, by adopting this configuration, the consumption amount of liquefied gas can be reduced. Furthermore, the freezer compartment 8
A temperature sensor 16 forming a freezing room temperature detecting mechanism is installed at the center of the right side surface of the inside and half the height of the freezing room 8. The temperature sensor 16 detects the temperature of the freezer compartment 8.

【0014】前記電気式冷凍機20と液化ガス式冷凍機
1との運転制御用に、図2に示すように、運転操作盤1
00が備えられている。これは、制御手段としてのシー
ケンスコントローラー101を内蔵し、電気式冷凍機2
0及び液化ガス式冷凍機1の運転、運転停止を自由に選
択、制御する。このシーケンスコントローラー101に
よる制御は、下記する運転切り換えスイッチ111、冷
却スイッチ112の操作に優先し、シーケンスコントロ
ーラー101に記憶されている、手順に従って、両冷凍
機1、20を択一的にもしくは併用状態で、同時的に運
転することが可能となっている。当然、各冷凍機に於け
る運転開始温度、停止温度、運転時間等の制御が可能と
なっている。さらに、シーケンスコントローラー101
は、冷凍対象となる冷凍対象食品の凍結温度を記憶する
メモリーから構成される記憶手段102を備えている。
このメモリーには、凍結対象食品を液化ガス冷凍機1で
凍結処理する場合に必要となる、凍結温度(凍結点)、
処理時間、処理開始温度、処理停止温度等が記憶されて
おり、これらの情報が、書き込み変更可能に構成されて
いる。このメモリーより後述する制御ソフトである凍結
温度通過冷凍制御手段103に、適切な情報を与えるこ
とができる。即ち、前記冷凍室温度検出機構を成す温度
検出センサ16により検出される冷凍室内温度が、凍結
温度の近傍にある場合に、液化ガス式冷凍機1を運転動
作させる凍結温度通過冷凍制御手段103が前述の制御
手段としてのシーケンスコントローラー101に格納さ
れている。このシーケンスコントローラー101は、既
存の電気式冷凍機20の運転に関しては、電気式冷凍機
20の元電源(図示せず)、扉ヒーター電源(図示せ
ず)、蒸発器用ファン34の電源を制御する。一方、液
化ガス式冷凍機1の運転に関しては、温度調節器15、
電磁弁5、庫内強制循環ファン12、電動排気ダンパー
14の制御を行う。
For operation control of the electric refrigerator 20 and the liquefied gas refrigerator 1, as shown in FIG.
00 is provided. This has a built-in sequence controller 101 as a control means, and the electric refrigerator 2
0 and the operation and stoppage of the liquefied gas refrigerator 1 are freely selected and controlled. The control by the sequence controller 101 has priority over the operation of the operation changeover switch 111 and the cooling switch 112 described below, and according to the procedure stored in the sequence controller 101, both the refrigerators 1 and 20 are selectively or in a combined state. It is possible to drive at the same time. Naturally, it is possible to control the operation start temperature, the stop temperature, the operation time, etc. in each refrigerator. Furthermore, the sequence controller 101
Is provided with a storage unit 102 including a memory that stores the freezing temperature of the frozen food to be frozen.
In this memory, the freezing temperature (freezing point), which is necessary when the food to be frozen is frozen by the liquefied gas refrigerator 1,
The processing time, the processing start temperature, the processing stop temperature, and the like are stored, and these pieces of information can be written and changed. From this memory, appropriate information can be given to the freezing temperature passage refrigeration control means 103 which is the control software described later. That is, when the freezing room temperature detected by the temperature detection sensor 16 forming the freezing room temperature detecting mechanism is in the vicinity of the freezing temperature, the freezing temperature passage freezing control means 103 for operating the liquefied gas refrigerator 1 is operated. It is stored in the sequence controller 101 as the above-mentioned control means. Regarding the operation of the existing electric refrigerator 20, the sequence controller 101 controls a power source (not shown) of the electric refrigerator 20, a door heater power source (not shown), and a power source of the evaporator fan 34. . On the other hand, regarding the operation of the liquefied gas refrigerator 1, the temperature controller 15,
The solenoid valve 5, the forced circulation fan 12 in the refrigerator, and the electric exhaust damper 14 are controlled.

【0015】運転操作盤100に対して備えられる操作
パネル110内には、各冷凍機1、20の運転切り換え
スイッチ111、および冷却スイッチ112、液化ガス
式冷凍機1の運転時間を制御する第1タイマー113、
液化ガス式冷凍機1と電気式冷凍機20の併用運転にお
ける初期の電気式冷凍機20の単独運転時間を制御する
第2タイマー114、各種警報ランプ115、ブザー1
16、液化ガス圧力計11等が備えられている。
In the operation panel 110 provided for the operation operation panel 100, the operation changeover switch 111 of each of the refrigerators 1 and 20, the cooling switch 112, and the first operation time control of the liquefied gas refrigerator 1 are controlled. Timer 113,
A second timer 114, various alarm lamps 115, and a buzzer 1 for controlling the initial operation time of the electric refrigerator 20 in the combined operation of the liquefied gas refrigerator 1 and the electric refrigerator 20.
16, a liquefied gas pressure gauge 11 and the like are provided.

