JP4148584B2 - Cooling storage - Google Patents

Cooling storage Download PDF

Info

Publication number
JP4148584B2
JP4148584B2 JP3394699A JP3394699A JP4148584B2 JP 4148584 B2 JP4148584 B2 JP 4148584B2 JP 3394699 A JP3394699 A JP 3394699A JP 3394699 A JP3394699 A JP 3394699A JP 4148584 B2 JP4148584 B2 JP 4148584B2
Authority
JP
Japan
Prior art keywords
cooler
temperature
compressor
internal temperature
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3394699A
Other languages
Japanese (ja)
Other versions
JP2000234831A (en
Inventor
勲男 柴田
正和 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3394699A priority Critical patent/JP4148584B2/en
Publication of JP2000234831A publication Critical patent/JP2000234831A/en
Application granted granted Critical
Publication of JP4148584B2 publication Critical patent/JP4148584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce energy loss by effectively cooling the inside of a chamber and eliminate the heed of the execution of defrosting operation of a cooler. SOLUTION: A cooling storage chamber is adapted such that there are provided a compressor, a condenser, a pressure reducer, a cooler, and an air fan for the cooler, wherein a controller interrupts the operation of the compressor based upon a temperature difference in the chamber with respect to set temperature. In the cooling storage chamber, the controller operates the air fan for the cooler only in the case where cooler temperature is lower than the temperature in the chamber.

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫や冷凍庫などの冷却貯蔵庫に関する。
【0002】
【従来の技術】
一般に、圧縮機、凝縮器、減圧装置及び冷却器(蒸発器)を備えて冷凍回路を構成し、蒸発器により庫内を冷却する冷却貯蔵庫が知られている。
【0003】
上記冷凍回路では、冷媒の圧力を圧縮機や減圧装置を利用して強制的に変化させることにより熱の与奪を行う。上述のような冷却貯蔵庫では、減圧装置により圧力が下げられた液冷媒が、冷却器で気化することにより庫内の熱を吸収し、また、圧縮機により圧力が上げられたガス冷媒が、凝縮器で液化することにより冷媒の熱を外部へ放熱する。これら一連の動作を周期的に繰り返すことにより、庫内の熱が外部へ放熱される。
【0004】
一般的な圧縮機の運転/停止は、図4に示すように、冷却貯蔵庫の庫内温度が(設定温度+α)℃になった時点(図4の点a)で圧縮機を運転(ON操作)し、庫内温度が(設定温度−α)℃になった時点(図4の点b)で圧縮機を停止(OFF操作)するよう制御される。ここで、上記αは、機器の仕様により設定される定数である。従って、冷却器内の冷媒温度(冷却器温度)は、この冷却器温度と庫内温度の最大温度差をβとすると、{(設定温度)±(α+β)}℃の範囲を周期的に変化する。
【0005】
また、庫内で冷却器により冷却される空気(冷気)を循環させる冷却器用送風機は、圧縮機の運転/停止、庫内温度または冷却器温度に拘わらず常時運転(ON操作)される。
