JP2015055396A - Freezing method - Google Patents

Freezing method Download PDF

Info

Publication number
JP2015055396A
JP2015055396A JP2013188437A JP2013188437A JP2015055396A JP 2015055396 A JP2015055396 A JP 2015055396A JP 2013188437 A JP2013188437 A JP 2013188437A JP 2013188437 A JP2013188437 A JP 2013188437A JP 2015055396 A JP2015055396 A JP 2015055396A
Authority
JP
Japan
Prior art keywords
temperature
supercooling
cooling gas
freezing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013188437A
Other languages
Japanese (ja)
Inventor
宏治 牧野
Koji Makino
宏治 牧野
武内 雅弘
Masahiro Takeuchi
雅弘 武内
明夏 福田
Sayaka Fukuda
明夏 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2013188437A priority Critical patent/JP2015055396A/en
Publication of JP2015055396A publication Critical patent/JP2015055396A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a freezing method capable of obtaining a sufficiently high supercooling degree by detecting release of supercooling.SOLUTION: The freezing method includes: a supercooling formation step for cooling an object so that the object becomes a supercooling state where the object is not frozen even at a temperature of a freezing point or less by means for respectively detecting a temperature of coolant gas and a surface temperature of the object; a supercooling release detection step for detecting that the supercooling state is released; and a quick cooling step for quickly cooling the object when the supercooling state is released. When a temperature difference between the temperature of the coolant gas and the surface temperature of the object exceeds a previously determined range in the supercooling formation step, reduction in the temperature of the coolant gas is stopped, and when the temperature difference is returned to the previously determined range, reduction in the temperature of the coolant gas is restarted.

Description

本発明は、冷却ガスを用いた凍結方法に関し、詳しくは、過冷却状態を経て対象物を凍結させる凍結方法に関する。   The present invention relates to a freezing method using a cooling gas, and more particularly to a freezing method in which an object is frozen through a supercooled state.

食品や細胞などの生体物質を凍結する際に、細胞内又は細胞間隙に生じる氷結晶が細胞組織に損傷を与えてしまう。また、溶液を凍結する際には、凍結過程において、凍結品の凍結濃縮により濃度が不均一となってしまう場合がある。これらの不具合を回避するために、凍結点以下でも凍らない状態、いわゆる過冷却状態を経て凍結させることが用いられている。これは、過冷却状態を経て凍結した対象物は、全体に均一に、針状ではなく粒状の細かい氷結晶が生成されるため、細胞組織への損傷が少なくなるためである。   When freezing biological substances such as foods and cells, ice crystals generated in the cells or in the cell gaps damage the cell tissues. In addition, when freezing a solution, the concentration may become non-uniform due to freeze concentration of the frozen product during the freezing process. In order to avoid these problems, it is used to freeze through a so-called supercooled state that does not freeze below the freezing point. This is because an object that has been frozen through a supercooled state generates uniform ice crystals that are not needle-like and granular, and thus damage to the cell tissue is reduced.

また、過冷却状態解除後の凍結過程において、急速に冷凍すると、氷結晶が肥大する可能性が低くなる上、氷結晶以外の品質低下要因を回避できるため、品質の優れた凍結品とすることができる。さらに、過冷却度(過冷却状態で達した最低温度と凍結温度の差)が大きければ大きいほど、凍結開始時に形成される氷核の数が多くなり、より微細な結晶となるため、解凍後も凍結前により近い状態を維持することが可能となることが知られている。   In addition, freezing in the freezing process after the release of the supercooled state reduces the possibility of ice crystals growing, and avoids quality degradation factors other than ice crystals. Can do. In addition, the greater the degree of supercooling (the difference between the minimum temperature reached in the supercooled state and the freezing temperature), the more ice nuclei that are formed at the start of freezing, resulting in finer crystals. Is also known to be able to maintain a state closer to that before freezing.