【0016】前記液化ガス式冷凍機1は、前記運転操作
盤100の運転切り換えスイッチ111が液化ガス式の
位置で、冷却スイッチ112(運転スイッチ)が押され
ることにより運転を開始する。但し、これらのスイッチ
に対してシーケンスコントローラー101からの指示が
優先する運転も可能な構成である。運転を開始すると、
温度センサ16が庫内温度を検出し、温度調節器15で
設定された温度以上であれば電磁弁5を開き、液化ガス
導入管6をへて液化ガスが冷凍室8内に流入される。流
入した液化ガスは、ノズル4で気化し、庫内空気と熱交
換して冷却される。さらに、前記電磁弁5が開くと同時
に電動排気ダンパー14が開き、液化ガスが気化して熱
交換したあとの排気ガスを排気口13を経て、冷凍庫3
外へ放出する。庫内温度が温度調節器15の設定温度に
達すると、液化ガス用の第1タイマー113が作動し、
第1タイマー113で設定された時間だけ庫内温度を温
度調節器15で設定された温度に保つように液化ガスを
電磁弁5の開閉で制御し、正確に庫内温度を制御する。
一方、この液化ガスの導入時に、電磁弁5が閉じた場
合、冷凍室8の冷気を逃さない様に電動排気ダンパー1
4を閉じることにより排気口13を閉じる構成が採用さ
れており、省エネルギー化が図られている。また、この
電動排気ダンパー14の閉じる時間としては、液化ガス
導入管6(電磁弁5とノズル4の間のもの)に溜まった
液化ガスが完全に抜けきるまでの時間を考慮した遅延機
構(図示せず)を持たせ、冷凍室8内が残留した液化ガ
スの気化に伴って圧力上昇することを防いでいる。さら
に、液化ガス式冷凍機1に備えられる安全弁10は、液
化ガスボンベ2の元弁(図示せず)を閉止した際に、こ
の液化ガスボンベ元弁と電磁弁5の間の液化ガス供給管
7内に滞留した液化ガスが気化して高圧となった場合
に、ブルドン管式圧力計11と電磁弁5の破損や作動不
良を防止するため、所定の圧力以上となった時に安全弁
10を開き、液化ガスバイパス管9を経て冷凍室8内に
導入し、液化ガス供給管7内の液化ガス圧力を低下させ
る役割を果たす。
The liquefied gas refrigerator 1 starts its operation when the operation changeover switch 111 of the operation control panel 100 is in the liquefied gas type position and the cooling switch 112 (operation switch) is pushed. However, the operation is also possible in which the instruction from the sequence controller 101 gives priority to these switches. When you start driving,
The temperature sensor 16 detects the temperature inside the refrigerator, and if it is equal to or higher than the temperature set by the temperature controller 15, the electromagnetic valve 5 is opened and the liquefied gas is introduced into the freezer compartment 8 through the liquefied gas introduction pipe 6. The liquefied gas that has flowed in is vaporized by the nozzle 4, exchanges heat with the air in the refrigerator, and is cooled. Further, at the same time when the solenoid valve 5 is opened, the electric exhaust damper 14 is opened, and the exhaust gas after the liquefied gas is vaporized and heat-exchanged is exhausted through the exhaust port 13 to the freezer 3.
Discharge to the outside. When the internal temperature reaches the set temperature of the temperature controller 15, the first timer 113 for liquefied gas is activated,
The liquefied gas is controlled by opening and closing the solenoid valve 5 so that the temperature inside the refrigerator is kept at the temperature set by the temperature controller 15 for the time set by the first timer 113, and the temperature inside the refrigerator is accurately controlled.
On the other hand, when the electromagnetic valve 5 is closed at the time of introducing the liquefied gas, the electric exhaust damper 1 is provided so as not to let the cold air in the freezer compartment 8 escape.
A configuration is adopted in which the exhaust port 13 is closed by closing 4 to save energy. Further, as a closing time of the electric exhaust damper 14, a delay mechanism considering the time until the liquefied gas accumulated in the liquefied gas introduction pipe 6 (the one between the solenoid valve 5 and the nozzle 4) is completely exhausted (Fig. (Not shown) is provided to prevent the pressure inside the freezer compartment 8 from increasing due to vaporization of the remaining liquefied gas. Further, the safety valve 10 provided in the liquefied gas refrigerator 1 is provided inside the liquefied gas supply pipe 7 between the liquefied gas cylinder main valve and the solenoid valve 5 when the main valve (not shown) of the liquefied gas cylinder 2 is closed. In order to prevent damage and malfunction of the Bourdon tube type pressure gauge 11 and the solenoid valve 5 when the liquefied gas accumulated in the gas is vaporized to a high pressure, the safety valve 10 is opened and liquefied when the pressure exceeds a predetermined pressure. It is introduced into the freezing chamber 8 through the gas bypass pipe 9 and plays a role of reducing the pressure of the liquefied gas in the liquefied gas supply pipe 7.