【0006】
【発明が解決しようとする課題】
上述のような冷却貯蔵庫において、設定温度と庫内温度との温度差で圧縮機を停止すると、図4に示すように、圧縮機を停止した瞬間(図4の点b)から冷却器温度が、図4の点cを最下点として急激に上昇し、その直後に庫内温度以上となる。これは、圧縮機の停止によって、圧縮機内の高温高圧のガス冷媒などがリークして冷却器へ流入するからである。この時、冷却器送風機が運転されているので、冷却器温度の上昇により庫内温度も上昇してしまう。つまり、庫内温度は、常に冷却器温度の変化に追随するように略(設定温度±α)℃の範囲付近を周期的に変化する。
【0007】
従って、圧縮機を運転して(図4の点a)冷却器温度が、図4の点dを最上点として下がり始めてからも、庫内温度は必ずしも下降しない。また、圧縮機を停止して(図4の点b)冷却器温度が点cから上昇し始めると、庫内温度は冷却器温度に追随して急激に上昇する。このように、庫内を効率的に冷却できず、エネルギー損失が大きいばかりか、圧縮機の発停が頻繁となって、消費エネルギーが増大してしまう。
【0008】
また、従来の冷却貯蔵庫においては、冷却器に霜が付着して冷却機能が損なわれるのを防止するために、冷却器を定期的に霜取り運転する必要がある。この霜取り運転を実施するためには、冷却器温度を意図的に上昇させなければならないので、この霜取り運転時に庫内温度が上昇して、エネルギー損失が増大してしまう。
【0009】
本発明の目的は、上述の事情を考慮してなされたものであり、庫内を効率的に冷却してエネルギー損失を低減できるとともに、冷却器の霜取り運転の実施を不要にできる冷却貯蔵庫を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、圧縮機、凝縮器、減圧装置、冷却器及び冷却器用送風機を備え、制御装置が、設定温度に対する庫内温度の温度差に基づき、上記圧縮機及び冷却器用送風機を運転させ停止させる冷却貯蔵庫において、上記制御装置は、圧縮機を運転させた後、冷却器温度が庫内温度以下になったときに、冷却器用送風機を運転させるとともに、圧縮機を停止させた後、冷却器温度が庫内温度よりも高くなったときに、冷却器用送風機を停止させるように、冷却器用送風機の運転と停止を繰り返し制御する、ことを特徴とするものである。
【0011】
請求項1に記載の発明には、次の作用がある。
【0012】
冷却器の冷却器温度が庫内温度以下の場合にのみ冷却器用送風機が運転されることから、庫内温度を所望の温度範囲まで迅速に下降させることができる。また、冷却器の冷却器温度が庫内温度よりも高い場合には冷却器用送風機が停止されるので、このとき、庫内温度よりも温度の高い冷却器周囲の空気が庫内へ送給されず、庫内温度の上昇を緩やかにできる。これらの結果、庫内を効率的に冷却でき、エネルギー損失を低減できる。
【0013】
また、圧縮機が停止し、且つ、冷却器の冷却器温度が庫内温度よりも高い場合に冷却器用送風機が停止されるので、このとき冷却器には、停止した圧縮機から高温高圧のガス冷媒がリークして流れ込み、しかも、凝縮器からの液冷媒が減圧装置を経ても減圧されずに流れ込む。このように、圧縮機及び冷却器用送風機の停止時に、圧縮機及び凝縮器の熱が冷却器へ伝熱されて冷却器の温度が上昇するので、冷却器に付着した霜を自然溶解でき、冷却器の霜取り運転の実施を不要にできる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0015】
図1において、冷却貯蔵庫1は業務用冷蔵庫等の冷却貯蔵庫を示している。この冷却貯蔵庫1は、断熱扉5を有する断熱箱体7を備え、この断熱箱体7の上部には機械室3が形成されている。この機械室3の内部には、冷凍装置11を構成する圧縮機13(ロータリー型圧縮機)と凝縮器15と凝縮器用送風機17とが収納され、これらは断熱部材からなる取付架台19の上面に設けられている。
【0016】
また、機械室3の前面にはグリル25が配置され、制御装置21を格納するコントロールパネル23は、その一部がグリル25から外部に露出して取り付けられている。
【0017】
断熱箱体7の貯蔵庫27には冷凍装置11を構成する冷却器29と冷却器用送風機31とが設けられ、これらは取付架台19の下面に設けられている。また、この貯蔵庫27の庫内には、庫内温度センサ33が設けられ、食品などの載置用の棚35(網棚)が3段に設けられている。この庫内温度センサ33により、貯蔵庫27の庫内温度が検出される。
【0018】
冷却器29には、冷却器29内の冷媒の温度(以下「冷却器温度」と称する)を検出する冷却器温度センサ37が設けられている。また、冷却器29の下部には、冷却器29の周囲と貯蔵庫27の庫内とを画成する画成板39が設けられる。この画成板39の内側に囲まれた冷却器29周囲の空気(冷気)は、冷却用送風機31の作用で、実線の矢印で示すように、貯蔵庫27の庫内を循環する。