上記のような過冷却を利用した対象物の凍結方法として、過冷却状態を所定時間保持した後、過冷却状態を解除し、さらに急速冷却して凍結させる方法(例えば、特許文献1)や、対象物の芯温が凍結点になるまで、表面温度計測手段で計測された表面温度と該表面温度から演算された芯温との差が小さくなるように冷却制御する方法(例えば、特許文献2)が行われている。   As a method of freezing an object using supercooling as described above, after maintaining the supercooled state for a predetermined time, releasing the supercooled state, and further rapidly cooling and freezing (for example, Patent Document 1), A method of controlling cooling so that the difference between the surface temperature measured by the surface temperature measuring means and the core temperature calculated from the surface temperature becomes small until the core temperature of the object reaches the freezing point (for example, Patent Document 2) ) Is done.

特許第4253775号公報Japanese Patent No. 4253775 特許第4827788号公報Japanese Patent No. 4827788

しかしながら、特許文献1記載の凍結方法では、所定時間経過後に過冷却状態を解除しているため、十分な過冷却度を得られていない場合や、すでに過冷却状態が解除されている場合がある。また、特許文献2記載の凍結方法でも、芯温が凍結点に達するまでの冷却では、十分な過冷却度を得られていない場合がある。さらに、対象物によっては、表面温度からの芯温の演算が難しい場合もあり、正しく芯温を測定することができない場合もある。   However, in the freezing method described in Patent Document 1, since the supercooling state is released after a predetermined time has elapsed, a sufficient degree of supercooling may not be obtained or the supercooling state may have already been released. . Further, even in the freezing method described in Patent Document 2, there is a case where a sufficient degree of supercooling cannot be obtained by cooling until the core temperature reaches the freezing point. Further, depending on the object, it may be difficult to calculate the core temperature from the surface temperature, and the core temperature may not be measured correctly.

そこで本発明は、過冷却の解除を検知することにより、十分な過冷却度を得ることができる凍結方法を提供することを目的としている。   Then, this invention aims at providing the freezing method which can acquire sufficient supercooling degree by detecting cancellation | release of supercooling.

上記目的を達成するため、本発明の凍結方法は、対象物を冷却ガスにより冷却して凍結する凍結方法において、前記冷却ガスの温度を検知する手段及び前記対象物の表面温度を検知する手段を備え、前記対象物が凍結点以下の温度でも凍らない過冷却状態となるように冷却する過冷却形成工程と、過冷却状態が解除されたことを検知する過冷却解除検知工程と、前記過冷却状態が解除されたら前記対象物を急速に冷却する急速冷却工程とからなる事を特徴としている。   In order to achieve the above object, the freezing method of the present invention includes a means for detecting the temperature of the cooling gas and a means for detecting the surface temperature of the target object in the freezing method in which the target object is cooled by a cooling gas and frozen. A subcooling forming step for cooling the object so that it is not frozen even at a temperature below the freezing point, a supercooling release detecting step for detecting that the supercooling state is released, and the supercooling. It is characterized by comprising a rapid cooling step of rapidly cooling the object when the state is released.

また、前記過冷却形成工程で前記冷却ガスの温度と前記表面温度との温度差があらかじめ定められた範囲を超えた場合には、冷却ガスの温度の低下を停止し、前記温度差があらかじめ定められた範囲内に戻った場合には、冷却ガスの温度の低下を再開することを特徴とし、前記過冷却解除検知工程は、前記対象物の表面温度が凍結温度以下において10秒以内に5℃/秒から0.1℃/秒の速度で、0.5℃以上上昇した場合に過冷却状態が解除されたと検知することを特徴としている。   Further, when the temperature difference between the cooling gas temperature and the surface temperature exceeds a predetermined range in the supercooling formation step, the cooling gas temperature reduction is stopped, and the temperature difference is determined in advance. When the temperature returns to within the range, the cooling gas temperature reduction is resumed, and the subcooling release detecting step is performed at 5 ° C. within 10 seconds when the surface temperature of the object is below the freezing temperature. It is detected that the supercooled state is released when the temperature rises by 0.5 ° C. or more at a rate of 0.1 ° C./second from / second.

本発明の凍結方法によれば、過冷却解除検知工程により、特に、対象物の表面温度が凍結温度以下において10秒以内に5℃/秒から0.1℃/秒の速度で、0.5℃以上上昇した場合に過冷却状態が解除されたと検知することで、過冷却の解除を確実に把握することができる。また、過冷却形成工程において、冷却ガスの温度と対象物の表面温度との温度差があらかじめ定められた範囲を超えた場合には冷却を一時停止し、あらかじめ定められた範囲内に戻った場合には冷却を再開することを繰り返すことにより、充分な過冷却度を得ることができる。   According to the freezing method of the present invention, the supercooling release detection step is performed, in particular, at a rate of 5 ° C./second to 0.1 ° C./second within 10 seconds when the surface temperature of the object is below the freezing temperature. By detecting that the supercooling state is released when the temperature rises by more than ° C., the release of the supercooling can be reliably grasped. In addition, when the temperature difference between the temperature of the cooling gas and the surface temperature of the target object exceeds a predetermined range in the supercooling formation process, cooling is temporarily stopped and returned to the predetermined range. A sufficient degree of supercooling can be obtained by repeating the resumption of cooling.

本発明の凍結方法を実施する冷凍装置の一例を示す説明図である。It is explanatory drawing which shows an example of the freezing apparatus which enforces the freezing method of this invention. 過冷却形成工程、過冷却解除の温度変化を示す図である。It is a figure which shows the temperature change of a supercooling formation process and a supercooling cancellation | release. 本発明の実施例1における温度変化を示す図である。It is a figure which shows the temperature change in Example 1 of this invention. 本発明の実施例1における温度変化を示す図の拡大図である。It is an enlarged view of the figure which shows the temperature change in Example 1 of this invention. 本発明の実施例2における温度変化を示す図である。It is a figure which shows the temperature change in Example 2 of this invention. 本発明の実施例2における温度変化を示す図の拡大図である。It is an enlarged view of the figure which shows the temperature change in Example 2 of this invention.

図1は、本発明の凍結方法を実施するための冷凍装置の一例を示すものである。冷凍装置10は、対象物1を収容するサンプル室11と該サンプル室11を吹き出し板12を介して囲む整流チャンバー13とを設けている。図示しない貯槽(容器)の液化窒素ガスを液化窒素入口14から導入し、ニードル弁15及び電磁弁16を介して、液化窒素噴射口17から撹拌ファン18に向って液化窒素ガスを噴射する。   FIG. 1 shows an example of a refrigeration apparatus for carrying out the freezing method of the present invention. The refrigeration apparatus 10 includes a sample chamber 11 that accommodates the object 1 and a rectifying chamber 13 that surrounds the sample chamber 11 with a blowing plate 12 interposed therebetween. A liquefied nitrogen gas in a storage tank (container) (not shown) is introduced from the liquefied nitrogen inlet 14, and the liquefied nitrogen gas is injected from the liquefied nitrogen injection port 17 toward the stirring fan 18 through the needle valve 15 and the electromagnetic valve 16.

モータ19によって駆動する撹拌ファン18により、サンプル室11内の冷却ガスを吸入し、整流チャンバー13内へと冷却ガスを送り込むとともに、噴射された液化窒素ガスを気化して冷却ガスとして拡散させる。吹き出し板12は、パンチング孔等により開口率が制限されており、さらに、整流チャンバー13のガス流れ方向の断面積を吹き出し板12の開口面積の5倍以上にすることにより、サンプル室11に均一に冷却ガスが送られる。   The agitating fan 18 driven by the motor 19 sucks the cooling gas in the sample chamber 11, sends the cooling gas into the rectifying chamber 13, vaporizes the injected liquefied nitrogen gas, and diffuses it as the cooling gas. The blowing plate 12 has an opening ratio limited by a punching hole or the like. Further, by making the sectional area of the gas flow direction of the rectifying chamber 13 more than five times the opening area of the blowing plate 12, it is uniform in the sample chamber 11. Cooling gas is sent to

さらに、液化窒素ガスが噴射され気化した際には、整流チャンバー13内の圧力が上昇するので、吹き出し板12からサンプル室11内へ流れる冷却ガスの流速に変化が生じることを避けるため、サンプル室11を経由せずに冷却ガスの一部を排気する圧力調整機構20が設けられるとともに、サンプル室11内に供給された冷却ガスにより上昇する内圧を降圧させるための排気口21が設けられている。   Furthermore, when the liquefied nitrogen gas is jetted and vaporized, the pressure in the rectifying chamber 13 increases, so that the flow rate of the cooling gas flowing from the blowing plate 12 into the sample chamber 11 is prevented from changing. 11 is provided with a pressure adjusting mechanism 20 that exhausts a part of the cooling gas without going through 11, and an exhaust port 21 for lowering the internal pressure rising by the cooling gas supplied into the sample chamber 11 is provided. .