【0017】前記電気式冷凍機20は、前記運転操作盤
100の運転切り換えスイッチ111が電気式で冷却ス
イッチ112(運転スイッチ)が押された場合に運転を
行う。但し、これらのスイッチに対してシーケンスコン
トローラー101からの指示が優先する運転も可能であ
る。運転を開始すると、従来周知のように、蒸気圧縮式
冷凍サイクルを成す機器が働き、蒸発器ファン34によ
り冷凍庫3内に形成される循環流と蒸発器33の間での
熱交換によりその循環流を冷却することができる。
The electric refrigerator 20 is operated when the operation changeover switch 111 of the operation control panel 100 is electric and the cooling switch 112 (operation switch) is pushed. However, an operation in which the instruction from the sequence controller 101 has priority over these switches is also possible. When the operation is started, as is well known in the art, a device forming a vapor compression refrigeration cycle operates, and a circulation flow formed in the freezer 3 by the evaporator fan 34 and heat exchange between the evaporator 33 cause the circulation flow. Can be cooled.

【0018】本願の冷凍設備1においては、2種類の冷
凍運転方式を選択できる。即ち、その第1の冷凍運転方
式は、電気式→液化ガス式→電気式といった各冷凍機を
順次運転して冷凍する方式であり、他方のものは、電気
式と液化ガス式を併用する方式である。自動運転する場
合は、前述のシーケンスコントローラ101に運転手順
を入力しておくことで、冷却、冷凍、保冷を自動的に行
える。
In the refrigerating equipment 1 of the present application, two kinds of refrigerating operation methods can be selected. That is, the first refrigerating operation method is a method of sequentially operating and refrigerating each refrigerator such as an electric type, a liquefied gas type, and an electric type, and the other one is a method using both an electric type and a liquefied gas type. Is. In the case of automatic operation, cooling, freezing, and cold keeping can be automatically performed by inputting an operation procedure into the sequence controller 101 described above.

【0019】先ず、第1の冷凍運転方式について詳述す
る。この第1の冷凍運転方式は、冷凍対象の食品が高温
で凍結点よりもかなり温度が高い時に用いる冷凍方式
で、まず電気式冷凍機20の運転で食品を凍結温度(凍
結点)付近に冷却し、その後の凍結温度を通過させるた
めに必要な冷熱を液化ガス式冷凍機1によって供給し
て、凍結を急速に行う。この液化ガス式冷凍機1の運転
開始、運転停止が前述の凍結温度通過冷凍制御手段10
3によって、温度、運転開始からの時間基準で行われ
る。この時、食品によっては冷凍温度を電気式冷凍機2
0の冷媒沸点より低い温度に設定する事もあるため、あ
らかじめ電気式冷凍機20の運転は停止させる。しかし
ながら、蒸発器用ファン34は液化ガス式冷凍機1運転
での低温に対処するため連続で運転され、固着の防止が
図られている。また、この時の液化ガス式冷凍機1の運
転時間は各種食品によって異なってくるので、冷凍予備
実験等であらかじめ食品の芯温と保持時間との関係を求
めて、記憶手段102に記憶させておき、第1タイマ1
13をその時間に設定する。そして、この第1タイマー
113の設定時間が終了すると、電気式冷凍機20の運
転を再開するが、この時の冷凍室8内温度が電気式冷凍
機20の冷媒沸点以下である場合や、異常があれば、電
気式冷凍機20自身が持つ、安全スイッチの1つである
圧力スイッチ(図示しない)が働き、電気式冷凍機20
は作動しない。冷凍室8内の冷熱が放熱その他食品への
過冷凍に使用され冷凍室8内温度が上がってくれば、電
気式冷凍機20が作動し、冷凍食品の保存運転を行う。
このような冷凍方式を取ることによって、冷凍に必要な
液化ガス量を被凍結物の水分凍結に必要な量だけに抑え
る事ができるうえ、最大結晶生成帯を通過する速度を、
液化ガス式冷凍機1だけで行った時と同様に急速化で
き、冷凍食品の品質を向上させることが可能となる。
First, the first refrigerating operation system will be described in detail. This first freezing operation method is a freezing method used when the food to be frozen has a high temperature and a temperature considerably higher than the freezing point. First, the electric refrigerator 20 is operated to cool the food to near the freezing temperature (freezing point). Then, the cold heat required to pass the freezing temperature thereafter is supplied by the liquefied gas type refrigerator 1 to perform freezing rapidly. Operation of the liquefied gas refrigerator 1 is started and stopped by the above-mentioned freezing temperature passage refrigeration control means 10
3 is performed on the basis of temperature and time from the start of operation. At this time, depending on the food, the freezing temperature may be controlled by the electric refrigerator 2.
Since the temperature may be set lower than the boiling point of the refrigerant of 0, the operation of the electric refrigerator 20 is stopped in advance. However, the evaporator fan 34 is continuously operated in order to cope with the low temperature during the operation of the liquefied gas refrigerator 1, and the sticking is prevented. Further, since the operating time of the liquefied gas refrigerator 1 at this time varies depending on various foods, the relationship between the core temperature and the holding time of the foods is obtained in advance in a preliminary freezing experiment or the like and stored in the storage means 102. Every 1st timer 1
Set 13 to that time. Then, when the set time of the first timer 113 ends, the operation of the electric refrigerator 20 is restarted, but when the temperature inside the freezer compartment 8 at this time is equal to or lower than the boiling point of the refrigerant of the electric refrigerator 20, or when there is an abnormality. If there is, a pressure switch (not shown), which is one of the safety switches of the electric refrigerator 20 itself, works, and the electric refrigerator 20
Does not work. When the cold heat in the freezer compartment 8 is used for heat dissipation and other over-freezing of food, and the temperature in the freezer compartment 8 rises, the electric refrigerator 20 operates and the frozen food storage operation is performed.
By adopting such a refrigeration system, the amount of liquefied gas required for freezing can be suppressed to only the amount required for freezing the water content of the frozen object, and the speed of passing through the maximum crystal formation zone is
As in the case of using only the liquefied gas refrigerator 1, the speed can be increased, and the quality of frozen food can be improved.