【0019】
冷凍装置11の冷媒回路は、図2に示すように構成されている。
【0020】
圧縮機13と凝縮器15と減圧装置16と冷却器29と逆止弁30とが、冷媒用配管12によって連結され、この冷媒用配管12内を、圧縮機13から吐出された冷媒18が順に流される。17は凝縮器用送風機、31は冷却器用送風機を示している。ここで、逆止弁30は、圧縮機13(ロータリー型圧縮機)の停止時に、圧縮機13にて圧縮された高圧ガス冷媒が、冷却器29側へ急激に逆流するのを防止して、圧縮機13の逆転を防止するものである。
【0021】
圧縮機13には制御信号線14を介して制御装置21が接続され、この制御装置21には、前述した庫内温度センサ33、及び冷却器温度センサ37が接続されている。この制御装置21によって、以下の制御が実行される。
【0022】
この実施の形態では、図3に示すように、設定温度に対する温度差が±α℃に設定されている。すなわち、この冷却貯蔵庫は、設定温度に対する所定の温度差(±α℃)で前記圧縮機13を運転させ停止させて、庫内温度を前記設定温度に制御する。ここで、αは機器の仕様に基づき設定される定数である。
【0023】
つまり、制御装置21は、圧縮機13の運転時に、庫内温度センサ33にて検出された庫内温度が(設定温度−α)℃となった時に(図3の点A)庫内温度センサ33からの検出信号に基づき圧縮機13へ停止信号を出力して、この圧縮機13を運転状態から停止(OFF操作)させる。
【0024】
圧縮機13の停止により後述の如く冷却器温度が上昇し、この冷却器温度の上昇に伴い庫内温度が上昇し、庫内温度が(設定温度+α)℃となった時に(図3の点B)、制御装置21は、庫内温度センサ33からの検出信号に基づき圧縮機13へ運転信号を出力して、この圧縮機13を停止状態から運転(ON操作)させる。圧縮機13の運転により庫内温度は下降する。制御装置21は、上述のようにして圧縮機13の運転及び停止を繰り返す。
【0025】
ところで、圧縮機13の運転により、冷却器29の冷却器温度は急激に下降し、庫内温度が(設定温度−α)℃となった時(図3の点A)には、{(設定温度)−(α+β)}となる(図3の点C)。ここで、上記βは、冷却器温度と庫内温度との最大温度差である。
【0026】
圧縮機13の停止時には、停止した圧縮機13からの高温高圧のガス冷媒が、図2の逆止弁30をリークして冷却器29へ流れ込み、しかも、凝縮器15からの液冷媒が、減圧装置16を経ても減圧されずに冷却器29へ流れ込む。この為、冷却器29の冷却器温度は急激に上昇し、図3の点Dに至る。この冷却器温度は、圧縮機13の停止時に冷却器用送風機31も停止していることから(後述)一定温度の高温状態に維持され、圧縮機13の運転開始時(図3の点E)に下降し始め、圧縮機13の運転中に引き続き急激に下降する。
【0027】
一方、制御装置21は、冷却器温度が庫内温度以下の場合にのみ冷却器用送風機31を運転させ、冷却器温度が庫内温度よりも高い場合に冷却器用送風機31を停止させる。
【0028】
つまり、制御装置21は、圧縮機13を停止(図3の点A及び点C)させた後、冷却器温度センサ37からの検出信号に基づき、冷却器温度が庫内温度よりも高くなった時に(図3の点F)冷却器用送風機31へ停止信号を出力して冷却器用送風機31を停止させる。また、制御装置21は、圧縮機13を運転(図3の点B及び点E)させた後、冷却器温度センサ37からの検出信号に基づき、冷却器温度が庫内温度以下になったときに(図3の点G)冷却器用送風機31へ運転信号を出力し、冷却器用送風機31を運転させる。制御装置21は、このような冷却器用送風機31の運転と停止を繰り返し制御する。当然に制御装置21は、冷却貯蔵庫1の運転開始当初には、圧縮機13の運転により冷却器温度が庫内温度以下になるため、冷却器用送風機31を運転させる。
【0029】
ここで、画成板39の内側の空気温度は、冷却器29の冷却器温度にほぼ等しい。この為、冷却器温度が庫内温度以下の場合にのみ実施される冷却器用送風機31の運転によって、画成板39内側の空気(冷気)が貯蔵庫27の庫内へ送給され、庫内で循環されるので、庫内温度が冷却器温度に近い温度まで急激に冷却される。
【0030】
上記実施の形態の一によれば、次の効果▲1▼〜▲5▼を奏する。
【0031】
▲1▼冷却器29の冷却器温度が貯蔵庫27の庫内温度以下の場合にのみ冷却器用送風機31が運転されることから、貯蔵庫27の庫内温度を所望の温度範囲まで迅速に下降させることができる。また、冷却器29の冷却器温度が貯蔵庫27の庫内温度よりも高い場合には冷却器用送風機31が停止されるので、この時、貯蔵庫27の庫内温度よりも温度の高い冷却器29周囲の画成板39内側空気が貯蔵庫27の庫内へ送給されず、貯蔵庫27の庫内温度の上昇を緩やかにできる。これらの結果、貯蔵庫27の庫内を効率的に冷却でき、エネルギー損失を低減できる。