また、整流チャンバー13内の冷却ガスの温度を測定する冷却ガス温度センサー22と、対象物1の表面温度を測定する表面温度センサー23と芯温を測定する芯温センサー24とが設けられている。さらに、撹拌ファン18の近傍には、冷却ガスを加熱するヒータ25が設けられている。   Further, a cooling gas temperature sensor 22 that measures the temperature of the cooling gas in the rectifying chamber 13, a surface temperature sensor 23 that measures the surface temperature of the object 1, and a core temperature sensor 24 that measures the core temperature are provided. . Further, a heater 25 for heating the cooling gas is provided in the vicinity of the stirring fan 18.

冷却ガス温度センサー22に検知された冷却ガス温度、あるいは該冷却ガス温度と表面温度センサー23で検知された対象物1の表面温度との温度差に基づいて、ニードル弁15及び電磁弁16を制御して液化窒素ガスの流量を調節したり、モータ19の回転数を制御して冷却ガスの撹拌量を調節したり、ヒータ25を作動させたりすることによって、
冷却ガスの温度を制御することができる。
The needle valve 15 and the electromagnetic valve 16 are controlled based on the cooling gas temperature detected by the cooling gas temperature sensor 22 or the temperature difference between the cooling gas temperature and the surface temperature of the object 1 detected by the surface temperature sensor 23. By adjusting the flow rate of the liquefied nitrogen gas, controlling the rotation speed of the motor 19 to adjust the amount of stirring of the cooling gas, or operating the heater 25,
The temperature of the cooling gas can be controlled.

次に、上述の冷凍装置10を用いて、対象物1を過冷却状態にし、過冷却状態が解除する温度変化を図2を用いて説明する。対象物1には、3%ゼラチンを用いており、冷却ガスの温度を最初の10分間で20℃から0℃に、次の60分間は0℃を維持し、その後の100分間で0℃から−10℃になるように制御している。最初の10分間で、冷却ガス温度の低下に伴い、対象物1の表面温度及び芯温温度が低下する。その後、冷却ガス温度が0℃の状態で維持されると、対象物1の表面温度及び芯温は、勾配をやや緩めながら低下を続ける。その後、冷却ガス温度が0℃から徐々に低下していくと、表面温度がわずかに低い状態で、対象物1の表面温度及び芯温が凍結点(0℃)以下にさらに低下していき、対象物1が過冷却状態となる。その後、一定の時間経過後に、対象物1の表面温度及び芯温が凍結点付近まで急激に上昇し、過冷却が解除される。この対象物1が、凍結点以下の温度でも凍らない過冷却状態となり、過冷却が解除されるまでが、本願の過冷却形成工程である。図2によると、過冷却解除後も、徐々に冷却ガスの温度が低下する温度制御をしているため、凍結点まで上昇した対象物の温度が凍結点付近のままとなっている。   Next, the temperature change at which the object 1 is brought into a supercooled state using the refrigeration apparatus 10 and the supercooled state is released will be described with reference to FIG. The object 1 uses 3% gelatin, and the temperature of the cooling gas is maintained from 20 ° C. to 0 ° C. for the first 10 minutes, maintained at 0 ° C. for the next 60 minutes, and from 0 ° C. for the subsequent 100 minutes. It is controlled to be −10 ° C. In the first 10 minutes, as the cooling gas temperature decreases, the surface temperature and core temperature of the object 1 decrease. Thereafter, when the cooling gas temperature is maintained at 0 ° C., the surface temperature and the core temperature of the object 1 continue to decrease while the gradient is slightly relaxed. Thereafter, when the cooling gas temperature gradually decreases from 0 ° C., the surface temperature and core temperature of the object 1 further decrease below the freezing point (0 ° C.) with the surface temperature being slightly lower. The object 1 is in a supercooled state. Thereafter, after a certain period of time, the surface temperature and the core temperature of the object 1 rapidly rise to the vicinity of the freezing point, and the supercooling is released. The object 1 is in a supercooling state in which it does not freeze even at a temperature below the freezing point, and until the supercooling is released is the supercooling formation process of the present application. According to FIG. 2, since the temperature control is performed so that the temperature of the cooling gas gradually decreases after the supercooling is released, the temperature of the object that has risen to the freezing point remains in the vicinity of the freezing point.

次に、同じく対象物1を3%ゼラチンとし、上述と同じ過冷却形成工程で過冷却状態として、過冷却解除を検知したら急速冷却する際の温度変化を図3及び図4を示す。図4は、表示温度幅を20℃から−10℃までとする図3の拡大図である。対象物1の表面温度が、凍結点(0℃)以下で、5秒以内に1℃上昇したことを検知した場合には、過冷却が解除されたと判断し、冷却ガスを1分間で−100℃になるように制御する。   Next, FIG. 3 and FIG. 4 show the temperature change at the time of rapid cooling when the object 1 is made 3% gelatin and the supercooling state is detected in the same supercooling formation process as described above, and when the supercooling release is detected. FIG. 4 is an enlarged view of FIG. 3 in which the display temperature range is 20 ° C. to −10 ° C. When it is detected that the surface temperature of the object 1 has risen by 1 ° C. within 5 seconds below the freezing point (0 ° C.), it is determined that the supercooling has been released and the cooling gas is reduced to −100 for 1 minute. Control to be at ℃.

図3及び図4に示されるように、過冷却解除が検知され、冷却ガスが−100℃に急激に冷却されると、対象物1の表面温度も凍結点付近に上昇後すぐに低下し、芯温も少しの間凍結温度付近にとどまるが、その後は急速に温度が低下することが分かる。   As shown in FIG. 3 and FIG. 4, when the supercooling release is detected and the cooling gas is rapidly cooled to −100 ° C., the surface temperature of the object 1 also decreases immediately after rising near the freezing point, It can be seen that the core temperature stays near the freezing temperature for a while, but then the temperature rapidly decreases.

このように、過冷却状態解除後の凍結過程において、急速に冷却して対象物を冷凍すると、氷結晶が肥大することを抑えられるとともに、氷結晶以外の品質低下要因を回避できる。   As described above, in the freezing process after the release of the supercooled state, if the object is rapidly cooled to freeze the object, it is possible to prevent the ice crystals from being enlarged and to avoid quality deterioration factors other than the ice crystals.

さらに、上記実施例1と同じ条件で、過冷却解除を検知し、冷却ガス温度を制御するのに加え、過冷却形成工程において、対象物1の表面温度が凍結点(0℃)以下のときに、冷却ガス温度との温度差が0.5℃以上になった場合には、液化窒素ガスの噴射を止めて冷却ガスの温度低下を停止するように制御し、温度差が再び0.5℃未満になった場合には、液化窒素ガスの噴射を再開して冷却ガスの温度低下を再開させるように制御する際の温度変化を図5及び図6に示す。図6は、表示温度幅を20℃から−10℃までとする図5の拡大図である。   Furthermore, under the same conditions as in the first embodiment, when the supercooling release is detected and the cooling gas temperature is controlled, in the supercooling formation step, the surface temperature of the object 1 is below the freezing point (0 ° C.). When the temperature difference from the cooling gas temperature is 0.5 ° C. or more, control is performed so as to stop the liquefied nitrogen gas injection and stop the cooling gas temperature drop. FIG. 5 and FIG. 6 show the temperature change when controlling to restart the cooling gas temperature reduction by restarting the injection of the liquefied nitrogen gas when the temperature is lower than ° C. FIG. 6 is an enlarged view of FIG. 5 in which the display temperature range is 20 ° C. to −10 ° C.

図6に示されるように、過冷却形成工程において、表面温度と冷却ガス温度との温度差が0.5℃以上になったときに、冷却ガスの温度を低下させる温度制御プログラムを停止させ、0.5℃未満になったときに、冷却ガスの温度を低下させる温度制御プログラムを開始させることが4回繰り返されることによって、過冷却状態の時間が実施例1と比べて長くなり、過冷却度を大きくできることが分かる。   As shown in FIG. 6, in the supercooling formation step, when the temperature difference between the surface temperature and the cooling gas temperature becomes 0.5 ° C. or more, the temperature control program for lowering the temperature of the cooling gas is stopped, When the temperature control program for lowering the temperature of the cooling gas is started four times when the temperature is lower than 0.5 ° C., the time of the supercooling state becomes longer than that of the first embodiment, and the supercooling is performed. It can be seen that the degree can be increased.

このように、過冷却度を大きくすることにより、対象物内に形成される氷結晶がより微細なものとなり、解凍後も凍結前により近い状態を維持することが可能となる。   As described above, by increasing the degree of supercooling, the ice crystals formed in the object become finer, and it is possible to maintain a state closer to that before freezing even after thawing.

なお、本発明の凍結方法を適用する冷凍装置は上述のものに限らず、対象物の表面温度と冷却ガス温度(雰囲気温度)とが測定でき、冷却ガスの温度制御が可能なものであればよい。また、過冷却解除検知工程で万が一過冷却の解除を検知できない場合に備えて、冷却ガス温度や表面温度が所定の温度に達した場合や、所定時間が経過した場合には、強制的に急速冷凍工程を開始させる温度制御プログラムを実装しておいてもよい。   Note that the refrigeration apparatus to which the freezing method of the present invention is applied is not limited to the above-described one, as long as the surface temperature of the object and the cooling gas temperature (atmosphere temperature) can be measured and the temperature control of the cooling gas is possible. Good. Also, in the event that the supercooling release detection process cannot detect the release of supercooling, if the cooling gas temperature or surface temperature reaches a predetermined temperature, or if a predetermined time has passed, it is A temperature control program for starting the refrigeration process may be implemented.

1…対象物、10…冷凍装置、11…サンプル室、12…吹き出し板、13・・・整流チャンバー、14…液体窒素入口、15…ニードル弁、16…電磁弁、17…液化窒素噴射口、18…撹拌ファン、19…モータ、20…圧力調整機構、21…排気口、22…冷却ガス温度センサー。23…表面温度センサー、24…芯温センサー、25…ヒータ   DESCRIPTION OF SYMBOLS 1 ... Object, 10 ... Refrigeration apparatus, 11 ... Sample chamber, 12 ... Outlet plate, 13 ... Rectification chamber, 14 ... Liquid nitrogen inlet, 15 ... Needle valve, 16 ... Electromagnetic valve, 17 ... Liquid nitrogen injection port, 18 ... Stirring fan, 19 ... Motor, 20 ... Pressure adjusting mechanism, 21 ... Exhaust port, 22 ... Cooling gas temperature sensor. 23 ... Surface temperature sensor, 24 ... Core temperature sensor, 25 ... Heater

Claims (3)

対象物を冷却ガスにより冷却して凍結する凍結方法において、
前記冷却ガスの温度を検知する手段及び前記対象物の表面温度を検知する手段を備え、
前記対象物が凍結点以下の温度でも凍らない過冷却状態となるように冷却する過冷却形成工程と、
過冷却状態が解除されたことを検知する過冷却解除検知工程と、
前記過冷却状態が解除されたら前記対象物を急速に冷却する急速冷却工程とからなる凍結方法。
In a freezing method in which an object is cooled by a cooling gas and frozen,
Means for detecting the temperature of the cooling gas and means for detecting the surface temperature of the object;
A supercooling formation step of cooling the object so as to be in a supercooling state in which the object is not frozen even at a temperature below the freezing point;
A subcooling release detection process for detecting that the supercooling state has been released;
A freezing method comprising a rapid cooling step of rapidly cooling the object when the supercooled state is released.
前記過冷却形成工程で前記冷却ガスの温度と前記表面温度との温度差があらかじめ定められた範囲を超えた場合には、冷却ガスの温度の低下を停止し、前記温度差があらかじめ定められた範囲内に戻った場合には、冷却ガスの温度の低下を再開する請求項1記載の凍結方法。 When the temperature difference between the temperature of the cooling gas and the surface temperature exceeds a predetermined range in the supercooling formation step, the cooling gas temperature stops decreasing and the temperature difference is determined in advance. The freezing method according to claim 1, wherein when the temperature falls within the range, the temperature of the cooling gas is restarted. 前記過冷却解除検知工程は、前記対象物の表面温度が凍結温度以下において10秒以内に5℃/秒から0.1℃/秒の速度で、0.5℃以上上昇した場合に過冷却状態が解除されたと検知する請求項1又は2記載の凍結方法。 The supercooling release detecting step is in a supercooled state when the surface temperature of the object rises by 0.5 ° C or more at a rate of 5 ° C / second to 0.1 ° C / second within 10 seconds at or below the freezing temperature. The freezing method according to claim 1, wherein the freezing method detects that is released.
JP2013188437A 2013-09-11 2013-09-11 Freezing method Pending JP2015055396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188437A JP2015055396A (en) 2013-09-11 2013-09-11 Freezing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188437A JP2015055396A (en) 2013-09-11 2013-09-11 Freezing method

Publications (1)

Publication Number Publication Date
JP2015055396A true JP2015055396A (en) 2015-03-23

Family

ID=52819925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188437A Pending JP2015055396A (en) 2013-09-11 2013-09-11 Freezing method

Country Status (1)

Country Link
JP (1) JP2015055396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181141A (en) * 2018-03-30 2019-10-24 大陽日酸株式会社 Preliminary freezing apparatus and freeze storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338678A (en) * 1995-06-14 1996-12-24 Liquid Gas:Kk Refrigerating equipment
JP2008267789A (en) * 2008-03-10 2008-11-06 Mitsubishi Electric Corp Refrigerator
JP2009047337A (en) * 2007-08-17 2009-03-05 Mitsubishi Electric Corp Refrigerator
JP2009293883A (en) * 2008-06-06 2009-12-17 Mitsubishi Electric Corp Frozen storage device and frozen storage method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338678A (en) * 1995-06-14 1996-12-24 Liquid Gas:Kk Refrigerating equipment
JP2009047337A (en) * 2007-08-17 2009-03-05 Mitsubishi Electric Corp Refrigerator
JP2008267789A (en) * 2008-03-10 2008-11-06 Mitsubishi Electric Corp Refrigerator
JP2009293883A (en) * 2008-06-06 2009-12-17 Mitsubishi Electric Corp Frozen storage device and frozen storage method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181141A (en) * 2018-03-30 2019-10-24 大陽日酸株式会社 Preliminary freezing apparatus and freeze storage system

Similar Documents

Publication Publication Date Title
JP6128452B1 (en) Quick freezing method and quick freezing apparatus
JP2011505793A (en) Method and system for freezing biological material at a controlled rate
CN106152391B (en) A method of the compressor exhaust temperature for controlling Super long tube air-conditioning is excessively high
CN105135772B (en) Water refrigerating plant and its control method for preventing cold water from freezing
JP2010266086A (en) Freeze-drying device, freeze-drying method for sample, device for preparing sample for electron microscope including freeze-drying device and method of preparing sample for electron microscope
CN104457076A (en) Refrigeration method based on PID control electromagnetic valve
US20030192325A1 (en) Method and apparatus for the control of the flow rate of the refrigerating fluid in ice cream making machines
JP2015055396A (en) Freezing method
JP6095912B2 (en) Vacuum cooling device
US9821634B2 (en) Motor lock determination device
JP5346722B2 (en) Automatic ice making equipment, refrigerator
DE502006007660D1 (en) METHOD FOR OPERATING A REFRIGERATOR AND REFRIGERATOR WITH A DELAYED START OF THE COMPRESSOR
JP2014101754A (en) Power supply device for vacuum pump
JP2008309403A (en) Operation method of ice-making machine
US20210276055A1 (en) Substrate treatment device
JP6537405B2 (en) Vacuum cooling system
US20210265159A1 (en) Substrate treatment device
JP2008281262A (en) Automatic ice making machine and its operation method
JP5615248B2 (en) Dry ice snow injection device and dry ice snow injection method
JP2011017467A (en) Ice making machine
JP5253863B2 (en) Automatic ice machine
JP2000249441A (en) Vacuum cooling apparatus where cooling up to predetermined time is securely achieved
KR102500591B1 (en) Substrate processing device
FI74596B (en) FOERFARANDE OCH APPARATUR FOER STYRD KRISTALLISATIONSPROCESS AV FETT.
KR101029522B1 (en) A photo reit custody device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209