【0020】この冷凍方式を取る場合に於ける強制循環
ファン12の運転について説明すると、初期の電気式冷
凍機20の運転時には、液化ガス式冷凍機1に備えられ
ている強制循環ファン12を運転して熱伝達率を向上さ
せ、急速冷却が可能である。一方、凍結後から保存冷凍
に入った場合は、通常の電気式冷凍機20のみの運転と
同じく、蒸発器用ファン34だけの運転とする。
The operation of the forced circulation fan 12 in the case of adopting this refrigeration system will be described. At the initial operation of the electric refrigerator 20, the forced circulation fan 12 provided in the liquefied gas refrigerator 1 is operated. Therefore, the heat transfer coefficient is improved and rapid cooling is possible. On the other hand, when storage refrigeration is started after freezing, only the evaporator fan 34 is operated in the same manner as the normal electric refrigerator 20 is operated.

【0021】以上が、本願の冷凍設備の主要部の構成
と、その主な運転方式に関する説明であるが、以下に、
実際の運転状態について説明する。実施にあたって使用
した冷凍設備の概要と、冷凍対象とした食品の概要を表
1に箇条書きする。
The above is a description of the structure of the main part of the refrigeration equipment of the present application and the main operation system thereof.
The actual operating state will be described. The outline of the refrigeration equipment used in the implementation and the outline of the foods to be frozen are listed in Table 1.

【0022】[0022]

【表1】冷凍設備関係 冷凍室容積 350リットル 食品受棚 奥行き430mm×幅450mmのアルミトレイを75
mm間隔で14段を装備 電気式冷凍機能力 公称1100W 冷媒 R−22 冷凍対象の食品関係 醗酵前のパン生地で、1個45g、それをアルミトレイ
1段当たり43個充填し、冷凍室内に全14段で602
個のパン生地を充填した。 全充填量は重量で27.09kg
[Table 1] Refrigerator equipment capacity Freezer compartment capacity 350 liters Food receiving rack 75 aluminum trays 430 mm deep and 450 mm wide
Equipped with 14 stages at mm intervals Electric refrigeration functional power Nominal 1100W Refrigerant R-22 Food related foods to be frozen 45 g of bread dough before fermentation, 43 pieces per aluminum tray are filled, and a total of 14 in the freezer 602 in steps
Pieces of dough were filled. Total filling amount is 27.09kg by weight

【0023】以下、運転状況について説明する。 1 無負荷運転(食品の凍結を伴わない運転) 図3に、電気式冷凍機単独もしくは液化ガス冷凍機単独
で、無負荷で運転した場合の経過時間と庫内温度との関
係を示した。結果からも判るように、電気式冷凍機の運
転だけでは冷凍室内を常温(20℃)から−40℃に下
げるのに無負荷でも2時間30分を要している。それに
対して液化ガス式は4分強で冷凍室内を冷却でき、電気
式の約1/40時間で冷凍室を冷却できる速度が得られ
る。
The operation status will be described below. 1 No-load operation (operation without freezing food) Fig. 3 shows the relationship between the elapsed time and the temperature in the refrigerator when the electric refrigerator alone or the liquefied gas refrigerator alone is operated without load. As can be seen from the result, it takes 2 hours and 30 minutes even if no load is applied to lower the temperature of the freezing chamber from room temperature (20 ° C) to -40 ° C only by operating the electric refrigerator. On the other hand, the liquefied gas type can cool the freezing chamber in a little over 4 minutes, and the cooling rate of the freezing chamber can be obtained in about 1/40 hours of the electric type.

【0024】2 食品の凍結を伴う両冷凍機の交互運転 上記の醗酵前のパン生地を各冷凍機を併用して凍結した
結果を図4に示した。この例では、冷凍室内を予め−4
0℃に冷却しておき、一度運転停止の状態から、アルミ
トレイをすばやく冷凍室に充填して冷凍運転を開始し
た。開始から24分までを電気式冷凍機と循環ファンと
の共用運転とし、それ以降を液化ガス式冷凍機単独運転
としている。冷凍室の上から1,4,7,10,14段
のアルミトレイ内の、中央部に位置するパン生地の中心
部に温度センサーを取り付け、芯温の測定を行った。図
からも判るようにパン生地の平均芯温が−7〜−8℃の
凍結点を通過するのに約4分と液化ガス式と同じで、−
10℃の過凍結温度までわずか32分であった。この時
の液体窒素消費量は約12.5kgで、液化ガス式冷凍
機だけで行ったときの、2/3の消費量で凍結ができ
た。ここで、凍結には、実機運転においては26分から
30分までの凍結帯通過時の運転で充分である。 3 食品の凍結を伴う電気式冷凍機単独の運転 上記の例と同様な醗酵前のパン生地を電気式冷凍機だけ
で凍結した結果を、図5に示した。この例では、凍結前
に冷凍室をあらかじめ−40℃に冷却しておき、電気式
冷凍機の運転を停止させてから、パン生地を充填したア
ルミトレイをすばやく冷凍室に充填して冷凍運転を開始
した。芯温の測定も上記の例と同様に行った。図からも
判るようにパン生地の平均芯温が−7〜−8℃の凍結点
を通過するのに約20分を要し、−10度の過凍結温度
まで70分を費やしている。
2 Alternate operation of both refrigerators accompanied by freezing of foods The results of freezing the above-mentioned bread dough before fermentation using each refrigerator are shown in FIG. In this example, the freezing chamber is previously set to -4.
It was cooled to 0 ° C., and once the operation was stopped, the aluminum tray was quickly filled in the freezing compartment to start the freezing operation. From the start to 24 minutes, the electric refrigerating machine and the circulation fan are commonly used, and after that, the liquefied gas refrigerating machine is independently operated. A temperature sensor was attached to the center of the bread dough located in the center in the aluminum tray of 1, 4, 7, 10, and 14 stages from the top of the freezer to measure the core temperature. As can be seen from the figure, it takes about 4 minutes for the average core temperature of the dough to pass the freezing point of -7 to -8 ° C, which is the same as the liquefied gas type,
The superfreezing temperature of 10 ° C was only 32 minutes. The liquid nitrogen consumption at this time was about 12.5 kg, and freezing was possible with the consumption amount of 2/3 when only the liquefied gas refrigerator was used. Here, for freezing, in the actual machine operation, the operation during the freezing zone from 26 minutes to 30 minutes is sufficient. 3 Operation of Electric Freezer Alone with Freezing of Foods The result of freezing the dough before fermentation similar to the above example with only the electric freezer is shown in FIG. In this example, the freezing compartment is cooled to -40 ° C in advance before freezing, the operation of the electric refrigerator is stopped, and then the aluminum tray filled with the bread dough is quickly filled into the freezing compartment to start the freezing operation. did. The core temperature was also measured as in the above example. As can be seen from the figure, it takes about 20 minutes for the average core temperature of the bread dough to pass through the freezing point of -7 to -8 ° C, and it takes 70 minutes to reach the superfreezing temperature of -10 degrees.

【0025】4 食品の凍結を伴う液化ガス式冷凍機単
独の運転 上記の例と同様な醗酵前のパン生地を液化ガス式冷凍機
だけで凍結した結果を図6に示した。この例では、完全
に運転停止の状態から凍結を行っており、冷凍室内温度
は外気温と同じである。この状態でアルミトレイをすば
やく冷凍室に装填して冷凍運転を開始した。芯温の測定
も上記の例と同様に行った。図からも判るようにパン生
地の平均芯温が−7〜−8℃の凍結点を通過するのに約
4分と非常に早く、−10℃の過凍結温度までわずか1
8分であった。この時の液体窒素消費量は約19kgで
あったが冷凍室内を予め冷却しておけば消費量をより少
なくできる。また、−40℃の設定温度に達する速度
は、無負荷時と同じ4分で、負荷の量にかかわらず急速
に設定温度まで冷却できている。この結果からも判るよ
うに、冷凍食品の生産量が電気式冷凍機の4倍程度能力
アップできる。さらに、凍結点を通過する速度が電気式
の5倍近く速く、品質面においても非常に優れた冷凍食
品が得られる。
4 Operation of Liquefied Gas Type Refrigerator Alone with Freezing of Foods The result of freezing the dough before fermentation similar to the above example only with the liquefied gas type refrigerator is shown in FIG. In this example, the freezing is performed from the completely stopped state, and the freezing room temperature is the same as the outside air temperature. In this state, the aluminum tray was quickly loaded into the freezing compartment and the freezing operation was started. The core temperature was also measured as in the above example. As can be seen from the figure, the average core temperature of the bread dough is very fast, about 4 minutes, before passing through the freezing point of -7 to -8 ° C, and it is only 1 at the superfreezing temperature of -10 ° C.
It was 8 minutes. The amount of liquid nitrogen consumed at this time was about 19 kg, but the amount of liquid nitrogen consumed can be reduced by cooling the freezing chamber in advance. Further, the rate of reaching the set temperature of -40 ° C is the same 4 minutes as when no load is applied, and the set temperature can be rapidly cooled regardless of the load amount. As can be seen from this result, the production capacity of frozen foods can be increased by about four times that of electric refrigerators. Furthermore, the speed of passing through the freezing point is about 5 times faster than that of the electric type, and frozen foods with excellent quality can be obtained.

【0026】上記の例においては、電気式と液化ガス式
の冷却、冷凍、保冷を2種の冷凍機を交互に働かせて択
一的に行ったが、食品の初期温度状態、さらに食品の性
状によっては、両方式を同時的に適応することもでき
る。こういった例を以下に説明する。この第2の冷凍運
転方式は、電気式冷凍機20は常時運転しておき、食品
の最大氷結晶生成帯を通過するときに、液化ガス式冷凍
機1を同時に運転して急速にその温度帯を通過させ、そ
れ以降食品を過冷凍する時には電気式冷凍機20の運転
のみにするものである。この様な方式を適応できる冷凍
対象食品としては、液状凍結物(袋詰めスープ類等)等
で、初期温度が低く且つ冷凍物の厚さが薄いものを挙げ
ることができる。この場合は、食品自体の伝熱面積も大
きく、液化ガス式冷凍機1での設定温度を電気式冷凍機
20の設定温度以下に下げる必要が無いため、常時、電
気式冷凍機20を運転しておき、凍結温度近傍で液化ガ
ス式冷凍機1を同時運転し、液化ガス量を極力抑えた凍
結を行うことができる。
In the above example, electric type and liquefied gas type cooling, freezing, and cold keeping were selectively performed by alternately operating two kinds of refrigerators. Depending on the case, both methods can be applied simultaneously. An example of such a case will be described below. In this second refrigerating operation method, the electric refrigerator 20 is always operated, and when passing through the maximum ice crystal production zone of food, the liquefied gas refrigerator 1 is simultaneously operated and the temperature zone thereof is rapidly increased. When the food is superfrozen after that, the electric refrigerator 20 is only operated. Foods to be frozen that can be applied to such a system include liquid frozen products (bag soups, etc.) having a low initial temperature and a thin frozen product. In this case, since the heat transfer area of the food itself is large and it is not necessary to lower the set temperature in the liquefied gas refrigerator 1 to the set temperature of the electric refrigerator 20 or less, the electric refrigerator 20 is always operated. The liquefied gas refrigerator 1 can be operated at the same time near the freezing temperature to perform freezing with the amount of liquefied gas suppressed as much as possible.

【0027】以上、電気式、液化ガス式を併用すると、
冷凍食品の生産量が電気式冷凍機のほぼ2倍程度能力ア
ップでき、さらに、凍結点(温度)を通過する速度が液
化ガス式と同じにできるため、品質が良く、かつ液体窒
素消費量を少なくできる。つまり、冷凍能力のアップと
品質向上さらに冷凍コストを低くできる冷凍設備を得る
ことができた。
As described above, when the electric type and the liquefied gas type are used together,
The production amount of frozen foods can be increased about twice as much as that of electric refrigerators, and since the speed of passing through the freezing point (temperature) can be the same as that of liquefied gas type, the quality is good and the liquid nitrogen consumption is Can be reduced. In other words, it was possible to obtain a refrigeration facility capable of improving the refrigeration capacity, improving the quality, and reducing the refrigeration cost.

【0028】さらに、液化ガス式冷凍機1の運転時に、
排気ダンパー14を電磁弁5の作動状態と連動させて、
冷凍室8内の冷気が排気口から逃げることを防止する効
果について、発明者らが、検討した結果について以下に
説明する。冷凍室8内を空の状態にして、冷凍室8内を
外気温と同じ温度に保ち、その状態から液化ガス式冷凍
機1の運転を行った。運転では電動排気ダンパー14を
全開したままの状態(全開式と記載)と、前述したよう
に電磁弁5と連動して開閉(電磁弁5開の時電動排気ダ
ンパー14開で、閉の時閉(但し前述のようにダンパー
14の閉操作は、幾分遅延して行われる))させた状態
(開閉式と記載)での液体窒素消費量の比較を行った。
これらの場合の庫内温度の変化及び液体窒素消費量を図
7に示した。図7からも判るように、冷凍室8内を設定
温度−40℃で40分間保持した場合に、電動排気ダン
パー14を全開している時は15.2kgの液体窒素を
消費し、電動排気ダンパー14を電磁弁5と連動して開
閉した時は14kgと1.2kgも少ない液体窒素量で
ある。すなわち、電動排気ダンパー14を電磁弁5と連
動させて開閉することにより、1分間当たり30gの液
体窒素に相当する熱量損失を防止できる。
Furthermore, during operation of the liquefied gas refrigerator 1,
By linking the exhaust damper 14 with the operating state of the solenoid valve 5,
The effect of preventing the cold air in the freezer compartment 8 from escaping from the exhaust port will be described below by the inventors' examination. The inside of the freezing compartment 8 was emptied, the inside of the freezing compartment 8 was kept at the same temperature as the outside air temperature, and the liquefied gas refrigerator 1 was operated from that state. In operation, the state where the electric exhaust damper 14 is fully opened (described as a fully open type) and the opening and closing in conjunction with the solenoid valve 5 as described above (when the solenoid valve 5 is open, the electric exhaust damper 14 is open, and when it is closed, it is closed). (However, as described above, the closing operation of the damper 14 is performed with some delay), and the liquid nitrogen consumption amounts in the state (described as an open / close type) were compared.
FIG. 7 shows the changes in the internal temperature and the liquid nitrogen consumption in these cases. As can be seen from FIG. 7, when the freezer compartment 8 is kept at the set temperature of −40 ° C. for 40 minutes and the electric exhaust damper 14 is fully opened, 15.2 kg of liquid nitrogen is consumed, and the electric exhaust damper is consumed. When 14 is opened and closed in conjunction with the solenoid valve 5, the amount of liquid nitrogen is as small as 14 kg and 1.2 kg. That is, by opening and closing the electric exhaust damper 14 in conjunction with the electromagnetic valve 5, it is possible to prevent a heat loss corresponding to 30 g of liquid nitrogen per minute.

【0029】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍設備の主要部の構成を示す系統説
明図
FIG. 1 is a system explanatory view showing a configuration of a main part of a refrigeration facility of the present invention.

【図2】冷凍設備の正面図[Figure 2] Front view of refrigeration equipment

【図3】無負荷状態に於ける庫内温度の変化を示す図FIG. 3 is a diagram showing changes in the temperature inside the refrigerator in an unloaded state.

【図4】併用運転をした場合の庫内温度、パン生地芯温
度、液体窒素消費量を示す図
FIG. 4 is a diagram showing a temperature inside the refrigerator, a dough core temperature, and a liquid nitrogen consumption amount when the combined operation is performed.

【図5】電気式冷凍機のみを運転した場合の庫内温度、
パン生地芯温度を示す図
FIG. 5 is a temperature inside the refrigerator when only the electric refrigerator is operated,
Diagram showing the dough core temperature

【図6】液化ガス式冷凍機のみを運転した場合の庫内温
度、パン生地芯温度、液体窒素消費量を示す図
FIG. 6 is a diagram showing the internal temperature, bread dough core temperature, and liquid nitrogen consumption when only the liquefied gas refrigerator is operated.

【図7】排気口を開閉制御した場合と全開状態に維持し
た場合の庫内温度及び液体窒素消費量を示す図
FIG. 7 is a diagram showing the temperature inside the refrigerator and the amount of liquid nitrogen consumed when the opening and closing of the exhaust port is controlled and when the exhaust port is maintained in the fully opened state.

【符号の説明】[Explanation of symbols]

1 液化ガス冷凍機 3 冷凍庫 4 ノズル 8 冷凍室 16 冷凍室温度検出機構 20 電気式冷凍機 101 制御手段 102 記憶手段 103 凍結温度通過冷凍制御手段 1 Liquefied Gas Refrigerator 3 Freezer 4 Nozzle 8 Freezing Chamber 16 Freezing Chamber Temperature Detection Mechanism 20 Electric Refrigerator 101 Control Means 102 Storage Means 103 Freezing Temperature Passage Refrigeration Control Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝倉 隆晃 大阪府大阪市西区京町堀一丁目4番22号 株式会社リキッドガス内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takaaki Asakura 1-4-2 Kyomachibori, Nishi-ku, Osaka City, Osaka Prefecture Liquid Gas Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸気圧縮式冷凍サイクルを構成する機器
を備え、且つ冷凍庫(3)内に備えられる冷凍室(8)
を、電気を動力源として冷凍可能な電気式冷凍機(2
0)と、 液化ガス源より前記冷凍庫内に液化ガスを導入するとと
もに、前記液化ガスをノズル(4)より噴射して、前記
冷凍室(8)を冷凍可能な液化ガス式冷凍機(1)とを
備え、 前記電気式冷凍機(20)と前記液化ガス式冷凍機
(1)とを各別に、運転、運転停止制御する制御手段
(101)と、前記冷凍室内温度を検出する冷凍室温度
検出機構(16)とを備え、 前記冷凍室(8)内で冷凍対象となる冷凍対象食品の凍
結温度を記憶する記憶手段(102)を備え、 前記冷凍室温度検出機構(16)により検出される前記
冷凍室内温度が、前記凍結温度の近傍にある場合に、前
記液化ガス式冷凍機(1)を運転動作させる凍結温度通
過冷凍制御手段(103)を、前記制御手段(101)
に備えた冷凍設備。
1. A freezer compartment (8) provided with equipment constituting a vapor compression refrigeration cycle and provided in a freezer (3).
Is an electric refrigerator (2
0) and a liquefied gas refrigerator (1) capable of freezing the freezing chamber (8) by introducing the liquefied gas from the liquefied gas source into the freezer and injecting the liquefied gas from the nozzle (4). A control means (101) for controlling the operation and shutdown of the electric refrigerator (20) and the liquefied gas refrigerator (1) separately, and a refrigerating compartment temperature for detecting the refrigerating compartment temperature. A detection means (16), and a storage means (102) for storing a freezing temperature of a frozen food to be frozen in the freezing room (8), and the freezing room temperature detection mechanism (16) detects the freezing temperature. The freezing temperature passage refrigeration control means (103) for operating the liquefied gas type refrigerator (1) when the temperature of the freezing chamber is near the freezing temperature, the control means (101)
Refrigeration equipment in preparation for.
【請求項2】 前記ノズル(4)が前記液化ガスを面状
に噴射する平面ノズルであり、前記冷凍室(8)内に循
環流を誘起する強制循環ファン(12)を前記冷凍庫
(3)内に備え、前記平面ノズルより面状に拡散噴射さ
れる前記液化ガスの拡散噴射面が、前記強制循環ファン
の吹き出し方向を横断して配設される請求項1記載の冷
凍設備。
2. The freezer (3) is provided with a forced circulation fan (12) for inducing a circulating flow in the freezing chamber (8), wherein the nozzle (4) is a flat nozzle for injecting the liquefied gas in a planar manner. The refrigerating equipment according to claim 1, wherein a diffusion injection surface of the liquefied gas, which is provided inside and is diffused and ejected in a planar manner from the flat nozzle, is arranged across the blowing direction of the forced circulation fan.
JP14724695A 1995-06-14 1995-06-14 Refrigerating equipment Withdrawn JPH08338678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14724695A JPH08338678A (en) 1995-06-14 1995-06-14 Refrigerating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14724695A JPH08338678A (en) 1995-06-14 1995-06-14 Refrigerating equipment

Publications (1)

Publication Number Publication Date
JPH08338678A true JPH08338678A (en) 1996-12-24

Family

ID=15425893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14724695A Withdrawn JPH08338678A (en) 1995-06-14 1995-06-14 Refrigerating equipment

Country Status (1)

Country Link
JP (1) JPH08338678A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055396A (en) * 2013-09-11 2015-03-23 大陽日酸株式会社 Freezing method
JP2015209994A (en) * 2014-04-24 2015-11-24 大陽日酸株式会社 Over-cooling freezing device and over-cooling freezing method
JP2015209995A (en) * 2014-04-24 2015-11-24 大陽日酸株式会社 Over-cooling freezing device and over-cooling freezing method
CN107727683A (en) * 2017-10-31 2018-02-23 合肥华凌股份有限公司 Method, controller and the refrigeration plant of chill point are judged with the non-frozen water content of food
JP2019049405A (en) * 2017-09-07 2019-03-28 進得展有限公司 Cooling device and temperature control module of the same
CN114659316A (en) * 2022-02-23 2022-06-24 江南大学 Static magnetic field assisted liquefaction of CO2Pulse spraying quick-freezing device and pressurizing efficient freezing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055396A (en) * 2013-09-11 2015-03-23 大陽日酸株式会社 Freezing method
JP2015209994A (en) * 2014-04-24 2015-11-24 大陽日酸株式会社 Over-cooling freezing device and over-cooling freezing method
JP2015209995A (en) * 2014-04-24 2015-11-24 大陽日酸株式会社 Over-cooling freezing device and over-cooling freezing method
JP2019049405A (en) * 2017-09-07 2019-03-28 進得展有限公司 Cooling device and temperature control module of the same
CN107727683A (en) * 2017-10-31 2018-02-23 合肥华凌股份有限公司 Method, controller and the refrigeration plant of chill point are judged with the non-frozen water content of food
CN114659316A (en) * 2022-02-23 2022-06-24 江南大学 Static magnetic field assisted liquefaction of CO2Pulse spraying quick-freezing device and pressurizing efficient freezing method

Similar Documents

Publication Publication Date Title
JP3605503B2 (en) Refrigerator cook chill system control method and apparatus
JP2005283089A (en) Refrigerator and its control method
KR100681983B1 (en) Refrigerator
TW454084B (en) Refrigerator
JP2003075050A (en) Refrigerator
JP2003222456A (en) Device and method for controlling cool air in refrigerator
JPH08338678A (en) Refrigerating equipment
JP3576040B2 (en) Cooling systems and refrigerators
US20210310726A1 (en) Refrigerator and control method therefor
JPH0989434A (en) Refrigerator with deep freezer
JPH10267504A (en) Refrigerator
JPH06174355A (en) Refrigerator
JP3913618B2 (en) Cooling storage
JP3123847B2 (en) Cold storage
JP2005016777A (en) Refrigerator
JP3819815B2 (en) Refrigerant leak detection method for refrigerator
KR100425114B1 (en) defrosting method in the refrigerator with 2 evaporators
JP2000230768A (en) Refrigerator
CN110806046B (en) Single-door refrigerator
JPS6115495Y2 (en)
JP4148584B2 (en) Cooling storage
KR100290719B1 (en) The Vaccum Refrigerator
JPS5923516Y2 (en) food freezing equipment
KR20070014461A (en) A refrigerator
JPH0942809A (en) Refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903