【0032】
▲2▼貯蔵庫27の庫内が効率的に冷却されるので、圧縮機13の頻繁な発停による圧縮機13の寿命低下を抑制でき、更に消費エネルギーの抑制を実現できる。
【0033】
▲3▼冷却器用送風機31の停止によって冷却器用送風機31の運転時間を減少できるばかりか、貯蔵庫27の庫内を効率的に冷却することにより圧縮機13の運転時間も短縮できる。これらのことからも、消費エネルギーを抑制できる。
【0034】
▲4▼冷却器29の冷却器温度が最も低下して圧縮機13が停止した時点では(図3の点C)、この冷却器温度が貯蔵庫27の庫内温度よりも低いので、冷却器用送風機31は運転状態にある。この為、冷却器用送風機31によって冷気が貯蔵庫27の庫内へ送給され続け、冷凍装置11の冷却効率が向上すると共に、この時の貯蔵庫27における庫内各部の温度のバラツキを防止できる。
【0035】
▲5▼圧縮機13が停止され、しかも、冷却器29の冷却器温度が貯蔵庫27の庫内温度よりも高い場合に冷却器用送風機31が停止されるので、このとき冷却器29には、停止した圧縮機13から高温高圧のガス冷媒が逆止弁30をリークして流れ込み、更に、凝縮器15からの液冷媒が、減圧装置16を経ても減圧されずに流れ込む。このように、圧縮機13及び冷却器用送風機31の停止時に、圧縮機13及び凝縮器15の熱が冷却器29へ伝熱されて冷却器29の温度が上昇するので、この冷却器29に付着した霜を自然溶解でき、冷却器29の霜取り運転の実施を不要にできる。
【0036】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0037】
【発明の効果】
以上のように、本発明に係る冷却貯蔵庫によれば、制御装置が、冷却器の冷却器温度が庫内温度以下の場合にのみ冷却器用送風機を運転させることから、庫内を効率的に冷却してエネルギー損失を低減できると共に、冷却器の霜取り運転の実施を不要にできる。
【図面の簡単な説明】
【図1】本発明に係る冷却貯蔵庫の一実施の形態を示す縦断面図である。
【図2】図1の冷却貯蔵庫における冷凍装置を示す回路図である。
【図3】図1の冷却貯蔵庫における庫内温度と冷却器温度とを示すタイムフローチャートである。
【図4】従来の冷却貯蔵庫における庫内温度と冷却器温度を示すタイムフローチャートである。
【符号の説明】
1 冷却貯蔵庫
11 冷凍装置
13 圧縮機
15 凝縮器
16 減圧装置
21 制御装置
27 貯蔵庫
29 冷却器
31 冷却器用送風機
33 庫内温度センサ
37 冷却器温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling storage such as a refrigerator or a freezer.
[0002]
[Prior art]
2. Description of the Related Art Generally, a cooling storage is known that includes a compressor, a condenser, a decompression device, and a cooler (evaporator) to form a refrigeration circuit, and cools the interior of the warehouse with the evaporator.
[0003]
In the refrigeration circuit, heat is deprived by forcibly changing the pressure of the refrigerant using a compressor or a decompression device. In the cooling storage as described above, the liquid refrigerant whose pressure is reduced by the decompression device absorbs the heat in the warehouse by being vaporized by the cooler, and the gas refrigerant whose pressure is increased by the compressor is condensed. The heat of the refrigerant is dissipated to the outside by being liquefied by the vessel. By periodically repeating these series of operations, the heat in the cabinet is radiated to the outside.
[0004]
As shown in FIG. 4, a general compressor is operated / stopped by operating the compressor (ON operation) when the internal temperature of the cooling storage reaches (set temperature + α) ° C. (point a in FIG. 4). Then, the compressor is controlled to be stopped (OFF operation) when the internal temperature reaches (set temperature−α) ° C. (point b in FIG. 4). Here, α is a constant set according to the specification of the device. Therefore, the refrigerant temperature (cooler temperature) in the cooler periodically changes in the range of {(set temperature) ± (α + β)} ° C., where β is the maximum temperature difference between the cooler temperature and the internal temperature. To do.
[0005]
The cooler blower that circulates the air (cold air) cooled by the cooler in the refrigerator is always operated (ON operation) regardless of the operation / stop of the compressor, the internal temperature, or the cooler temperature.
[0006]
[Problems to be solved by the invention]
In the cooling storage as described above, when the compressor is stopped due to the temperature difference between the set temperature and the internal temperature, as shown in FIG. 4, the cooler temperature starts from the moment when the compressor is stopped (point b in FIG. 4). 4 rises rapidly with the point c in FIG. 4 as the lowest point, and immediately after that, becomes the internal temperature or higher. This is because the high-temperature and high-pressure gas refrigerant in the compressor leaks and flows into the cooler when the compressor is stopped. At this time, since the cooler fan is operated, the internal temperature also rises due to the rise in the cooler temperature. That is, the internal temperature periodically changes in the vicinity of a range of approximately (set temperature ± α) ° C. so as to always follow the change in the cooler temperature.
[0007]
Therefore, even if the compressor is operated (point a in FIG. 4) and the cooler temperature starts to decrease with the point d in FIG. 4 as the uppermost point, the internal temperature does not necessarily decrease. When the compressor is stopped (point b in FIG. 4) and the cooler temperature starts to rise from the point c, the internal temperature rises rapidly following the cooler temperature. Thus, not only the inside of a store | warehouse | chamber cannot be cooled efficiently but an energy loss is large, and the start / stop of a compressor becomes frequent and energy consumption will increase.
[0008]
Moreover, in the conventional cooling storage, in order to prevent that a frost adheres to a cooler and a cooling function is impaired, it is necessary to perform a defrosting operation | movement of a cooler regularly. In order to carry out this defrosting operation, the cooler temperature must be increased intentionally, so that the internal temperature rises during this defrosting operation, and energy loss increases.
[0009]
The object of the present invention has been made in consideration of the above-mentioned circumstances, and provides a cooling storage that can cool the interior efficiently and reduce energy loss, and can eliminate the need for the defrosting operation of the cooler. There is to do.
[0010]
[Means for Solving the Problems]
The invention described in claim 1 includes a compressor, a condenser, a decompression device, a cooler, and a fan for the cooler, and the control device is based on a temperature difference of the internal temperature with respect to the set temperature, and the blower for the compressor and the cooler. In the cooling storage that operates and stops the compressor , the controller controls the cooler blower and stops the compressor when the cooler temperature is lower than the internal temperature after the compressor is operated. Thereafter, when the cooler temperature becomes higher than the internal temperature, the operation and stop of the cooler fan are repeatedly controlled so that the cooler fan is stopped .
[0011]
The invention described in claim 1 has the following action.
[0012]
Since the cooler blower is operated only when the cooler temperature of the cooler is equal to or lower than the internal temperature, the internal temperature can be quickly lowered to a desired temperature range. In addition, when the cooler temperature of the cooler is higher than the internal temperature, the cooler blower is stopped. At this time, air around the cooler having a temperature higher than the internal temperature is supplied into the internal store. Therefore, the rise in the internal temperature can be moderated. As a result, the interior can be efficiently cooled and energy loss can be reduced.
[0013]
Also, when the compressor is stopped and the cooler temperature of the cooler is higher than the internal temperature, the cooler blower is stopped. At this time, the cooler is supplied with high-temperature and high-pressure gas from the stopped compressor. The refrigerant leaks and flows, and the liquid refrigerant from the condenser flows without being depressurized even after passing through the decompression device. Thus, when the compressor and cooler blower are stopped, the heat of the compressor and condenser is transferred to the cooler and the temperature of the cooler rises, so that the frost adhering to the cooler can be naturally dissolved and cooled. It is possible to eliminate the need for defrosting operation.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
In FIG. 1, a cooling storage 1 is a cooling storage such as a commercial refrigerator. The cooling storage 1 includes a heat insulating box 7 having a heat insulating door 5, and a machine room 3 is formed on the heat insulating box 7. Inside the machine room 3, a compressor 13 (rotary compressor), a condenser 15 and a condenser blower 17 constituting the refrigeration apparatus 11 are housed, and these are mounted on the upper surface of a mounting base 19 made of a heat insulating member. Is provided.
[0016]
In addition, a grill 25 is disposed on the front surface of the machine room 3, and a part of the control panel 23 storing the control device 21 is attached to the outside of the grill 25 so as to be exposed to the outside.
[0017]
The storage 27 of the heat insulating box 7 is provided with a cooler 29 and a cooler blower 31 constituting the refrigeration apparatus 11, and these are provided on the lower surface of the mounting base 19. In the storage 27, a storage temperature sensor 33 is provided, and shelves 35 (net racks) for placing food and the like are provided in three stages. The internal temperature sensor 33 detects the internal temperature of the storage 27.
[0018]
The cooler 29 is provided with a cooler temperature sensor 37 that detects the temperature of the refrigerant in the cooler 29 (hereinafter referred to as “cooler temperature”). In addition, at the lower part of the cooler 29, an defining plate 39 that defines the periphery of the cooler 29 and the interior of the storage 27 is provided. The air (cold air) around the cooler 29 surrounded by the inside of the defining plate 39 circulates in the storage 27 as indicated by the solid arrow by the action of the cooling fan 31.
[0019]
The refrigerant circuit of the refrigeration apparatus 11 is configured as shown in FIG.
[0020]
The compressor 13, the condenser 15, the decompressor 16, the cooler 29, and the check valve 30 are connected by the refrigerant pipe 12, and the refrigerant 18 discharged from the compressor 13 is sequentially passed through the refrigerant pipe 12. Washed away. Reference numeral 17 denotes a condenser blower, and 31 denotes a cooler blower. Here, the check valve 30 prevents the high-pressure gas refrigerant compressed by the compressor 13 from rapidly flowing back to the cooler 29 side when the compressor 13 (rotary compressor) is stopped. The reverse rotation of the compressor 13 is prevented.
[0021]
A control device 21 is connected to the compressor 13 via a control signal line 14, and the above-described internal temperature sensor 33 and cooler temperature sensor 37 are connected to the control device 21. The control device 21 executes the following control.
[0022]
In this embodiment, as shown in FIG. 3, the temperature difference with respect to the set temperature is set to ± α ° C. That is, the cooling storage unit controls the internal temperature to the set temperature by operating and stopping the compressor 13 at a predetermined temperature difference (± α ° C.) with respect to the set temperature. Here, α is a constant set based on the specification of the device.
[0023]
That is, the controller 21 detects the internal temperature sensor when the internal temperature detected by the internal temperature sensor 33 becomes (set temperature−α) ° C. during operation of the compressor 13 (point A in FIG. 3). Based on the detection signal from 33, a stop signal is output to the compressor 13, and the compressor 13 is stopped from the operating state (OFF operation).
[0024]
When the compressor 13 is stopped, the cooler temperature rises as will be described later. When the cooler temperature rises, the internal temperature rises and the internal temperature reaches (set temperature + α) ° C. (point in FIG. 3). B) The control device 21 outputs an operation signal to the compressor 13 based on the detection signal from the internal temperature sensor 33, and operates (ON operation) the compressor 13 from a stopped state. The internal temperature decreases due to the operation of the compressor 13. The control device 21 repeats the operation and stop of the compressor 13 as described above.
[0025]
By the way, when the compressor 13 is operated, the cooler temperature of the cooler 29 rapidly decreases, and when the internal temperature becomes (set temperature−α) ° C. (point A in FIG. 3), {(set Temperature) − (α + β)} (point C in FIG. 3). Here, β is the maximum temperature difference between the cooler temperature and the internal temperature.
[0026]
When the compressor 13 is stopped, the high-temperature and high-pressure gas refrigerant from the stopped compressor 13 leaks the check valve 30 in FIG. 2 and flows into the cooler 29, and the liquid refrigerant from the condenser 15 is depressurized. Even after passing through the device 16, it flows into the cooler 29 without being reduced in pressure. For this reason, the cooler temperature of the cooler 29 rises rapidly and reaches point D in FIG. This cooler temperature is maintained at a constant high temperature state (described later) because the cooler blower 31 is also stopped when the compressor 13 is stopped, and at the start of operation of the compressor 13 (point E in FIG. 3). It starts to descend and continues to descend rapidly during the operation of the compressor 13.
[0027]
On the other hand, the control device 21 operates the cooler blower 31 only when the cooler temperature is equal to or lower than the internal temperature, and stops the cooler blower 31 when the cooler temperature is higher than the internal temperature.
[0028]
That is, the controller 21 stops the compressor 13 (point A and point C in FIG. 3), and then the cooler temperature becomes higher than the internal temperature based on the detection signal from the cooler temperature sensor 37. Sometimes (point F in FIG. 3), a stop signal is output to the cooler blower 31 to stop the cooler blower 31. Further, the control device 21 operates the compressor 13 (points B and E in FIG. 3), and then, based on the detection signal from the cooler temperature sensor 37, the cooler temperature becomes lower than the internal temperature. (Point G in FIG. 3), an operation signal is output to the cooler blower 31 to cause the cooler blower 31 to operate. The control device 21 repeatedly controls the operation and stop of such a cooling fan 31. Naturally, at the beginning of the operation of the cooling storage 1, the control device 21 operates the cooler blower 31 because the cooler temperature becomes equal to or lower than the internal temperature due to the operation of the compressor 13.
[0029]
Here, the air temperature inside the defining plate 39 is substantially equal to the cooler temperature of the cooler 29. For this reason, air (cold air) inside the separating plate 39 is fed into the storage 27 by the operation of the cooling fan 31 performed only when the cooler temperature is equal to or lower than the internal temperature. Since it is circulated, the internal temperature is rapidly cooled to a temperature close to the cooler temperature.
[0030]
According to the above embodiment, the following effects (1) to (5) are achieved.
[0031]
(1) Since the cooler blower 31 is operated only when the cooler temperature of the cooler 29 is equal to or lower than the internal temperature of the storage 27, the internal temperature of the storage 27 is quickly lowered to a desired temperature range. Can do. Further, when the cooler temperature of the cooler 29 is higher than the internal temperature of the storage 27, the cooler blower 31 is stopped. At this time, the surroundings of the cooler 29 whose temperature is higher than the internal temperature of the storage 27 The air inside the defining plate 39 is not supplied to the inside of the storage 27, and the temperature inside the storage 27 can be moderately increased. As a result, the inside of the storage 27 can be efficiently cooled and energy loss can be reduced.
[0032]
(2) Since the inside of the storage 27 is efficiently cooled, it is possible to suppress a decrease in the life of the compressor 13 due to frequent start and stop of the compressor 13, and further it is possible to reduce energy consumption.
[0033]
(3) The operation time of the cooler blower 31 can be reduced by stopping the cooler blower 31, and the operation time of the compressor 13 can be shortened by efficiently cooling the inside of the storage 27. Also from these things, energy consumption can be suppressed.
[0034]
(4) When the cooler temperature of the cooler 29 is the lowest and the compressor 13 is stopped (point C in FIG. 3), the cooler temperature is lower than the internal temperature of the storage 27. 31 is in an operating state. For this reason, cold air continues to be fed into the storage 27 by the cooler blower 31, improving the cooling efficiency of the refrigeration apparatus 11, and preventing variations in the temperature of each part in the storage 27 at this time.
[0035]
(5) When the compressor 13 is stopped and the cooler temperature of the cooler 29 is higher than the internal temperature of the storage 27, the cooler blower 31 is stopped. At this time, the cooler 29 is stopped. The high-temperature and high-pressure gas refrigerant leaks through the check valve 30 and flows from the compressor 13, and the liquid refrigerant from the condenser 15 flows without being decompressed even after passing through the decompressor 16. Thus, when the compressor 13 and the cooler blower 31 are stopped, the heat of the compressor 13 and the condenser 15 is transferred to the cooler 29 and the temperature of the cooler 29 rises, so that it adheres to the cooler 29. The frost thus melted can be naturally melted, and the defrosting operation of the cooler 29 can be dispensed with.
[0036]
As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.
[0037]
【The invention's effect】
As described above, according to the cooling storage according to the present invention, the control device operates the cooler fan only when the cooler temperature of the cooler is equal to or lower than the cooler temperature, thereby efficiently cooling the cooler. As a result, energy loss can be reduced, and the defrosting operation of the cooler can be omitted.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a cooling storage according to the present invention.
FIG. 2 is a circuit diagram showing a refrigeration apparatus in the cooling storage of FIG.
FIG. 3 is a time flowchart showing the internal temperature and cooler temperature in the cooling storage of FIG. 1;
FIG. 4 is a time flowchart showing the internal temperature and cooler temperature in a conventional cooling storage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cooling storage 11 Refrigeration apparatus 13 Compressor 15 Condenser 16 Depressurization apparatus 21 Control apparatus 27 Storage 29 Cooler 31 Cooler blower 33 Internal temperature sensor 37 Cooler temperature sensor

Claims (1)

圧縮機、凝縮器、減圧装置、冷却器及び冷却器用送風機を備え、制御装置が、設定温度に対する庫内温度の温度差に基づき、上記圧縮機及び冷却器用送風機を運転させ停止させる冷却貯蔵庫において、
上記制御装置は、圧縮機を運転させた後、冷却器温度が庫内温度以下になったときに、冷却器用送風機を運転させるとともに、圧縮機を停止させた後、冷却器温度が庫内温度よりも高くなったときに、冷却器用送風機を停止させるように、冷却器用送風機の運転と停止を繰り返し制御する、
ことを特徴とする冷却貯蔵庫。
In the cooling storage that includes a compressor, a condenser, a decompression device, a cooler, and a fan for the cooler, and the control device operates and stops the fan for the compressor and the cooler based on the temperature difference of the internal temperature with respect to the set temperature.
After the compressor is operated, when the cooler temperature is equal to or lower than the internal temperature , the control device operates the cooler blower and stops the compressor, and then the cooler temperature is the internal temperature. When it becomes higher than, the operation and stop of the cooling fan are repeatedly controlled so as to stop the cooling fan.
Cooling storage characterized by that.
JP3394699A 1999-02-12 1999-02-12 Cooling storage Expired - Fee Related JP4148584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3394699A JP4148584B2 (en) 1999-02-12 1999-02-12 Cooling storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3394699A JP4148584B2 (en) 1999-02-12 1999-02-12 Cooling storage

Publications (2)

Publication Number Publication Date
JP2000234831A JP2000234831A (en) 2000-08-29
JP4148584B2 true JP4148584B2 (en) 2008-09-10

Family

ID=12400685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3394699A Expired - Fee Related JP4148584B2 (en) 1999-02-12 1999-02-12 Cooling storage

Country Status (1)

Country Link
JP (1) JP4148584B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198097A (en) * 2008-02-22 2009-09-03 Sharp Corp Refrigerator
CN105300003B (en) * 2015-12-03 2017-11-24 中华全国供销合作总社济南果品研究院 A kind of removable pre-cooler

Also Published As

Publication number Publication date
JP2000234831A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP5313093B2 (en) Refrigeration equipment
JP4178646B2 (en) refrigerator
JP2009264660A (en) Refrigerator
JP4148584B2 (en) Cooling storage
JP3398022B2 (en) Freezer refrigerator
JP4028344B2 (en) Storage
JP2005140411A (en) Freezing/refrigerating unit and refrigerator
JPH10205953A (en) Cooling storage cabinet
JPH1047827A (en) Freezing refrigerator
JP6384042B2 (en) Refrigeration system
CN113048716A (en) Control method and refrigerator
KR100246895B1 (en) Apparatus and method for cooling compressor of refrigerator
JP6307846B2 (en) Refrigeration system
JP3721968B2 (en) refrigerator
KR100238799B1 (en) Quick-freezing control method of a refrigerator
CN113048717B (en) Refrigeration control method and refrigerator
JP3903237B2 (en) Cold storage
JP2001141347A (en) Refrigerator
KR100221879B1 (en) Defrost control method for a refrigerator
JP2001174112A (en) Air conditioner
JP2023115734A (en) Cooling device
JP5463874B2 (en) Container refrigeration equipment
JPH04273974A (en) Freezing and refrigeration show case
JP2000274849A (en) Twin freezer device
JPH05240556A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees