JPH08338310A - Exhaust heat recovery system - Google Patents

Exhaust heat recovery system

Info

Publication number
JPH08338310A
JPH08338310A JP7170268A JP17026895A JPH08338310A JP H08338310 A JPH08338310 A JP H08338310A JP 7170268 A JP7170268 A JP 7170268A JP 17026895 A JP17026895 A JP 17026895A JP H08338310 A JPH08338310 A JP H08338310A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
exhaust heat
heat
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7170268A
Other languages
Japanese (ja)
Other versions
JP3690842B2 (en
Inventor
Kosuke Nakatani
浩介 中谷
Hidekazu Hayashi
秀和 林
Takehiko Kitani
威彦 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP17026895A priority Critical patent/JP3690842B2/en
Publication of JPH08338310A publication Critical patent/JPH08338310A/en
Application granted granted Critical
Publication of JP3690842B2 publication Critical patent/JP3690842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE: To prevent the generation of overshoot due to an increase in exhaust heat demand amt. at an exhaust heat recovery part without affected by secular change or a variation in flow resistance. CONSTITUTION: A rapid decrease in exhaust heat demand amt. such as sudden suspension of warm water-absorption type refrigerator operation, etc., is detected from the temp. of cooling water supplied to a heat exchanger for heat radiation by means of an input temp. sensor 16. A control output of 30% is generated from feed forward side control means 22. Control output from a feedback side control means 23 is added to the 30%-control output. The added control output controls a three-way valve 12. Cooling water having some previously set amt., not the total amt. of the cooling water, is supplied to the heat exchanger for heat radiation. When exhaust heat recovery is restarted, the control output from the feed forward side control means 22 is retained to 30% by means of a cooling water temp. sensor 15 until the temp. of the cooling water returned to an engine cooling part becomes set temp. or below. Thus, returning the high-temp. cooling water due to overshoot to the engine cooling part is avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コジェネレーションシ
ステムなどに用いるために、ガスエンジンやディーゼル
エンジンの冷却ジャケットといったエンジン冷却部と、
温水吸収式冷凍機や給湯設備や暖房装置などの排熱回収
部とを配管を介して接続するとともに、排熱回収部から
エンジン冷却部への冷却水供給側配管に、三方弁とバイ
パス配管とから構成されるような放熱量変更手段を備え
た放熱用熱交換器を設け、かつ、冷却水供給側配管の排
熱回収部と放熱用熱交換器との間に冷却水の温度を測定
する入口温度センサを設け、その入口温度センサで測定
される冷却水の温度に基づいて放熱量変更手段を作動す
るように構成した排熱回収システムに関する。
BACKGROUND OF THE INVENTION The present invention relates to an engine cooling section such as a cooling jacket for a gas engine or a diesel engine, for use in a cogeneration system or the like.
While connecting the exhaust heat recovery part of the hot water absorption refrigerator, hot water supply equipment, heating device, etc. via piping, connect the three-way valve and the bypass pipe to the cooling water supply side piping from the exhaust heat recovery part to the engine cooling part. Is provided with a heat dissipation heat exchanger having a heat dissipation amount changing means, and the temperature of the cooling water is measured between the exhaust heat recovery part of the cooling water supply side pipe and the heat dissipation heat exchanger. The present invention relates to an exhaust heat recovery system that is provided with an inlet temperature sensor and operates a heat radiation amount changing means based on the temperature of cooling water measured by the inlet temperature sensor.

【0002】[0002]

【従来の技術】排熱回収システムでは、通常、冷却水供
給側配管のバイパス配管よりも下流側にエンジン冷却部
に供給される冷却水の温度を測定する冷却水温度センサ
を設けるとともに、冷却水温度センサで測定される冷却
水の温度が設定温度になるように放熱量変更手段を作動
するフィードバック側制御手段を備え、エンジン冷却部
に供給される冷却水の温度が設定温度になるように、放
熱用熱交換器に分配供給する冷却水の量を制御してい
る。これにより、冷却ジャケット内の冷却水の温度が上
昇しすぎてエンジン保護回路が作動し、エンジンを自動
的に停止する、いわゆるエンジントリップが発生するこ
とを回避できるようにしている。
2. Description of the Related Art In an exhaust heat recovery system, a cooling water temperature sensor for measuring the temperature of cooling water to be supplied to an engine cooling section is usually provided downstream of a bypass pipe of a cooling water supply side pipe, and the cooling water is also provided. Provided with feedback side control means for operating the heat radiation amount changing means so that the temperature of the cooling water measured by the temperature sensor becomes the set temperature, so that the temperature of the cooling water supplied to the engine cooling section becomes the set temperature. The amount of cooling water distributed and supplied to the heat dissipation heat exchanger is controlled. As a result, it is possible to avoid the occurrence of so-called engine trip in which the temperature of the cooling water in the cooling jacket rises too much and the engine protection circuit operates to automatically stop the engine.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来例
では、例えば、温水吸収式冷凍機が急に停止するなどの
ように排熱需要量が急激に減少した場合、後流に三方弁
などを介して水温を下げるための放熱用熱交換器を設け
ていても、水温が急上昇すると制御遅れのために放熱用
熱交換器で熱が十分奪われず、冷却水の温度が設定温度
よりもオーバーシュートし、高温の冷却水がエンジンに
戻ってエンジンがトリップする。
However, in the conventional example, when the exhaust heat demand suddenly decreases, such as when the hot water absorption refrigerator suddenly stops, for example, a three-way valve is used in the wake. Even if a heat radiating heat exchanger is installed to lower the water temperature, the heat radiating heat exchanger does not take enough heat due to the control delay when the water temperature rises rapidly, and the cooling water temperature overshoots the set temperature. , Hot cooling water returns to the engine and the engine trips.

【0004】そのため、オーバーシュートによる最大温
度を見込んで設定温度を低くしている。ところが、通常
時においてエンジン冷却部から取り出される冷却水の温
度が低くなってしまい、排熱回収効率が低下する欠点が
あった。
Therefore, the set temperature is lowered in anticipation of the maximum temperature due to overshoot. However, there is a drawback that the temperature of the cooling water taken out from the engine cooling section becomes low during normal times, and the exhaust heat recovery efficiency decreases.

【0005】そこで、冒頭に記載したように、排熱回収
部から出た冷却水の温度を入口温度センサで測定し、そ
の測定した温度に基づいて三方弁などの放熱量変更手段
を作動するフィードフォワード制御を行い、早期に放熱
量変更手段を作動してオーバーシュートを防止するもの
が提案されている。
Therefore, as described at the beginning, the temperature of the cooling water discharged from the exhaust heat recovery section is measured by the inlet temperature sensor, and the feed for operating the heat radiation amount changing means such as a three-way valve based on the measured temperature. It has been proposed to perform forward control and activate a heat radiation amount changing means at an early stage to prevent overshoot.

【0006】ところが、フィードフォワード制御を行う
場合、排熱需要量が急激に減少したときには、入口温度
センサが冷却水の温度上昇を感知して早期に放熱量変更
手段を作動させ、放熱用熱交換器での放熱量を増加させ
るために対応できるが、逆に、排熱需要量が減少してい
る状態から、温水吸収式冷凍機の運転が再開されるなど
のように排熱需要量が増大したときには、入口温度セン
サによって冷却水の温度が低下したことを感知して放熱
量変更手段を作動し、放熱用熱交換器での放熱量を減少
してしまうと、放熱用熱交換器で放熱されずに高温のま
まの冷却水がエンジン冷却部に戻されてオーバーシュー
トを生じる問題があった。
However, in the case of performing the feedforward control, when the exhaust heat demand suddenly decreases, the inlet temperature sensor senses the temperature rise of the cooling water and activates the heat radiation amount changing means early to perform the heat radiation heat exchange. Although it can be dealt with to increase the heat radiation amount in the refrigerator, conversely, the exhaust heat demand increases, such as restarting the operation of the hot water absorption refrigerator after the exhaust heat demand is decreasing. In this case, if the inlet temperature sensor detects that the temperature of the cooling water has dropped and activates the heat radiation amount changing means to reduce the heat radiation amount in the heat radiation heat exchanger, the heat radiation heat exchanger releases heat. However, there was a problem that the cooling water, which was still at high temperature, was returned to the engine cooling section to cause overshoot.

【0007】そこで、このような問題を解消するため、
入口温度センサで測定された低温の冷却水が放熱量変更
手段で制御される箇所に到達するに必要な時間を算出
し、その時間だけ、放熱用熱交換器での放熱を継続する
ことが考えられた。
Therefore, in order to solve such a problem,
It is conceivable to calculate the time required for the low-temperature cooling water measured by the inlet temperature sensor to reach the location controlled by the heat radiation amount changing means, and continue heat radiation in the heat radiation heat exchanger for that time. Was given.

【0008】上述した冷却水が放熱量変更手段で制御さ
れる箇所に到達するに必要な時間は、配管の内径とそこ
を流れる冷却水の流速とから算出される。ところが、配
管の内径は、使用に伴って、配管の内周面にスケールが
付着するなど、経年変化する可能性がある。また、流速
は、排熱回収部の運転や停止などに伴うシステム全体で
の流動抵抗の変化に起因して変動する。
The time required for the cooling water to reach the location controlled by the heat radiation amount changing means is calculated from the inner diameter of the pipe and the flow velocity of the cooling water flowing therethrough. However, there is a possibility that the inner diameter of the pipe may change over time due to the scale being attached to the inner peripheral surface of the pipe due to use. Further, the flow velocity fluctuates due to the change in flow resistance in the entire system due to the operation or stop of the exhaust heat recovery unit.

【0009】このようなことから、長期にわたって適切
に遅れ時間を設定することが困難であり、また、制御の
遅れ時間を制御構成に組み込むためにコストアップを招
く欠点があり、更なる改善が望まれていた。
For this reason, it is difficult to properly set the delay time over a long period of time, and there is a drawback that the control delay time is incorporated into the control configuration, which causes a cost increase, and further improvement is desired. It was rare.

【0010】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の排熱回収システ
ムは、経年変化や流動抵抗の変化に影響されずに、排熱
回収部での排熱需要量の増大に起因するオーバーシュー
トの発生を防止できるようにすることを目的とし、ま
た、請求項2に係る発明の排熱回収システムは、それぞ
れ排熱回収部での排熱回収開始時における動作遅れに起
因して制御が不安定になることを回避できるようにする
ことを目的とする。
The present invention has been made in view of the above circumstances, and the exhaust heat recovery system of the invention according to claim 1 recovers the exhaust heat without being affected by aged deterioration or flow resistance change. The purpose of the present invention is to prevent the occurrence of overshoot due to an increase in the exhaust heat demand in the exhaust heat recovery section, and the exhaust heat recovery system of the invention according to claim 2 is to exhaust the exhaust heat in the exhaust heat recovery section. An object of the present invention is to prevent the control from becoming unstable due to an operation delay at the start of heat recovery.

【0011】[0011]

【課題を解決するための手段】請求項1に係る発明は、
上述のような目的を達成するために、エンジン(1) のエ
ンジン冷却部と排熱回収部(6),(7) とを配管(5),(8a),
(8b) を介して接続するとともに、排熱回収部(6),(7)
からエンジン冷却部への冷却水供給側配管(5) に、放熱
量変更手段(12)を備えた放熱用熱交換器(14)を設け、か
つ、冷却水供給側配管(5) の排熱回収部(6),(7) と放熱
用熱交換器(14)との間に冷却水の温度を測定する入口温
度センサ(16)を設け、その入口温度センサ(16)で測定さ
れる冷却水の温度に基づいて放熱量変更手段(12)を作動
するように構成した排熱回収システムにおいて、冷却水
供給側配管(5) の放熱用熱交換器(14)よりも下流側に設
けられてエンジン冷却部に戻される冷却水の温度を測定
する冷却水温度センサ(15)と、入口温度センサ(16)によ
る測定温度が設定温度を越えたときに出力される放熱信
号に基づいて、冷却水温度センサ(15)による冷却水の測
定温度が設定温度よりも低くなるまで放熱制御信号を出
力させるホールド手段(21)と、放熱制御信号に応答し
て、放熱量変更手段(12)の弁開度を前記エンジン(1) が
定格運転し、かつ、排熱回収部(6),(7) の排熱需要が零
のときに放熱用熱交換器(14)に供給すべき冷却水量を流
す弁開度よりも小さい予め設定した設定弁開度になるよ
うに制御するフィードフォワード側制御手段(22)と、冷
却水温度センサ(15)による冷却水の測定温度に基づい
て、その測定温度が高くなるほど放熱量が増大するよう
に放熱量変更手段(12)を制御するフィードバック側制御
手段(23)とを備えて構成する。
The invention according to claim 1 is
In order to achieve the above purpose, the engine cooling part of the engine (1) and the exhaust heat recovery parts (6), (7) are connected to the pipes (5), (8a),
Connected via (8b) and exhaust heat recovery parts (6), (7)
From the engine cooling section to the cooling water supply side pipe (5) is provided with a heat dissipation heat exchanger (14) equipped with heat dissipation amount changing means (12), and the cooling water supply side pipe (5) exhaust heat An inlet temperature sensor (16) for measuring the temperature of the cooling water is provided between the recovery sections (6), (7) and the heat dissipation heat exchanger (14), and cooling is performed by the inlet temperature sensor (16). In the exhaust heat recovery system configured to operate the heat radiation amount changing means (12) based on the water temperature, the cooling water supply side pipe (5) is provided on the downstream side of the heat radiation heat exchanger (14). Cooling water temperature sensor (15) that measures the temperature of the cooling water returned to the engine cooling unit, and cooling based on the heat radiation signal output when the temperature measured by the inlet temperature sensor (16) exceeds the set temperature. Hold means (21) that outputs a heat radiation control signal until the temperature measured by the water temperature sensor (15) is lower than the set temperature, and heat radiation control signal When the engine (1) is in rated operation with the valve opening of the heat radiation amount changing means (12) and the exhaust heat demand of the exhaust heat recovery parts (6), (7) is zero in response to the A feed-forward side control means (22) for controlling to a preset valve opening smaller than the valve opening for flowing the amount of cooling water to be supplied to the heat dissipation heat exchanger (14), and a cooling water temperature sensor ( Based on the measured temperature of the cooling water by 15), it comprises a feedback side control means (23) for controlling the heat radiation amount changing means (12) so that the heat radiation amount increases as the measured temperature rises.

【0012】排熱回収部としては、温水吸収式冷凍機や
給湯設備や暖房装置などが用いられる。
As the exhaust heat recovery unit, a hot water absorption type refrigerator, hot water supply equipment, a heating device or the like is used.

【0013】また、請求項2に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項1
に係る発明の排熱回収システムにおけるホールド手段(2
1)を、入口温度センサ(16)による冷却水の測定温度がそ
の設定温度(A) よりも低くなり、かつ、冷却水温度セン
サ(15)による冷却水の測定温度がその設定温度(B) より
も低くなるまで放熱制御信号を出力させるように構成す
る。
Further, the exhaust heat recovery system of the invention according to claim 2 has the following features to achieve the above object.
Hold means in the exhaust heat recovery system of the invention according to (2)
1), the measured temperature of the cooling water by the inlet temperature sensor (16) is lower than the set temperature (A), and the measured temperature of the cooling water by the cooling water temperature sensor (15) is the set temperature (B). The heat radiation control signal is output until the temperature becomes lower than that.

【0014】[0014]

【作用】請求項1に係る発明の排熱回収システムの構成
によれば、排熱回収部での排熱需要量が急激に減少した
ときに、それによって温度が急激に上昇した冷却水を入
口温度センサが感知すると放熱信号を出力し、それに基
づいてホールド手段から放熱制御信号を出力し、その放
熱制御信号に応答してフィードフォワード側制御手段に
より放熱量変更手段を作動し、最大放熱量よりも小さい
値に設定した設定放熱量になるようにし、全量よりも少
ない量の冷却水を放熱用熱交換器に供給する。一方、フ
ィードバック側制御手段では、冷却水温度センサの測定
温度に基づき、その測定温度が高くなれば、放熱用熱交
換器に供給する量が多くなるように、逆に、測定温度が
低くなれば、放熱用熱交換器に供給する量が少なくなる
ようにそれぞれ放熱量変更手段を作動する。すなわち、
フィードフォワード側制御手段からの制御出力とフィー
ドバック側制御手段からの制御出力とが加算されたシス
テム全体の制御出力によって放熱量変更手段を作動す
る。そして、排熱回収部での排熱回収が再開されたとき
には、そのことを、冷却水温度センサによる冷却水の測
定温度が設定温度よりも低くなることによって判断し、
それに基づいてホールド手段の作用を解除し、フィード
フォワード側制御手段からの制御出力だけでは放熱用熱
交換器に冷却水が供給されないが、冷却水温度センサに
よる測定温度に基づいてフィードバック側制御手段から
の制御出力が加算され、冷却水温度センサによる測定温
度が設定温度を越えないように、放熱量変更手段を作動
する。より詳述すれば、排熱回収部での排熱需要が安定
していて、エンジン冷却部に戻される冷却水の温度変化
が小さいときには、エンジン冷却部に戻される冷却水の
温度に基づくフィードバック側制御手段からの制御出力
の加算分が有効に作用して放熱用熱交換器に供給する冷
却水の量を制御する。例えば、温水吸収式冷凍機の運転
が停止されるなど、排熱回収部での排熱需要量が急激に
減少したときには、そのことを入口温度センサで測定さ
れる冷却水の温度が設定温度を越えることにより感知
し、ホールド手段の作用により、必要量を放熱するため
に必要な冷却水量の全量ではなく、予め設定したある程
度の量(設定量)の冷却水を放熱用熱交換器に供給し、
急激に温度が高くなった冷却水をエンジン冷却部に戻す
ことを回避するとともに、温度が上昇していない冷却水
を必要以上に放熱用熱交換器に供給して必要以上に低温
の冷却水をエンジン冷却部に戻すことを抑制し、かつ、
設定量を越える範囲では、フィードバック側制御手段か
らの制御出力の加算分により、エンジン冷却部に戻され
る冷却水の温度が設定温度を越えないように放熱用熱交
換器に供給する冷却水の量を制御する。また、排熱回収
部での排熱回収が再開されると、その再開時点よりも遅
らせて、前述したようにホールド手段の作用を解除し、
冷却水温度センサによる測定温度に基づくフィードバッ
ク側制御手段からの制御出力の加算分の作用により、エ
ンジン冷却部に戻される冷却水の温度が設定温度を越え
ないように放熱用熱交換器に供給する冷却水の量を制御
する。
According to the constitution of the exhaust heat recovery system of the invention as claimed in claim 1, when the exhaust heat demand amount in the exhaust heat recovery portion is suddenly reduced, the cooling water whose temperature is rapidly increased by the inlet is introduced. When the temperature sensor detects it, it outputs a heat radiation signal, and based on that, it outputs a heat radiation control signal from the hold means, and in response to the heat radiation control signal, the feedforward side control means activates the heat radiation amount changing means, Is set to a small value, and the cooling water is supplied to the heat radiation heat exchanger in an amount smaller than the total amount. On the other hand, in the feedback side control means, based on the measured temperature of the cooling water temperature sensor, if the measured temperature becomes high, the amount supplied to the heat radiating heat exchanger increases, and conversely, if the measured temperature becomes low. The heat radiation amount changing means is operated so that the amount of heat supplied to the heat radiation heat exchanger is reduced. That is,
The heat radiation amount changing means is operated by the control output of the entire system in which the control output from the feedforward side control means and the control output from the feedback side control means are added. Then, when the exhaust heat recovery in the exhaust heat recovery unit is restarted, it is determined that the measured temperature of the cooling water by the cooling water temperature sensor is lower than the set temperature,
Based on this, the action of the holding means is released, and the cooling water is not supplied to the heat radiating heat exchanger only by the control output from the feedforward side control means, but from the feedback side control means based on the temperature measured by the cooling water temperature sensor. Control output is added to operate the heat radiation amount changing means so that the temperature measured by the cooling water temperature sensor does not exceed the set temperature. More specifically, when the exhaust heat demand in the exhaust heat recovery unit is stable and the temperature change of the cooling water returned to the engine cooling unit is small, the feedback side based on the temperature of the cooling water returned to the engine cooling unit The addition of the control output from the control means effectively acts to control the amount of cooling water supplied to the heat radiating heat exchanger. For example, when the exhaust heat demand at the exhaust heat recovery unit is suddenly reduced, such as when the operation of the hot water absorption refrigerator is stopped, the fact that the temperature of the cooling water measured by the inlet temperature sensor indicates the set temperature When the temperature exceeds the limit, the holding means acts to supply a predetermined amount (set amount) of cooling water to the heat radiation heat exchanger instead of the total amount of cooling water required to radiate the required amount. ,
Avoid returning cooling water that has suddenly increased in temperature to the engine cooling section, and supply cooling water that has not risen to the heat radiation heat exchanger more than necessary to keep it cooler than necessary. It suppresses returning to the engine cooling part, and
In the range exceeding the set amount, the amount of cooling water supplied to the heat radiation heat exchanger so that the temperature of the cooling water returned to the engine cooling unit does not exceed the set temperature due to the addition of the control output from the feedback side control means. To control. Further, when the exhaust heat recovery in the exhaust heat recovery section is restarted, the operation of the holding means is canceled after a delay from the restart time,
By the action of the addition of the control output from the feedback side control means based on the temperature measured by the cooling water temperature sensor, the temperature of the cooling water returned to the engine cooling unit is supplied to the heat radiation heat exchanger so as not to exceed the set temperature. Control the amount of cooling water.

【0015】また、請求項2に係る発明の排熱回収シス
テムの構成によれば、ホールド手段による作用の解除
を、冷却水温度センサによる冷却水の測定温度が設定温
度よりも低くなることに加えて、入口温度センサによる
冷却水の測定温度が設定温度よりも低くなることに基づ
いて行う。例えば、排熱回収部での排熱回収の再開に際
し、最初は、排熱回収部側に残存していた低温の冷却水
が流れ、次いで、排熱回収部を経た冷却水が流れるもの
の、排熱回収部での動作遅れがある場合に、その動作遅
れの間に排熱回収部を経た冷却水の温度は低くなってい
ない。このため、冷却水温度センサが最初の低温の冷却
水を感知することに基づいてホールド手段による作用を
解除すると、その直後に動作遅れに起因した高温の冷却
水がエンジン冷却部に流れ込むが、本案により、冷却水
温度センサが最初の低温の冷却水を感知したときに入口
温度センサで動作遅れに起因した高温の冷却水を感知し
ていれば、ホールド手段による作用が解除されず、放熱
用熱交換器への供給状態が継続され、動作遅れに起因し
た高温の冷却水がエンジン冷却部に流れ込むことを回避
できる。
According to the structure of the exhaust heat recovery system of the second aspect of the invention, in addition to the fact that the holding means releases the action, the temperature measured by the cooling water temperature sensor becomes lower than the set temperature. The temperature measured by the inlet temperature sensor becomes lower than the set temperature. For example, when restarting the exhaust heat recovery in the exhaust heat recovery unit, the low-temperature cooling water remaining on the exhaust heat recovery unit side first flows, and then the cooling water that has passed through the exhaust heat recovery unit flows, but When there is an operation delay in the heat recovery unit, the temperature of the cooling water that has passed through the exhaust heat recovery unit is not lowered during the operation delay. Therefore, when the action of the holding means is released based on the fact that the cooling water temperature sensor senses the first low temperature cooling water, the high temperature cooling water due to the operation delay flows into the engine cooling section immediately after that. Therefore, when the cooling water temperature sensor detects the first low temperature cooling water, if the inlet temperature sensor detects the high temperature cooling water due to the operation delay, the action of the hold means is not released and the heat for heat radiation is not released. It is possible to prevent the high-temperature cooling water from flowing into the engine cooling unit due to the operation delay because the supply state to the exchanger is continued.

【0016】[0016]

【実施例】次に、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0017】図1は、本発明に係る排熱回収システムの
第1実施例を示すブロック図であり、ガスエンジン1
に、伝動クラッチ2を介して発電機3が連動連結されて
いる。
FIG. 1 is a block diagram showing a first embodiment of the exhaust heat recovery system according to the present invention.
Further, a generator 3 is interlocked and coupled via a transmission clutch 2.

【0018】ガスエンジン1のエンジン冷却部の出口と
入口とにわたって、第1のポンプ4を介装した主配管5
が接続されている。主配管5に、排熱回収部としての温
水吸収式冷凍機6と給湯設備7それぞれが、互いに並列
に送り配管8aおよび戻り配管8bを介して接続されて
いる。更に、温水吸収式冷凍機6に、第2のポンプ9を
介装した冷房用配管10を介して冷房装置11…が接続
され、エンジン冷却によって発生する排熱を冷房や給湯
の熱源として利用するように構成されている。前記主配
管5と送り配管8aおよび戻り配管8bの全体を配管と
称する。
A main pipe 5 having a first pump 4 interposed between the outlet and the inlet of the engine cooling portion of the gas engine 1.
Is connected. A hot water absorption refrigerator 6 as an exhaust heat recovery unit and a hot water supply facility 7 are connected to the main pipe 5 in parallel with each other via a feed pipe 8a and a return pipe 8b. Further, a cooling device 11 ... Is connected to the hot water absorption refrigerator 6 via a cooling pipe 10 in which a second pump 9 is interposed, and exhaust heat generated by engine cooling is used as a heat source for cooling or hot water supply. Is configured. The main pipe 5, the feed pipe 8a, and the return pipe 8b are collectively referred to as pipes.

【0019】また、主配管5の戻り配管8bとの接続箇
所よりも下流となる冷却水供給側配管に、放熱量変更手
段としての三方弁12とバイパス配管13とを介して放
熱用熱交換器14が接続されている。三方弁12は放熱
用熱交換器14への入口側に設けても良い。
Further, a heat radiation heat exchanger is provided in the cooling water supply side pipe downstream of the connection point of the main pipe 5 with the return pipe 8b via a three-way valve 12 as a heat radiation amount changing means and a bypass pipe 13. 14 is connected. The three-way valve 12 may be provided on the inlet side to the heat radiating heat exchanger 14.

【0020】前記冷却水供給側配管の三方弁12との接
続箇所よりも下流側に、エンジン冷却部に供給される冷
却水の温度を測定する冷却水温度センサ15が設けられ
ている。また、最も下流の戻り配管8bと主配管5との
接続箇所の下流側で、かつ、冷却水供給側配管のバイパ
ス配管13との上流側接続箇所よりも上流側において、
三方弁12に供給される冷却水、すなわち、放熱用熱交
換器14への入口側での冷却水の温度を測定する入口温
度センサ16が設けられている。
A cooling water temperature sensor 15 for measuring the temperature of the cooling water supplied to the engine cooling portion is provided downstream of the connection point of the cooling water supply side pipe with the three-way valve 12. Further, on the downstream side of the connection point between the most downstream return pipe 8b and the main pipe 5, and on the upstream side of the upstream connection point of the cooling water supply side pipe with the bypass pipe 13,
An inlet temperature sensor 16 is provided to measure the temperature of the cooling water supplied to the three-way valve 12, that is, the temperature of the cooling water on the inlet side to the heat dissipation heat exchanger 14.

【0021】冷却水温度センサ15および入口温度セン
サ16がマイクロコンピュータ17に接続され、そのマ
イクロコンピュータ17に三方弁12のドライバ18
(図2参照)が接続されている。
The cooling water temperature sensor 15 and the inlet temperature sensor 16 are connected to a microcomputer 17, and the microcomputer 17 has a driver 18 for the three-way valve 12.
(See FIG. 2) are connected.

【0022】マイクロコンピュータ17には、図2のブ
ロック図に示すように、第1および第2の比較手段1
9,20とホールド手段21とフィードフォワード側制
御手段22とフィードバック側制御手段23と制御出力
加算手段24とが備えられている。
In the microcomputer 17, as shown in the block diagram of FIG. 2, the first and second comparing means 1 are provided.
9 and 20, holding means 21, feedforward side control means 22, feedback side control means 23, and control output addition means 24 are provided.

【0023】第1の比較手段19では、入口温度センサ
16で測定される冷却水の入口温度T1と入口温度設定
器25で設定される第1の設定温度Ta(例えば、84
℃)とを入力して比較し、入口温度T1が第1の設定温
度Ta以上になったときにのみホールド手段21に放熱
信号を出力するようになっている。
In the first comparing means 19, the inlet temperature T1 of the cooling water measured by the inlet temperature sensor 16 and the first set temperature Ta set by the inlet temperature setting device 25 (for example, 84
C) is input and compared, and a heat radiation signal is output to the holding means 21 only when the inlet temperature T1 becomes equal to or higher than the first set temperature Ta.

【0024】第2の比較手段20では、冷却水温度セン
サ15で測定されるエンジン冷却部に供給する冷却水の
温度T2と冷却水温度設定器26で設定される第2の設
定温度Tb(例えば、83℃)とを入力して比較し、測定
温度T2が第2の設定温度Tb以下になったときに、ホ
ールド手段21にホールド解除信号を出力するようにな
っている。
In the second comparing means 20, the temperature T2 of the cooling water supplied to the engine cooling section measured by the cooling water temperature sensor 15 and the second set temperature Tb set by the cooling water temperature setting device 26 (for example, , 83 ° C.) for comparison, and when the measured temperature T2 becomes equal to or lower than the second set temperature Tb, a hold release signal is output to the holding means 21.

【0025】ホールド手段21では、第1の比較手段1
9からの放熱信号に応答して放熱制御信号を出力し、そ
して、第2の比較手段20からのホールド解除信号に応
答して放熱制御信号の出力を停止するように、すなわ
ち、冷却水温度センサ15による冷却水の測定温度T2
が第2の設定温度Tb以下になるまで放熱制御信号を出
力し続けるようになっている。
In the holding means 21, the first comparing means 1
The heat radiation control signal is output in response to the heat radiation signal from 9, and the output of the heat radiation control signal is stopped in response to the hold release signal from the second comparison means 20, that is, the cooling water temperature sensor. Measurement temperature T2 of cooling water by 15
The heat radiation control signal is continuously output until the temperature becomes equal to or lower than the second set temperature Tb.

【0026】フィードフォワード側制御手段22では、
前記ホールド手段21からの放熱制御信号に応答して、
三方弁12を所定の開度まで開いて作動放熱用熱交換器
14での放熱量が最大放熱量よりも小さい値に設定した
設定放熱量になるように、例えば、30%などの予め設定
した制御出力を出すようになっている。
In the feedforward side control means 22,
In response to the heat radiation control signal from the holding means 21,
The three-way valve 12 is opened to a predetermined opening, and the heat radiation amount in the operating heat radiation heat exchanger 14 is set in advance to, for example, 30% so that the set heat radiation amount is set to a value smaller than the maximum heat radiation amount. It is designed to output control output.

【0027】フィードバック側制御手段23では、冷却
水温度センサ15による冷却水の測定温度T2に基づ
き、その温度変化に応じた制御出力を出し、上昇側に変
化したときには三方弁12を開くように、すなわち、放
熱用熱交換器14に供給する冷却水の量を増加するよう
に、逆に、下降側に変化したときには三方弁12を閉じ
るように、すなわち、放熱用熱交換器14に供給する冷
却水の量を減少するようになっている。
The feedback side control means 23 outputs a control output according to the temperature change of the cooling water measured by the cooling water temperature sensor 15, and opens the three-way valve 12 when the temperature rises. That is, in order to increase the amount of cooling water supplied to the heat radiating heat exchanger 14, conversely, to close the three-way valve 12 when changing to the descending side, that is, the cooling to be supplied to the heat radiating heat exchanger 14. It is designed to reduce the amount of water.

【0028】制御出力加算手段24では、フィードフォ
ワード側制御手段22からの制御出力とフィードバック
側制御手段23からの制御出力とを加算し、その加算さ
れた出力を三方弁12のドライバ18に出力し、加算出
力に対応した開度が得られるように三方弁12を制御す
る。
The control output adding means 24 adds the control output from the feedforward side control means 22 and the control output from the feedback side control means 23, and outputs the added output to the driver 18 of the three-way valve 12. , The three-way valve 12 is controlled so that the opening corresponding to the addition output is obtained.

【0029】次に、上記構成による制御動作を図3のフ
ローチャートを用いて説明する。先ず、入口温度センサ
16で測定される入口温度T1と冷却水温度センサ15
で測定される冷却水温度T2とを入力して(S1)、入
口温度T1と第1の設定温度Taと比較する(S2)。
ここで、入口温度T1が第1の設定温度Ta以上のとき
には放熱信号をホールド手段21に出力する(S3)。
Next, the control operation according to the above configuration will be described with reference to the flowchart of FIG. First, the inlet temperature T1 measured by the inlet temperature sensor 16 and the cooling water temperature sensor 15
The cooling water temperature T2 measured in (1) is input (S1), and the inlet temperature T1 is compared with the first set temperature Ta (S2).
Here, when the inlet temperature T1 is equal to or higher than the first set temperature Ta, the heat radiation signal is output to the holding means 21 (S3).

【0030】次いで、冷却水温度T2と第2の設定温度
Tbと比較する(S4)。ここで、冷却水温度T2が第
2の設定温度Tb以下でないとき、すなわち、冷却水温
度T2が第2の設定温度Tbよりも高いときには放熱制
御信号をフィードフォワード側制御手段22に出力し
(S5)、フィードフォワード側制御手段22から制御
出力加算手段24に30%の制御出力を出す(S6)。
Next, the cooling water temperature T2 is compared with the second set temperature Tb (S4). Here, when the cooling water temperature T2 is not lower than or equal to the second set temperature Tb, that is, when the cooling water temperature T2 is higher than the second set temperature Tb, the heat radiation control signal is output to the feedforward side control means 22 (S5). ), The control unit 22 of the feedforward side outputs a control output of 30% to the control output addition unit 24 (S6).

【0031】次いで、制御出力加算手段24において、
フィードフォワード側制御手段22からの制御出力にフ
ィードバック側制御手段23からの制御出力を加算し
(S7)、その加算した制御出力をドライバ18に出し
(S8)てからステップS1に戻す。ドライバ18で
は、加算した制御出力に対応した開度が得られるように
三方弁12を制御する。
Next, in the control output adding means 24,
The control output from the feedback side control means 23 is added to the control output from the feedforward side control means 22 (S7), and the added control output is output to the driver 18 (S8) and then returned to step S1. The driver 18 controls the three-way valve 12 so that the opening degree corresponding to the added control output is obtained.

【0032】ステップS2において、入口温度T1が第
1の設定温度Ta以上でないとき、すなわち、入口温度
T1が第1の設定温度Taよりも低いときには、ステッ
プS1に移行する。
In step S2, when the inlet temperature T1 is not higher than the first set temperature Ta, that is, when the inlet temperature T1 is lower than the first set temperature Ta, the process proceeds to step S1.

【0033】また、ステップS4において、冷却水温度
T2が第2の設定温度Tb以下になったときには、ステ
ップS9に移行してホールド手段21にホールド解除信
号を出力し、フィードフォワード側制御手段22から制
御出力加算手段24に15%(この制御出力は三方弁12
のデッドバンド内にあり、実際には放熱用熱交換器14
に冷却水は供給されない)の制御出力を出して(S1
0)からステップS7に移行する。
In step S4, when the cooling water temperature T2 becomes equal to or lower than the second set temperature Tb, the process proceeds to step S9, the hold release signal is output to the hold means 21, and the feedforward side control means 22 outputs the hold release signal. 15% in the control output adding means 24 (this control output is the three-way valve 12
It is in the dead band of the
No cooling water is supplied to the control output) (S1
0) to step S7.

【0034】以上の構成により、温水吸収式冷凍機6や
給湯設備7での排熱需要が安定していて、エンジン冷却
部に戻される冷却水の温度変化が小さいときには、エン
ジン冷却部に戻される冷却水の温度T2に基づくフィー
ドバック側制御手段23からの制御出力の加算分が有効
に作用して放熱用熱交換器14に供給する冷却水の量を
制御する。
With the above construction, when the exhaust heat demand in the hot water absorption refrigerator 6 and the hot water supply equipment 7 is stable and the temperature change of the cooling water returned to the engine cooling section is small, it is returned to the engine cooling section. The addition of the control output from the feedback side control means 23 based on the temperature T2 of the cooling water effectively acts to control the amount of cooling water supplied to the heat radiating heat exchanger 14.

【0035】例えば、温水吸収式冷凍機6の運転が急に
停止されるなど、排熱需要量が急激に減少したときに
は、そのことを入口温度センサ16で測定される冷却水
の温度T1が設定温度Ta以上になることにより感知
し、ホールド手段21の作用により、フィードフォワー
ド側制御手段22から制御出力加算手段24に30%の制
御出力を出し、必要量を放熱するために必要な冷却水量
の全量ではなく、予め設定したある程度の量(設定量)
の冷却水を放熱用熱交換器14に供給し、急激に温度が
高くなった冷却水をエンジン冷却部に戻すことを回避す
るとともに、温度が上昇していない冷却水を必要以上に
放熱用熱交換器14に供給して必要以上に低温の冷却水
をエンジン冷却部に戻すことを抑制し、かつ、設定量を
越える範囲では、フィードバック側制御手段23からの
制御出力の加算分により、エンジン冷却部に戻される冷
却水の温度T2が設定温度Tbを越えないように放熱用
熱交換器14に供給する冷却水の量を制御する。
When the exhaust heat demand suddenly decreases, for example, when the operation of the hot water absorption refrigerator 6 is suddenly stopped, this is set by the cooling water temperature T1 measured by the inlet temperature sensor 16. When the temperature exceeds Ta, it is sensed, and by the action of the holding means 21, the feedforward side control means 22 outputs a control output of 30% to the control output addition means 24, and the amount of cooling water required to radiate the required amount of Not a total amount, but a preset amount (set amount)
Of the cooling water is supplied to the heat radiating heat exchanger 14 to avoid returning the cooling water whose temperature has risen rapidly to the engine cooling section, and to cool the cooling water whose temperature has not risen more than necessary. The cooling of the cooling water having a temperature lower than necessary by supplying it to the exchanger 14 is suppressed, and in the range exceeding the set amount, the engine cooling is performed by the addition of the control output from the feedback side control means 23. The amount of cooling water supplied to the heat radiating heat exchanger 14 is controlled so that the temperature T2 of the cooling water returned to the section does not exceed the set temperature Tb.

【0036】また、温水吸収式冷凍機6の運転が再開さ
れるなど、排熱回収部での排熱回収が再開されると、そ
のことをエンジン冷却部に戻される冷却水の温度T2が
設定温度Tb以下になることにより判断し、排熱回収の
再開時点よりも遅らせてホールド手段21の作用を解除
してフィードフォワード側制御手段22から制御出力加
算手段24に15%の制御出力を出し、冷却水温度センサ
15によって測定される、エンジン冷却部に戻される冷
却水の温度T2に基づくフィードバック側制御手段23
からの制御出力を加算し、その加算した制御出力により
エンジン冷却部に戻される冷却水の温度T2が設定温度
Tbを越えないように放熱用熱交換器14に供給する冷
却水の量を制御する。
When exhaust heat recovery in the exhaust heat recovery section is restarted, such as when the operation of the hot water absorption refrigerator 6 is restarted, this is set by the temperature T2 of the cooling water returned to the engine cooling section. Judging when the temperature becomes equal to or lower than the temperature Tb, the action of the holding means 21 is released after a delay from the point of time when the exhaust heat recovery is restarted, and the feedforward side control means 22 outputs a control output of 15% to the control output addition means 24. Feedback-side control means 23 based on the temperature T2 of the cooling water returned to the engine cooling section, which is measured by the cooling water temperature sensor 15.
Is added, and the amount of cooling water supplied to the heat radiating heat exchanger 14 is controlled so that the temperature T2 of the cooling water returned to the engine cooling unit does not exceed the set temperature Tb by the added control output. .

【0037】次に、上記第1実施例による動作につき、
図4、図5および図6のグラフを用いて説明する。図4
は、温水吸収式冷凍機6や給湯設備7での排熱需要の変
化に伴う、温水吸収式冷凍機6からの出口温度(A1で
示す)および放熱用熱交換器14からの出口温度(B1
で示す)[両温度それぞれを真温度と縦軸に表示する]
の経時的変化を示すグラフである。なお、この真温度
は、通常の装置に組み込まれる直径10mmの白金測温抵抗
体に代えて計測専用の直径2mmの白金測温抵抗体を用い
て測定した。図5は、入口温度センサ16で測定される
冷却水の温度T1および冷却水温度センサ15によって
測定されるエンジン冷却部に戻される冷却水の温度T2
[両温度それぞれを制御用センサー温度と縦軸に表示す
る]の経時的変化を示すグラフであり、図6の真温度に
比べてセンサ自体の応答特性の遅れによってややズレを
生じるとともに滑らかな変化になり、かつ、低温になっ
ているが、充分追随していることがわかる。図6は、両
センサ15,16の測定温度に基づく制御用出力の経時
的変化を示すグラフである。
Next, regarding the operation according to the first embodiment,
This will be described with reference to the graphs of FIGS. 4, 5 and 6. FIG.
Is the outlet temperature (indicated by A1) from the hot water absorption refrigerator 6 and the outlet temperature (B1 from the heat radiation heat exchanger 14 due to changes in exhaust heat demand in the hot water absorption refrigerator 6 and the hot water supply equipment 7.
) [Display both temperatures on the vertical axis and true temperature]
It is a graph which shows the time-dependent change of. The true temperature was measured by using a platinum resistance thermometer with a diameter of 2 mm exclusively for measurement, instead of the platinum resistance thermometer with a diameter of 10 mm incorporated in an ordinary device. FIG. 5 shows the temperature T1 of the cooling water measured by the inlet temperature sensor 16 and the temperature T2 of the cooling water returned to the engine cooling unit measured by the cooling water temperature sensor 15.
FIG. 7 is a graph showing a change with time of [displaying both temperatures on a vertical axis with a control sensor temperature], which is slightly different from the true temperature shown in FIG. 6 due to a delay in response characteristic of the sensor itself and is a smooth change. It can be seen that the temperature is low and the temperature is low, but it is sufficiently following. FIG. 6 is a graph showing the change over time in the control output based on the measured temperatures of both sensors 15 and 16.

【0038】排熱需要が安定している状態では、冷却水
温度センサ15によって測定される、フィードフォワー
ド側制御手段22からの15%の制御出力(A2で示す)
に、エンジン冷却部に戻される冷却水の温度T2に基づ
くフィードバック側制御手段23からの制御出力(B2
で示す)を加算した制御出力(Cで示す)を出して三方
弁12の開度を制御し、図5に示すように、エンジン冷
却部に戻される冷却水の温度T2は、設定温度Tb(例
えば、80℃)に近い状態を維持される。
When the exhaust heat demand is stable, a control output of 15% (shown by A2) from the feedforward side control means 22 measured by the cooling water temperature sensor 15.
In addition, the control output (B2 from the feedback side control means 23 based on the temperature T2 of the cooling water returned to the engine cooling unit).
The control output (indicated by C) is added to control the opening of the three-way valve 12, and as shown in FIG. 5, the temperature T2 of the cooling water returned to the engine cooling unit is set to the set temperature Tb ( For example, the temperature is maintained close to 80 ℃.

【0039】排熱需要が安定している状態から、例え
ば、温水吸収式冷凍機6の運転が急に停止されるといっ
たように排熱回収需要が急激に減少した場合(図4にP
1で示す)、図5に示すように、入口温度センサ16で
測定される冷却水の温度T1が上昇するが、設定温度T
a(例えば、80℃)を越えるに伴い、放熱信号をホール
ド手段21に出力してホールド状態になるとともにホー
ルド手段21からフィードフォワード側制御手段22に
放熱制御信号を出力し、図6に示すように、フィードフ
ォワード側制御手段22から30%の制御出力を出してホ
ールド状態に移行する。ホールド状態に移行すると、30
%の制御出力にエンジン冷却部に戻される冷却水の温度
T2に基づくフィードバック側制御手段23からの制御
出力を加算し、その加算された制御出力Cにより三方弁
12を開閉する。これらの結果、エンジン冷却部に戻さ
れる冷却水の温度T2は、所定温度(約80℃)に維持さ
れる。
When the demand for exhaust heat recovery sharply decreases from the state where the demand for exhaust heat is stable, for example, when the operation of the hot water absorption refrigerator 6 is suddenly stopped (see P in FIG. 4).
As shown in FIG. 5, the temperature T1 of the cooling water measured by the inlet temperature sensor 16 rises.
When the temperature exceeds a (for example, 80 ° C.), the heat radiation signal is output to the hold means 21 to enter the hold state, and the heat radiation control signal is output from the hold means 21 to the feedforward side control means 22, as shown in FIG. Then, the control output of the feedforward side control means 22 outputs 30% of the control output to shift to the hold state. 30 when entering the hold state
The control output from the feedback side control means 23 based on the temperature T2 of the cooling water returned to the engine cooling unit is added to the control output of%, and the added control output C opens / closes the three-way valve 12. As a result, the temperature T2 of the cooling water returned to the engine cooling unit is maintained at a predetermined temperature (about 80 ° C.).

【0040】一方、例えば、温水吸収式冷凍機6の運転
が再開されるなどにより排熱回収需要が急激に増大する
と、図4および図5に示すように、先ず、温水吸収式冷
凍機6の戻り配管8b内の低温の冷却水が流れ込み、真
温度A1および入口温度センサ16で測定される冷却水
の温度T1が急激に低下する。この影響が、放熱用熱交
換器14の出口の真温度B1および冷却水温度センサ1
5の測定温度T2それぞれに、測定位置の距離を冷却水
が流れる時間tだけ遅れて現れる。冷却水温度センサ1
5の測定温度T2が設定温度Tb以下になると、ホール
ド手段21にホールド解除信号を出力してホールドを解
除し、図6に示すように、フィードフォワード側制御手
段22からの制御出力A2が15%に戻され、これにフィ
ードバック側制御手段23からの制御出力を加算した制
御出力によって三方弁12を制御し、放熱用熱交換器1
4に流される冷却水の量を減少し、エンジン冷却部に戻
される冷却水の温度T2が必要以上に低下することを回
避する。その後、排熱需要が安定するに伴い、エンジン
冷却部に戻される冷却水の温度T2が所定温度(約80
℃)に維持されるようになる。
On the other hand, when the exhaust heat recovery demand increases sharply due to, for example, restart of the operation of the hot water absorption type refrigerator 6, as shown in FIGS. The low-temperature cooling water in the return pipe 8b flows in, and the true temperature A1 and the temperature T1 of the cooling water measured by the inlet temperature sensor 16 sharply decrease. This effect is due to the true temperature B1 at the outlet of the heat radiating heat exchanger 14 and the cooling water temperature sensor 1.
5 appears at each of the measurement temperatures T2 of 5 with the distance of the measurement position delayed by the time t when the cooling water flows. Cooling water temperature sensor 1
When the measured temperature T2 of 5 falls below the set temperature Tb, a hold release signal is output to the hold means 21 to release the hold, and as shown in FIG. 6, the control output A2 from the feedforward side control means 22 is 15%. The control output of the feedback side control means 23 is added to this to control the three-way valve 12, and the heat radiation heat exchanger 1
The amount of the cooling water flowed to 4 is reduced to prevent the temperature T2 of the cooling water returned to the engine cooling unit from dropping more than necessary. After that, as the exhaust heat demand stabilizes, the temperature T2 of the cooling water returned to the engine cooling unit becomes a predetermined temperature (about 80
℃) will be maintained.

【0041】図7は、本発明に係る排熱回収システムの
第2実施例の要部を示すブロック図であり、第1実施例
と異なるところは次の通りである。すなわち、第1実施
例における第1および第2の比較手段19,20それぞ
れからの比較出力がAND回路27に入力され、そのA
ND回路27からの出力がホールド解除信号としてホー
ルド手段21に入力されるようになっている。
FIG. 7 is a block diagram showing the essential parts of a second embodiment of the exhaust heat recovery system according to the present invention. The difference from the first embodiment is as follows. That is, the comparison output from each of the first and second comparing means 19 and 20 in the first embodiment is input to the AND circuit 27, and its A
The output from the ND circuit 27 is input to the hold means 21 as a hold release signal.

【0042】そして、その動作において、図8のフロー
チャートに示すように、第1実施例におけるステップS
4とステップS9との間に、入口温度センサ16で測定
される冷却水の温度T1が設定温度Ta未満かどうかを
判断するステップS4Aを介装し、冷却水温度センサ1
5によって測定される、エンジン冷却部に戻される冷却
水の温度T2が設定温度Tb以下になり、かつ、入口温
度センサ16で測定される冷却水の温度T1が設定温度
Ta未満になったときにステップS7に移行してホール
ド解除信号を出力するようになっている。ステップS4
Aにおいて、入口温度センサ16で測定される冷却水の
温度T1が設定温度Ta以上と判断したきには、ホール
ド解除信号を出力せずにステップS5に移行するように
なっている。他の構成ならびに動作は第1実施例と同じ
であり、その説明は省略する。
Then, in the operation, as shown in the flow chart of FIG. 8, step S in the first embodiment.
Between step 4 and step S9, step S4A for determining whether the temperature T1 of the cooling water measured by the inlet temperature sensor 16 is less than the set temperature Ta is provided, and the cooling water temperature sensor 1
When the temperature T2 of the cooling water returned to the engine cooling unit measured by 5 becomes equal to or lower than the set temperature Tb and the temperature T1 of the cooling water measured by the inlet temperature sensor 16 becomes lower than the set temperature Ta. At step S7, the hold release signal is output. Step S4
In A, when it is determined that the temperature T1 of the cooling water measured by the inlet temperature sensor 16 is equal to or higher than the set temperature Ta, the hold release signal is not output and the process proceeds to step S5. Other configurations and operations are the same as those in the first embodiment, and the description thereof will be omitted.

【0043】次に、この第2実施例による特徴的動作に
つき、図9のタイムチャートを用いて説明する。すなわ
ち、温水吸収式冷凍機6の運転が再開されるなどにより
排熱回収需要が急激に増大し、図9の(a)に示すよう
に、最初に温水吸収式冷凍機6の戻り配管8b内の低温
の冷却水が流れ込んで入口温度センサ16で測定される
冷却水の温度T1が急激に低下するが、次いで、温水吸
収式冷凍機6で実際に排熱が回収された冷却水が流れ込
む前に、温水吸収式冷凍機6での動作遅れなどに起因し
て排熱が回収されない高温の冷却水が流れるような場
合、図9の(b)に示すように、時間遅れtを持って冷
却水温度センサ15の測定温度T2も同様に変化する。
Next, the characteristic operation of the second embodiment will be described with reference to the time chart of FIG. That is, the demand for exhaust heat recovery increases sharply due to the restart of the operation of the hot water absorption refrigerator 6, and as shown in FIG. Temperature of the cooling water T1 measured by the inlet temperature sensor 16 drops sharply, but next, before the cooling water whose waste heat is actually recovered in the hot water absorption refrigerator 6 flows in. In the case where high-temperature cooling water in which exhaust heat is not recovered flows due to an operation delay in the hot water absorption refrigerator 6, as shown in (b) of FIG. The temperature T2 measured by the water temperature sensor 15 also changes.

【0044】このような事態を生じる場合、前述した第
1実施例では、このときに冷却水温度センサ15の測定
温度T2が設定温度Tb未満になるに伴ってホールド状
態を解除していたのであるが、その後に、前述したよう
に排熱が回収されない高温の冷却水が流れて、エンジン
冷却部に戻される冷却水の温度が高くなってオーバーシ
ュートを生じる問題がある。そこで、この第2実施例で
は、図9の(c)に示すように、冷却水温度センサ15
の測定温度T2が設定温度Tb以下になっただけではホ
ールド状態を解除できず、温水吸収式冷凍機6で実際に
排熱が回収され、入口温度センサ16で測定される冷却
水の温度T1も設定温度Ta未満になってからホールド
状態を解除し、前述の問題を回避できるようにしてい
る。
When such a situation occurs, in the above-described first embodiment, the hold state is released as the measured temperature T2 of the cooling water temperature sensor 15 becomes less than the set temperature Tb at this time. However, after that, as described above, there is a problem that high-temperature cooling water in which exhaust heat is not recovered flows and the temperature of the cooling water returned to the engine cooling section rises to cause an overshoot. Therefore, in the second embodiment, as shown in FIG. 9C, the cooling water temperature sensor 15
The hold state cannot be released only when the measured temperature T2 of the above is less than the set temperature Tb, the exhaust heat is actually recovered by the hot water absorption refrigerator 6, and the temperature T1 of the cooling water measured by the inlet temperature sensor 16 is also The hold state is released after the temperature becomes lower than the set temperature Ta so that the above-mentioned problem can be avoided.

【0045】放熱用熱交換器14に流す冷却水流量を変
更する放熱量変更手段としては、三方弁12に代えて、
例えば、主配管5の冷却水供給側配管とバイパス配管1
3それぞれに個別に流量調整弁を設け、両流量調整弁を
互いに連動させて放熱用熱交換器14に流す冷却水流量
を変更するように構成するものでも良い。
As the heat radiation amount changing means for changing the flow rate of the cooling water flowing through the heat radiation heat exchanger 14, instead of the three-way valve 12,
For example, the cooling water supply side pipe of the main pipe 5 and the bypass pipe 1
A flow rate adjusting valve may be provided for each of the three, and both flow rate adjusting valves may be interlocked with each other to change the flow rate of the cooling water flowing to the heat radiating heat exchanger 14.

【0046】また、上記実施例では、ホールドする設定
放熱量を得る上でのフィードフォワード側制御手段22
からの制御出力を30%に設定しているが、この値は排熱
回収システムに用いられる温水吸収式冷凍機6の容量や
三方弁12などに応じて適宜設定すれば良く、通常25〜
35%程度である。
Further, in the above embodiment, the feedforward side control means 22 for obtaining the set heat radiation amount to be held.
The control output from 30% is set to 30%, but this value may be set appropriately according to the capacity of the hot water absorption refrigerator 6 used in the exhaust heat recovery system, the three-way valve 12, etc.
It is about 35%.

【0047】[0047]

【発明の効果】以上の説明から明らかなように、請求項
1に係る発明の排熱回収システムによれば、排熱回収部
での排熱需要量が急激に減少したときに、それによって
温度が急激に上昇した冷却水を入口温度センサが感知す
ると放熱信号を出力し、それに基づいてホールド手段か
ら放熱制御信号を出力し、その放熱制御信号に応答し
て、フィードフォワード側制御手段から、全量よりも少
ない所定量の冷却水を放熱用熱交換器に供給するように
最大放熱量よりも小さい値に設定した設定放熱量になる
制御出力を出力させる。一方、フィードバック側制御手
段からは、冷却水温度センサの測定温度に基づき、その
測定温度が高くなれば、放熱用熱交換器に供給する量が
多くなるように、逆に、測定温度が低くなれば、放熱用
熱交換器に供給する量が少なくなるようにそれぞれ制御
出力を出力させ、フィードフォワード側制御手段とフィ
ードバック側制御手段の両者の加算所定した制御出力に
よって放熱量変更手段を作動する。そして、排熱回収部
での排熱回収が再開されると、そのことを、冷却水温度
センサによる冷却水の測定温度が設定温度よりも低くな
ることによって判断し、それに基づいてホールド手段の
作用を解除し、冷却水温度センサによる測定温度に基づ
く、フィードバック側制御手段からの制御出力が有効に
作用して放熱量変更手段を作動し、エンジン冷却部に戻
される冷却水の温度が設定温度を越えないように制御す
る。すなわち、排熱回収部での排熱需要が安定してい
て、エンジン冷却部に戻される冷却水の温度変化が小さ
いときには、エンジン冷却部に戻される冷却水の温度に
基づくフィードバック側制御手段からの制御出力の加算
分が有効に作用して放熱用熱交換器に供給する冷却水の
量を制御し、そして、例えば、温水吸収式冷凍機の運転
が急に停止されるなど、排熱回収部での排熱需要量が急
激に減少したときには、必要量を放熱するために必要な
冷却水量の全量ではなく、予め設定したある程度の量
(設定量)の冷却水を放熱用熱交換器に供給し、急激に
温度が高くなった冷却水をエンジン冷却部に戻すことを
回避するとともに、温度が上昇していない冷却水を必要
以上に放熱用熱交換器に供給して必要以上に低温の冷却
水をエンジン冷却部に戻すことを抑制し、かつ、設定量
を越える範囲では、フィードバック側制御手段からの制
御出力の加算分により、エンジン冷却部に戻される冷却
水の温度が設定温度を越えないように放熱用熱交換器に
供給する冷却水の量を制御し、更に、排熱回収部での排
熱回収が再開されると、フィードバック側制御手段から
の制御出力の加算分の作用により、エンジン冷却部に戻
される冷却水の温度が設定温度を越えないように放熱用
熱交換器に供給する冷却水の量を制御するから、配管内
を流れる冷却水の時間遅れを考慮する場合のように、配
管の内周面へのスケール付着といった経年変化や排熱回
収部での運転や停止に伴う流動抵抗の変化といったこと
に影響されずに済み、排熱回収部での排熱需要量の増大
に起因するオーバーシュートの発生を良好に防止できる
ようになった。
As is apparent from the above description, according to the exhaust heat recovery system of the first aspect of the present invention, when the exhaust heat demand amount in the exhaust heat recovery section is suddenly reduced, the temperature When the inlet temperature sensor senses the cooling water that has risen sharply, a heat radiation signal is output, based on which a heat radiation control signal is output from the hold means, and in response to the heat radiation control signal, the feed forward side control means outputs the entire amount. A control output having a set heat radiation amount set to a value smaller than the maximum heat radiation amount is output so as to supply a predetermined smaller amount of cooling water to the heat radiation heat exchanger. On the other hand, from the feedback side control means, based on the measured temperature of the cooling water temperature sensor, if the measured temperature becomes high, the amount supplied to the heat radiating heat exchanger increases, and conversely, the measured temperature cannot be lowered. For example, the control output is output so that the amount supplied to the heat radiating heat exchanger is reduced, and the heat radiating amount changing means is operated by the addition predetermined control output of both the feedforward side control means and the feedback side control means. Then, when the exhaust heat recovery in the exhaust heat recovery section is restarted, it is judged that the measured temperature of the cooling water by the cooling water temperature sensor becomes lower than the set temperature, and the action of the holding means is based on that. And the control output from the feedback side control means is effective based on the temperature measured by the cooling water temperature sensor to activate the heat radiation amount changing means, and the temperature of the cooling water returned to the engine cooling unit becomes the set temperature. Control not to exceed. That is, when the exhaust heat demand in the exhaust heat recovery unit is stable and the temperature change of the cooling water returned to the engine cooling unit is small, the feedback side control means based on the temperature of the cooling water returned to the engine cooling unit The added amount of the control output works effectively to control the amount of cooling water supplied to the heat dissipation heat exchanger, and, for example, when the operation of the hot water absorption refrigerator is suddenly stopped, the exhaust heat recovery unit When the exhaust heat demand in the system suddenly decreases, not the total amount of cooling water required to radiate the required amount, but a certain amount of preset cooling water (set amount) is supplied to the heat radiation heat exchanger. In addition to avoiding returning the cooling water whose temperature has risen rapidly to the engine cooling unit, supply cooling water that has not risen to the heat radiation heat exchanger more than necessary to cool it to a temperature lower than necessary. Return the water to the engine cooling section In the range in which the temperature of the cooling water returned to the engine cooling unit does not exceed the set temperature by the addition of the control output from the feedback side control means, The amount of cooling water supplied to the engine is controlled, and when the exhaust heat recovery in the exhaust heat recovery unit is resumed, the cooling returned to the engine cooling unit by the action of the addition of the control output from the feedback side control means. Since the amount of cooling water supplied to the heat dissipation heat exchanger is controlled so that the temperature of the water does not exceed the set temperature, the inner peripheral surface of the pipe is It is not affected by the secular change such as adhesion of scale to the exhaust heat and the change in flow resistance due to the operation and stoppage of the exhaust heat recovery unit, and the overshoot caused by the increase in exhaust heat demand in the exhaust heat recovery unit Good occurrence I was able to stop.

【0048】また、請求項2に係る発明の排熱回収シス
テムによれば、それぞれ、排熱回収部での排熱回収の再
開に際し、排熱回収部側に残存していた低温の冷却水を
冷却水温度センサが感知しても、ホールド手段による作
用が解除されず、放熱用熱交換器への供給状態を継続で
きるから、排熱回収部での動作遅れに起因した高温の冷
却水がエンジン冷却部に流れ込むことを回避でき、制御
の安定性を向上できるようになった。
Further, according to the exhaust heat recovery system of the second aspect of the present invention, the low temperature cooling water remaining on the exhaust heat recovery unit side is restarted when the exhaust heat recovery unit restarts the exhaust heat recovery. Even if the cooling water temperature sensor senses, the action of the holding means is not canceled and the supply state to the heat radiating heat exchanger can be continued, so that the high temperature cooling water due to the operation delay in the exhaust heat recovery unit is generated in the engine. It is possible to avoid flowing into the cooling section and improve the stability of control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排熱回収システムの第1実施例を
示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of an exhaust heat recovery system according to the present invention.

【図2】マイクロコンピュータの構成を示すブロック図
である。
FIG. 2 is a block diagram showing a configuration of a microcomputer.

【図3】動作説明に供するフローチャートである。FIG. 3 is a flowchart for explaining the operation.

【図4】真温度の経時的変化を示すグラフである。FIG. 4 is a graph showing a change in true temperature with time.

【図5】入口温度センサおよび冷却水温度センサによる
測定温度の経時的変化を示すグラフである。
FIG. 5 is a graph showing changes over time in measured temperatures measured by an inlet temperature sensor and a cooling water temperature sensor.

【図6】制御出力の経時的変化を示すグラフである。FIG. 6 is a graph showing changes over time in control output.

【図7】本発明に係る排熱回収システムの第2実施例の
要部を示すブロック図である。
FIG. 7 is a block diagram showing a main part of a second embodiment of the exhaust heat recovery system according to the present invention.

【図8】動作説明に供する要部のフローチャートであ
る。
FIG. 8 is a flowchart of a main part for explaining the operation.

【図9】動作説明に供する要部のタイムチャートであ
る。
FIG. 9 is a time chart of a main part for explaining the operation.

【符号の説明】[Explanation of symbols]

1…ガスエンジン 5…主配管 6…温水吸収式冷凍機 7…給湯設備 8a…送り配管 8b…戻り配管 12…三方弁 14…放熱用熱交換器 15…冷却水温度センサ 16…入口温度センサ 17…マイクロコンピュータ 21…ホールド手段 22…フィードフォワード側制御手段 23…フィードバック側制御手段 DESCRIPTION OF SYMBOLS 1 ... Gas engine 5 ... Main piping 6 ... Hot water absorption type refrigerator 7 ... Hot water supply equipment 8a ... Feed piping 8b ... Return piping 12 ... Three-way valve 14 ... Radiating heat exchanger 15 ... Cooling water temperature sensor 16 ... Inlet temperature sensor 17 ... Microcomputer 21 ... Hold means 22 ... Feedforward side control means 23 ... Feedback side control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エンジン(1) のエンジン冷却部と排熱回
収部(6),(7) とを配管(5),(8a),(8b) を介して接続する
とともに、前記排熱回収部(6),(7) から前記エンジン冷
却部への冷却水供給側配管(5) に、放熱量変更手段(12)
を備えた放熱用熱交換器(14)を設け、かつ、前記冷却水
供給側配管(5) の前記排熱回収部(6),(7) と前記放熱用
熱交換器(14)との間に冷却水の温度を測定する入口温度
センサ(16)を設け、その入口温度センサ(16)で測定され
る冷却水の温度に基づいて前記放熱量変更手段(12)を作
動するように構成した排熱回収システムにおいて、 前記冷却水供給側配管(5) の前記放熱用熱交換器(14)よ
りも下流側に設けられて前記エンジン冷却部に戻される
冷却水の温度を測定する冷却水温度センサ(15)と、 前記入口温度センサ(16)による測定温度が設定温度を越
えたときに出力される放熱信号に基づいて、前記冷却水
温度センサ(15)による冷却水の測定温度が設定温度より
も低くなるまで放熱制御信号を出力させるホールド手段
(21)と、 前記放熱制御信号に応答して、前記放熱量変更手段(12)
の弁開度を前記エンジン(1) が定格運転し、かつ、前記
排熱回収部(6),(7) の排熱需要が零のときに前記放熱用
熱交換器(14)に供給すべき冷却水量を流す弁開度よりも
小さい予め設定した設定弁開度になるように制御するフ
ィードフォワード側制御手段(22)と、 前記冷却水温度センサ(15)による冷却水の測定温度に基
づいて、その測定温度が高くなるほど放熱量が増大する
ように前記放熱量変更手段(12)を制御するフィードバッ
ク側制御手段(23)とを備えたことを特徴とする排熱回収
システム。
1. The engine cooling part of the engine (1) and the exhaust heat recovery parts (6), (7) are connected via pipes (5), (8a), (8b), and the exhaust heat recovery is performed. From the parts (6) and (7) to the cooling water supply pipe (5) to the engine cooling part, the heat radiation amount changing means (12)
Is provided with a heat dissipation heat exchanger (14), and the cooling water supply side pipe (5) of the exhaust heat recovery section (6), (7) and the heat dissipation heat exchanger (14) An inlet temperature sensor (16) for measuring the temperature of the cooling water is provided between them, and the heat radiation amount changing means (12) is operated based on the temperature of the cooling water measured by the inlet temperature sensor (16). In the exhaust heat recovery system described above, cooling water that is provided on the cooling water supply side pipe (5) downstream of the heat radiating heat exchanger (14) and measures the temperature of the cooling water returned to the engine cooling unit. Temperature sensor (15), the measured temperature of the cooling water by the cooling water temperature sensor (15) is set based on the heat radiation signal output when the temperature measured by the inlet temperature sensor (16) exceeds the set temperature. Hold means that outputs the heat dissipation control signal until it becomes lower than the temperature
(21), and in response to the heat dissipation control signal, the heat dissipation amount changing means (12)
When the engine (1) is in rated operation and the exhaust heat demand of the exhaust heat recovery parts (6), (7) is zero, the valve opening of is supplied to the heat dissipation heat exchanger (14). Based on the measured temperature of the cooling water by the feed-forward side control means (22) for controlling so as to have a preset valve opening smaller than the valve opening for flowing the amount of cooling water to be flowed, and the cooling water temperature sensor (15). The exhaust heat recovery system further comprises feedback side control means (23) for controlling the heat radiation amount changing means (12) so that the heat radiation amount increases as the measured temperature increases.
【請求項2】 請求項1に記載のホールド手段(21)が、
入口温度センサ(16)による冷却水の測定温度がその設定
温度(A) よりも低くなり、かつ、冷却水温度センサ(15)
による冷却水の測定温度がその設定温度(B) よりも低く
なるまで放熱制御信号を出力させるものである排熱回収
システム。
2. The holding means (21) according to claim 1,
The measured temperature of the cooling water by the inlet temperature sensor (16) is lower than the set temperature (A), and the cooling water temperature sensor (15)
An exhaust heat recovery system that outputs a heat dissipation control signal until the measured temperature of the cooling water by is lower than the set temperature (B).
JP17026895A 1995-06-12 1995-06-12 Waste heat recovery system Expired - Fee Related JP3690842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17026895A JP3690842B2 (en) 1995-06-12 1995-06-12 Waste heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17026895A JP3690842B2 (en) 1995-06-12 1995-06-12 Waste heat recovery system

Publications (2)

Publication Number Publication Date
JPH08338310A true JPH08338310A (en) 1996-12-24
JP3690842B2 JP3690842B2 (en) 2005-08-31

Family

ID=15901794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17026895A Expired - Fee Related JP3690842B2 (en) 1995-06-12 1995-06-12 Waste heat recovery system

Country Status (1)

Country Link
JP (1) JP3690842B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056152A1 (en) * 2001-12-22 2003-07-10 Robert Bosch Gmbh Method for controlling electrically-operated components of a cooling system, computer programme, controller, cooling system and internal combustion engine
CN101963415A (en) * 2010-09-20 2011-02-02 新会双水发电(B厂)有限公司 Flue gas-heat recovery cooling and heating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056152A1 (en) * 2001-12-22 2003-07-10 Robert Bosch Gmbh Method for controlling electrically-operated components of a cooling system, computer programme, controller, cooling system and internal combustion engine
CN101963415A (en) * 2010-09-20 2011-02-02 新会双水发电(B厂)有限公司 Flue gas-heat recovery cooling and heating system

Also Published As

Publication number Publication date
JP3690842B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JP2021004697A (en) Water heater and hot water supply system
JP2001329840A (en) Failure diagnostic device for thermostat
JP3804693B2 (en) Waste heat recovery system
JPH08338310A (en) Exhaust heat recovery system
JPH0666463A (en) Controller for number of heat source apparatus
CN112128839B (en) Hot water supply device and hot water supply system
US4771739A (en) Cooling system for an internal combustion engine
JPH07247834A (en) Exhaust heat recovery system
JPS6132403Y2 (en)
JP3244991B2 (en) Gas water heater with combustion abnormality detection function
JP2908229B2 (en) Hot water supply temperature control device
JPH08151922A (en) Exhaust heat recovery system
JP2676197B2 (en) Temperature control device for co-generation system
JP2514593B2 (en) Optimal temperature controller for cogeneration system
JP3855353B2 (en) Water heater
JP3382693B2 (en) Hot water heater and its hot water temperature control method
JPH08177626A (en) Exhaust heat recovery system
JPH07247835A (en) Exhaust heat recovery system
JP4017817B2 (en) Heating system
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump
JPH0823290B2 (en) Exhaust temperature control device for internal combustion engine
JPH09145158A (en) Gas hot water heater with abnormality detecting function
JP2552586B2 (en) Inlet water temperature detection method and hot water supply control method in water heater
JP2976883B2 (en) Startup control method in the number control system of fluid heaters
JP2935643B2 (en) Absorption chiller / heater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees