JP3855353B2 - Water heater - Google Patents
Water heater Download PDFInfo
- Publication number
- JP3855353B2 JP3855353B2 JP09879097A JP9879097A JP3855353B2 JP 3855353 B2 JP3855353 B2 JP 3855353B2 JP 09879097 A JP09879097 A JP 09879097A JP 9879097 A JP9879097 A JP 9879097A JP 3855353 B2 JP3855353 B2 JP 3855353B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- temperature
- water supply
- pipe
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は出湯時の立上り温度を早くした給湯機に関するものである。
【0002】
【従来の技術】
従来のこの種の給湯装置は特開平4−270829号公報に記載されているようなものが一般的であった。この給湯装置は図9に示すように入水管路1と、供給される水を加熱する熱交換器2と、出湯管路3と、出湯管路3の先の給湯栓4と、バイパス管路6と、バイパス管路6に設けられる水量調節弁7と、出湯管路3の途中Cから分岐して入水管路1のバイパス管路6の分岐点Aより下流位置に接続する(接続点をDで示す)温水循環用戻し管路8と、前記戻し管路8に設けられる循環ポンプ9とを有し、即出湯モード時には温
水を戻し管路8を通して出湯管路3から熱交換器2に循環させて待機するように構成されている。
【0003】
そして上記の構成によって給湯栓が解放されると即出湯されるようにようになっていた。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の給湯装置では、給湯機本体と給湯栓の配管を往復の2経路設置しなければならないので、大がかりな配管工事になり、コストが高く付く等の理由で、一般的には普及しにくいという課題があった。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するため、バーナを熱源とするとともに、入水管を介して送り込まれた水を湯に熱交換して出湯管へ出す熱交換器と、前記入水管に設けた入口サーミスタと、前記出湯管を流動する湯の温度を検出する給湯サーミスタと、前記給湯サーミスタの検出温度と温度設定手段で設定された給湯温度とが合致するように前記バーナの燃焼量を調節するガスブロックと、出湯開始時、前記温度設定手段で設定された設定温度より高い給湯温度の湯を所定時間出湯した後、前記設定温度に給湯温度を戻す制御部とを具備し、この制御部は、前回出湯時の設定温度より給湯配管に奪われる熱量を予測して、設定温度より高い給湯温度の湯を所定時間出湯するようにしたものである。
【0006】
したがって、出湯温度の立ち上がりを速くすることができる。
【0007】
【発明の実施の形態】
本発明の給湯機は、バーナを熱源とするとともに、入水管を介して送り込まれた水を湯に熱交換して出湯管へ出す熱交換器と、前記入水管に設けた入口サーミスタと、前記出湯管を流動する湯の温度を検出する給湯サーミスタと、前記給湯サーミスタの検出温度と温度設定手段で設定された給湯温度とが合致するように前記バーナの燃焼量を調節するガスブロックと、出湯開始時、前記温度設定手段で設定された設定温度より高い給湯温度の湯を所定時間出湯した後、前記設定温度に給湯温度を戻す制御部とを具備し、この制御部は、前回出湯時の設定温度より給湯配管に奪われる熱量を予測して、設定温度より高い給湯温度の湯を所定時間出湯するようにした。
【0008】
このように、前回出湯時の設定温度より給湯配管の冷却度合いを予測することで、この設定温度より高い給湯温度ΔTと所定時間ΔLを決定して出湯させ、その後、設定温度に給湯温度を戻すため、給湯配管の温度を冷却された状態から素早く設定した給湯温度に加熱することができ、出湯初期の給湯配管による湯からの放熱を無くし給湯栓からの湯の出湯温度の立ち上がりを速くすることができる。
【0009】
また、本発明の給湯機は、バーナを熱源とするとともに、入水管を介して送り込まれた水を湯に熱交換して出湯管へ出す熱交換器と、前記入水管に設けた入口サーミスタと、前記出湯管を流動する湯の温度を検出する給湯サーミスタと、前記給湯サーミスタの検出温度と温度設定手段で設定された給湯温度とが合致するように前記バーナの燃焼量を調節するガスブロックと、出湯開始時、前記温度設定手段で設定された設定温度より高い給湯温度の湯を所定時間出湯した後、前記設定温度に給湯温度を戻す制御部とを具備し、この制御部は、前回出湯時の連続出湯時間より給湯配管に奪われる熱量を予測して、設定温度より高い給湯温度の湯を所定時間出湯するようにした。
【0010】
このように、前回の連続出湯時間より給湯配管の冷却度合いを予測することで前記ΔTとΔLを決定し、設定温度より+ΔT高い給湯温度の湯をΔL時間出湯した後、設定温度に給湯温度を戻すため、給湯配管の温度を冷却された状態から素早く設定した給湯温度に加熱することができ、出湯初期の給湯配管による湯からの放熱を無くし給湯栓からの湯の出湯温度の立ち上がりを速くすることができる。
【0011】
以下、本発明の実施例を述べる前に参考実施例について図面を用いて説明する。
【0012】
(参考実施例1)
図1,2において、11はファン、12はバーナ、13はガス供給部でその燃焼量はガスブロック14で制御される。15は熱交換器で入口側には入水管16、出口側には出湯管17が接続され、熱交換器15をバイパスするように水量調節弁18が入水管16と出湯管17の間に設けられている。
【0013】
入水管には入水温度を計測する入口サーミスタ19が、出湯管には熱交換器15出口の湯温を計測する出口サーミスタ20が、水量調節弁と出湯管が合流した後には給湯機出口温度を計測する給湯サーミスタ21が取付られている。22は給湯配管、23は給湯栓である。そして給湯温度をリモコン24によって設定し、給湯機全体を制御部25によって制御する。
【0014】
次に動作、作用について説明する。入水管16入口より供給された水は入口サーミスタ19で温度計測された後、入水管16と水量調節弁18の二方向に分岐され、入水管16を通過した水は熱交換器15によって加熱され湯となり出口サーミスタ20で温度計測された後、出湯管17を通過し水量調節弁18を通過してきた水と混合され給湯サーミスタ21で温度計測後給湯配管22を通って給湯栓23より吐出される。
【0015】
熱交換器15による加熱量はリモコン24で設定された湯温と入口サーミスタ19より計測された水温より決定され、ガスはガスブロック14で燃料調節した後ガス供給部13からバーナ12に送られ燃焼して熱交換器15に伝熱される。
【0016】
本参考実施例1の給湯機は、上記一般の動作に加え、図2に示すように出湯開始時にリモコン24で設定された温度(T)より高い給湯温度(T+ΔT)の湯を一定時間(ΔL)出湯した後リモコン24で設定された温度(T)に給湯温度を戻すことに特徴がある。
【0017】
これによって出湯開始前、外気温と同レベルまで冷却されていた給湯配管22による出湯初期の湯からの放熱ロス分(D)をリモコン24で設定された温度より高い温度の湯((T+ΔT)×ΔL)で加熱することが出来、給湯栓23からの湯の出湯温度の立ち上がりを速くすることができる。よって給湯栓23での温水のでるまでの待ち時間が短縮され、使い勝手が向上するとともに死に水を少なくすることができ水の節水にも効果がある。
【0018】
続いて具体例で説明する。標準的な給湯機の配管及び使用条件を次のように設定する。
【0019】
給湯配管 銅管 φ16mm t1.05m
周囲温度(外気温) 15℃
リモコン設定温度 40℃
出湯流量 12L/分 (=0.2L/S)
給湯配管の必要加熱熱容量Mの計算
配管容積 V=(π×0.0162/4−π×0.0142/4)×5=0.000236m3
銅比重 γ=8900kg/m3
銅比熱 Cp=0.100kcal/kg・deg
M=銅管質量(V)×比重(γ)×比熱(Cp)×温度差=0.000236×8900×0.100×(40−15)=5.24kcal
上記計算により給湯配管を冷却時の15℃からリモコン24設定温度40℃に上昇させるには5.24kcal必要であり、出湯初期の湯は5.24kcal分の熱容量(D)を給湯配管に奪われることになる。よってこの必要加熱熱容量分(M)をリモコン24設定温度の湯に足しておくと給湯栓での湯の出湯温度の立ち上がりを速くすることができる。
【0020】
ΔT×ΔL×Q=M=Dの関係が成立する。次表に適当なΔT、ΔLを上げてみる。
【0021】
【表1】
【0022】
NO1の場合、出湯開始時にリモコン24で設定された温度(40℃)より高い給湯温度(42℃)の湯を一定時間(12.5S)出湯した後リモコン24で設定された温度(40℃)に給湯温度を戻すと給湯栓での湯の出湯温度の立ち上がりを速くすることができる。
【0023】
なお、給湯機出口での出湯温度の立ち上がりが速い方がより給湯栓23での湯の出湯温度の立ち上がりに効果があるので熱交換器15内の温度をバーナ12で間欠的に加熱させておき高温状態にしておくことと、出湯初期時には水量制御弁18を閉止状態にして給湯機出口での出湯温度立ち上げを速くできるようにすることはいうまでもない。
【0024】
(参考実施例2)
図3は参考実施例2を示し、参考実施例1と異なる点は給湯配管22の温度を検知する給湯配管サーミスタ26を設けた点である。なお、参考実施例1と同作用を発揮する構成については同一符号を付し、説明は参考実施例1のものを援用する。
【0025】
次に動作、作用を説明すると、給湯配管サーミスタ26の温度により給湯配管22の温度を直接測定し、リモコン24で設定した温度との温度差を入力することで給湯配管22の必要加熱熱容量Mを精度よく算出することができる。よって実施例1のように給湯配管22の冷却度合いを予想で計算するのと違い確実に算出できるため、最適なΔT・ΔLを設定し、給湯栓23からの湯の出湯温度の立ち上がりを速くすることができる。
【0026】
(参考実施例3)
図4は参考実施例3を示し、参考実施例1、または2と異なる点は給湯機の外装部27外側あるいは給湯機内部で外気と連通する位置に外気温センサ28を設けた点である。なお、参考実施例1,2と同作用を発揮する構成については同一符号を付し、説明は参考実施例1,2のものを援用する。
【0027】
次に動作、作用を説明すると、通常外気温と同レベルにあると考えられる給湯配管22の温度を外気温センサ28の温度と置換して給湯配管22の必要加熱熱容量Mを算出することができる。よって実施例1のように給湯配管22の冷却度合いを予想で計算するのと違い精度よく算出できるため、最適なΔT・ΔLを設定し、給湯栓23からの湯の出湯温度の立ち上がりを速くすることができる。また外気温センサ28を給湯機本体に設置するため、実施例2のように給湯配管22途中にある給湯配管サーミスタ26と給湯機本体を接続する配線も必要無いという効果がある。
【0028】
(参考実施例4)
図5,6において、前回出湯終了時から再出湯開始までの経過時間Xより給湯配管22の冷却度合いを予測し、最適なΔT・ΔLをを求め、給湯栓23からの湯の出湯温度の立ち上がりを速くする。具体的には給湯配管22の冷却度合いを次に示すような配管冷却度Aを定義して湯温制御する。
【0029】
X≧Z A=1
X<Z A=X/Z:飽和配管冷却時間Zは予め設定しておき例えば60分としておくよって給湯配管の必要加熱熱容量Mは
M=A×銅管質量(V)×比重(γ)×比熱(Cp)×温度差
となる。
【0030】
経過時間Xが30分の場合A=30/60=0.5となる。他の条件を実施例1の具体例と同条件設定にするとΔT、ΔLは次表のようになる。
【0031】
【表2】
【0032】
NO1の場合、出湯開始時にリモコン24で設定された温度(40℃)より高い給湯温度(42℃)の湯を一定時間(6.25S)出湯した後リモコン24で設定された温度(40℃)に給湯温度を戻すと給湯栓での湯の出湯温度の立ち上がりを速くすることができる。
【0033】
以下本発明の実施例を添付図面を参照しつつ説明する。
【0034】
(実施例1)
図7は本発明の実施例1における給湯機の湯温制御ブロックを示し、動作、作用を説明すると、前回出湯終了時設定されていたリモコン設定温度T1より給湯配管22の冷却度合いを予測し、最適なΔT・ΔLをを求め、給湯栓23からの湯の出湯温度の立ち上がりを速くする。給湯配管22の冷却度合いは前回出湯時設定されていた温度が高いほど周囲との温度差が大きくなり冷却度も大きくなる。よってこれを補正するために次に示すような配管冷却度Bを定義して湯温制御する。
【0035】
B=((T1−15)/(75−15))2
よって給湯配管の必要加熱熱容量MはM=B×銅管質量(V)×比重(γ)×比熱(Cp)×温度差となる。
【0036】
また、実際には参考実施例4のように前回出湯終了時から再出湯開始までの経過時間があり、
M=A×B×銅管質量(V)×比重(γ)×比熱(Cp)×温度差
となる。ΔT・ΔL=M/Qより最適なΔT・ΔLをを求め出湯開始時にリモコン24で設定された温度TよりΔT高い給湯温度の湯を一定時間ΔL出湯した後リモコン24で設定された温度に給湯温度を戻すと給湯栓での湯の出湯温度の立ち上がりを速くすることができる。
【0037】
(実施例2)
図8は本発明の実施例2を示す。動作、作用を説明すると、前回の連続出湯時間Yより給湯配管22の冷却度合いを予測し、最適なΔT・ΔLを求め、給湯栓23からの湯の出湯温度の立ち上がりを速くする。給湯配管22の冷却度合いは前回の連続出湯時間Yが短い程大きくなり、給湯配管22が給湯設定温度Tと等しくなる給湯配管設定温度到達時間Cを越えると一定となる。よってこれを補正するために次に示すような配管冷却度Eを定義して湯温制御する。
【0038】
Y≧C E=1
Y<C E=e(1−Y/C)
よって給湯配管の必要加熱熱容量Mは
M=E×銅管質量(V)×比重(γ)×比熱(Cp)×温度差
となる。また、実際には実施例4、5のように前回出湯終了時から再出湯開始までの経過時間、前回出湯終了時設定されていたリモコン設定温度によっても、必要加熱熱容量Mが変わるので、
M=A×B×E×銅管質量(V)×比重(γ)×比熱(Cp)×温度差
となる。
【0039】
ΔT・ΔL=M/Qより最適なΔT・ΔLをを求め出湯開始時にリモコン24で設定された温度TよりΔT高い給湯温度の湯を一定時間ΔL出湯した後リモコン24で設定された温度に給湯温度を戻すと給湯栓での湯の出湯温度の立ち上がりを速くすることができる。
【0040】
以上各参考実施例、および各実施例の技術的意義をまとめれば以下の通りである。
【0041】
(1)出湯時リモコンで設定された温度より高い給湯温度の湯を一定時間出湯した後リモコンで設定された温度に給湯温度を戻すことで、給湯配管の温度を冷却された状態から素早く設定した給湯温度に加熱することができ、出湯初期の給湯配管による湯からの放熱を無くし給湯栓からの湯の出湯温度の立ち上がりを速くすることができる。また給湯配管を1本で構成することができるため、給湯配管を往復の2経路設置する大がかりな配管工事も必要なく、従来の給湯機と同じ設置形態をとることが出来る。
【0042】
(2)給湯配管の温度を検知する給湯配管サーミスタを備え、給湯配管サーミスタの温度により給湯配管の冷却度合いを予測することで精度の高いΔTとΔLを決定し出湯時リモコンで設定された温度より+ΔT高い給湯温度の湯をΔL時間出湯した後リモコンで設定された温度に給湯温度を戻すため、給湯配管の温度を冷却された状態から素早く設定した給湯温度に加熱することができ、出湯初期の給湯配管による湯からの放熱を無くし給湯栓からの湯の出湯温度の立ち上がりを速くすることができる。
【0043】
(3)給湯機の外装部外側あるいは給湯機内部で外気と連通する位置に外気温センサを備え、外気温より給湯配管の冷却度合いを精度良く予測することでΔTとΔLを決定し、出湯初期の給湯配管による湯からの放熱を無くし給湯栓からの湯の出湯温度の立ち上がりを速くすることができる。
【0044】
(4)前回出湯終了から再出湯開始までの経過時間より給湯配管の冷却度合いを予測することでΔTとΔLを決定し出湯初期の給湯配管による湯からの放熱を無くし給湯栓からの湯の出湯温度の立ち上がりを速くすることができる。
【0045】
(5)前回出湯時のリモコンで設定された温度より給湯配管の冷却度合いを予測することでΔTとΔLを決定し出湯初期の給湯配管による湯からの放熱を無くし給湯栓からの湯の出湯温度の立ち上がりを速くすることができる。
【0046】
(6)前回の連続出湯時間より給湯配管の冷却度合いを予測することでΔTとΔLを決定し出湯初期の給湯配管による湯からの放熱を無くし給湯栓からの湯の出湯温度の立ち上がりを速くすることができる。
【0047】
【発明の効果】
以上のように本発明の給湯機は、出湯温度の立ち上がり特性が著しく高められ、その使い勝手を大いに高めることができるものである。
【図面の簡単な説明】
【図1】 本発明の参考実施例1における給湯機の構成図
【図2】 同給湯機の湯温制御特性図
【図3】 本発明の参考実施例2における給湯機の構成図
【図4】 本発明の参考実施例3における給湯機の構成図
【図5】 本発明の参考実施例4における給湯機の湯温制御を示すフローチャート
【図6】 本発明の参考実施例4における給湯機の湯温特性図
【図7】 本発明の実施例1における給湯機の湯温制御を示すフローチャート
【図8】 本発明の実施例2における給湯機の湯温制御を示すフローチャート
【図9】 従来の給湯装置の構成概略図
【符号の説明】
12バーナ
14 ガスブロック
15熱交換器
16 入水管
17 出湯管
18 水量調節弁
19 入口サーミスタ
20 出口サーミスタ
21 給湯サーミスタ
22 給湯配管
23 給湯栓
24 リモコン
25 制御部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water heater with a rising temperature at the time of tapping.
[0002]
[Prior art]
A conventional hot water supply apparatus of this kind is generally as described in Japanese Patent Application Laid-Open No. 4-270829. As shown in FIG. 9, this hot water supply apparatus includes a water inlet line 1, a heat exchanger 2 for heating supplied water, a hot water outlet line 3, a hot water tap 4 at the end of the hot water outlet line 3, and a bypass pipe line. 6, a water amount adjusting valve 7 provided in the bypass pipeline 6, and a branch from the middle C of the tap water pipeline 3, and is connected to a downstream position from the branch point A of the bypass pipeline 6 of the incoming water pipeline 1. D) and a circulation pump 9 provided in the return pipe 8, and in the quick hot water mode, warm water is passed from the hot water pipe 3 to the heat exchanger 2 through the return pipe 8. It is configured to circulate and wait.
[0003]
And when the hot water tap is released by the above configuration, the hot water is immediately discharged.
[0004]
[Problems to be solved by the invention]
However, in the conventional hot water supply apparatus, since the water heater main body and the hot water tap pipe must be installed in two reciprocal paths, it is generally popular because of large piping work and high cost. There was a problem that it was difficult.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a heat exchanger that uses a burner as a heat source, heat-exchanges water fed through a water inlet pipe to hot water, and outputs the water to a hot water outlet pipe, and an inlet thermistor provided in the water inlet pipe A hot water thermistor for detecting the temperature of hot water flowing through the hot water discharge pipe, and a gas block for adjusting the combustion amount of the burner so that the detected temperature of the hot water thermistor matches the hot water temperature set by the temperature setting means And at the start of pouring hot water, a controller that returns hot water having a hot water temperature higher than the set temperature set by the temperature setting means for a predetermined time, and then returns the hot water temperature to the set temperature. the amount of heat taken away from the hot water supply pipe set temperature at the time of tapping in anticipation, in which the hot water is higher than the set temperature hot water supply temperature was set to a predetermined time tapping.
[0006]
Therefore, the rise of the tapping temperature can be accelerated.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The hot water supply apparatus of the present invention uses a burner as a heat source, heat exchanger for exchanging water fed through the water inlet pipe into hot water, and feeding it to the hot water outlet pipe, an inlet thermistor provided in the water inlet pipe, A hot water thermistor for detecting the temperature of hot water flowing in the hot water pipe, a gas block for adjusting the combustion amount of the burner so that the detected temperature of the hot water thermistor matches the hot water temperature set by the temperature setting means, And a controller that returns hot water having a hot water temperature higher than the set temperature set by the temperature setting means for a predetermined time, and then returns the hot water temperature to the set temperature. The amount of heat taken by the hot water supply pipe from the set temperature is predicted, and hot water having a hot water supply temperature higher than the set temperature is discharged for a predetermined time.
[0008]
In this way, by predicting the cooling degree of the hot water supply pipe from the preset temperature at the time of the last hot water discharge, the hot water supply temperature ΔT and the predetermined time ΔL higher than the preset temperature are determined and discharged, and then the hot water supply temperature is returned to the set temperature. Therefore, the temperature of the hot water supply pipe can be quickly heated from the cooled state to the set hot water supply temperature, and the rise of the hot water discharge temperature from the hot water tap can be made faster by eliminating heat radiation from the hot water supply pipe in the initial stage of hot water supply. it can.
[0009]
In addition, the water heater of the present invention uses a burner as a heat source, heat exchanger that exchanges heat fed into the hot water through the water inlet pipe to the hot water outlet, and an outlet thermistor provided in the water inlet pipe. A hot water thermistor for detecting the temperature of hot water flowing through the hot water discharge pipe, and a gas block for adjusting the combustion amount of the burner so that the detected temperature of the hot water thermistor matches the hot water temperature set by the temperature setting means; And a controller that returns hot water having a hot water temperature higher than the set temperature set by the temperature setting means for a predetermined time and then returns the hot water temperature to the set temperature. The amount of heat lost to the hot water supply pipe is predicted from the continuous hot water discharge time, and hot water having a hot water supply temperature higher than the set temperature is discharged for a predetermined time.
[0010]
Thus, ΔT and ΔL are determined by predicting the cooling degree of the hot water supply pipe from the previous continuous hot water discharge time, hot water having a hot water temperature + ΔT higher than the set temperature is discharged for ΔL time, and then the hot water temperature is set to the set temperature. In order to return, the temperature of the hot water supply pipe can be quickly heated from the cooled state to the set hot water temperature, eliminating heat dissipation from the hot water at the initial hot water supply pipe and making the rise of the hot water temperature from the hot water tap faster. Can do.
[0011]
Before describing embodiments of the present invention, reference embodiments will be described with reference to the drawings.
[0012]
(Reference Example 1)
In FIGS. 1 and 2, 11 is a fan, 12 is a burner, 13 is a gas supply unit, and the amount of combustion is controlled by a gas block 14. A heat exchanger 15 is connected with a water inlet pipe 16 on the inlet side and a hot water outlet pipe 17 on the outlet side. A water amount adjusting valve 18 is provided between the water inlet pipe 16 and the hot water outlet pipe 17 so as to bypass the heat exchanger 15. It has been.
[0013]
An inlet thermistor 19 that measures the temperature of the incoming water is provided in the inlet pipe, and an outlet thermistor 20 that measures the hot water temperature at the outlet of the heat exchanger 15 is provided in the outlet pipe, and the outlet temperature of the water heater is adjusted after the water amount adjusting valve and the outlet pipe are joined. A hot water supply thermistor 21 to be measured is attached. 22 is a hot water supply pipe, and 23 is a hot water tap. Then, the hot water supply temperature is set by the remote controller 24, and the entire water heater is controlled by the control unit 25.
[0014]
Next, the operation and action will be described. The temperature of the water supplied from the inlet pipe 16 is measured by the inlet thermistor 19 and then branched in two directions, the inlet pipe 16 and the water amount adjustment valve 18. The water passing through the inlet pipe 16 is heated by the heat exchanger 15. After the temperature is measured by the outlet thermistor 20 as hot water, it is mixed with the water that has passed through the hot water outlet pipe 17 and the water amount adjustment valve 18, and after temperature measurement by the hot water supply thermistor 21, is discharged from the hot water tap 23 through the hot water supply pipe 22. .
[0015]
The heating amount by the heat exchanger 15 is determined from the hot water temperature set by the remote controller 24 and the water temperature measured by the inlet thermistor 19, and the gas is adjusted by the gas block 14 and then sent from the gas supply unit 13 to the burner 12 for combustion. Then, heat is transferred to the heat exchanger 15.
[0016]
In addition to the above-described general operation, the hot water supply apparatus according to the first embodiment supplies hot water having a hot water supply temperature (T + ΔT) higher than the temperature (T) set by the remote controller 24 at the start of hot water discharge as shown in FIG. A feature is that the hot water supply temperature is returned to the temperature (T) set by the remote controller 24 after the hot water is discharged.
[0017]
As a result, before starting the hot water, the heat dissipation loss (D) from the hot water at the initial stage of the hot water by the hot water supply pipe 22 that has been cooled to the same level as the outside air temperature is set to a temperature higher than the temperature set by the remote controller 24 ((T + ΔT) × ΔL) can be heated, and the rising temperature of the hot water discharged from the hot-water tap 23 can be increased. Therefore, the waiting time until the hot water is poured at the hot-water tap 23 is shortened, the usability is improved, and the water can be reduced to death, which is effective in saving water.
[0018]
Next, a specific example will be described. Standard water heater piping and usage conditions are set as follows.
[0019]
Hot water supply pipe Copper pipe φ16mm t1.05m
Ambient temperature (outside temperature) 15 ℃
Remote control set temperature 40 ℃
Hot water flow rate 12L / min (= 0.2L / S)
Calculation of required heating heat capacity M of hot water supply pipe Piping volume V = (π × 0.016 2 /4−π×0.014 2 /4)×5=0.000236 m 3
Copper specific gravity γ = 8900kg / m 3
Copper specific heat Cp = 0.100 kcal / kg · deg
M = copper tube mass (V) × specific gravity (γ) × specific heat (Cp) × temperature difference = 0.000236 × 8900 × 0.100 × (40−15) = 5.24 kcal
According to the above calculation, 5.24 kcal is required to raise the hot water supply pipe from 15 ° C. at the time of cooling to the remote controller 24 set temperature 40 ° C., and the hot water in the initial stage of hot water is deprived of the heat capacity (D) for 5.24 kcal by the hot water supply pipe. It will be. Therefore, if this required heating heat capacity (M) is added to the hot water of the remote control 24 set temperature, the rise of the hot water discharge temperature at the hot water tap can be accelerated.
[0020]
The relationship ΔT × ΔL × Q = M = D is established. In the following table, increase appropriate ΔT and ΔL.
[0021]
[Table 1]
[0022]
In the case of NO1, hot water having a hot water supply temperature (42 ° C.) higher than the temperature (40 ° C.) set by the remote controller 24 at the start of the hot water supply is discharged for a certain time (12.5 S) and then set by the remote controller 24 (40 ° C.). When the hot water temperature is returned to, the rise of the hot water discharge temperature at the hot water tap can be accelerated.
[0023]
It should be noted that the faster rise of the hot water temperature at the outlet of the hot water heater is more effective in raising the hot water temperature at the hot water tap 23, so that the temperature in the heat exchanger 15 is intermittently heated by the burner 12 and the temperature is high. Needless to say, in the initial stage of hot water supply, the water amount control valve 18 is closed so that the hot water temperature rise at the outlet of the hot water supply can be made faster.
[0024]
(Reference Example 2)
FIG. 3 shows a reference embodiment 2. A difference from the reference embodiment 1 is that a hot water supply pipe thermistor 26 for detecting the temperature of the hot water supply pipe 22 is provided. In addition, about the structure which exhibits the effect | action similar to the reference example 1, the same code | symbol is attached | subjected and the thing of the reference example 1 is used for description.
[0025]
Next, the operation and action will be described. The temperature of the hot water supply pipe 22 is directly measured by the temperature of the hot water supply pipe thermistor 26, and the required heating heat capacity M of the hot water supply pipe 22 is obtained by inputting the temperature difference from the temperature set by the remote controller 24. It can be calculated with high accuracy. Therefore, since the degree of cooling of the hot water supply pipe 22 can be calculated with certainty unlike the case of the first embodiment, the optimum ΔT · ΔL is set, and the rise of the hot water discharge temperature from the hot water tap 23 is made faster. Can do.
[0026]
(Reference Example 3)
FIG. 4 shows a reference embodiment 3, which is different from the reference embodiment 1 or 2 in that an outside air temperature sensor 28 is provided at a position communicating with the outside air outside the exterior portion 27 of the water heater or inside the water heater. In addition, the same code | symbol is attached | subjected about the structure which exhibits the effect | action similar to Reference Example 1, 2, and the thing of Reference Example 1, 2 is used for description.
[0027]
Next, the operation and action will be described. The required heating heat capacity M of the hot water supply pipe 22 can be calculated by replacing the temperature of the hot water supply pipe 22 considered to be at the same level as the normal outside air temperature with the temperature of the external air temperature sensor 28. . Therefore, since the degree of cooling of the hot water supply pipe 22 can be calculated with high accuracy unlike the case of the first embodiment, the optimum ΔT / ΔL is set, and the rise of the hot water discharge temperature from the hot water tap 23 is made faster. Can do. Further, since the outside air temperature sensor 28 is installed in the water heater main body, there is an effect that there is no need for wiring for connecting the hot water supply thermistor 26 in the middle of the hot water supply pipe 22 and the water heater main body as in the second embodiment.
[0028]
(Reference Example 4)
5 and 6, the degree of cooling of the hot water supply pipe 22 is predicted from the elapsed time X from the end of the last hot water discharge to the start of re-hot water, the optimum ΔT · ΔL is obtained, and the rising temperature of the hot water discharged from the hot water tap 23 is determined. Make it faster. Specifically, the cooling degree of the hot water supply pipe 22 is defined as the following pipe cooling degree A to control the hot water temperature.
[0029]
X ≧ Z A = 1
X <Z A = X / Z: The saturation pipe cooling time Z is set in advance, for example, 60 minutes, so that the required heating heat capacity M of the hot water supply pipe is M = A × copper pipe mass (V) × specific gravity (γ) × Specific heat (Cp) × temperature difference.
[0030]
When the elapsed time X is 30 minutes, A = 30/60 = 0.5. When other conditions are set to the same conditions as the specific example of the first embodiment, ΔT and ΔL are as shown in the following table.
[0031]
[Table 2]
[0032]
In the case of NO1, hot water having a hot water supply temperature (42 ° C.) higher than the temperature (40 ° C.) set at the remote control 24 at the start of the hot water supply is discharged for a certain time (6.25S) and then set at the remote control 24 (40 ° C.). When the hot water temperature is returned to, the rise of the hot water discharge temperature at the hot water tap can be accelerated.
[0033]
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0034]
Example 1
FIG. 7 shows a hot water temperature control block of the water heater in Embodiment 1 of the present invention, and the operation and action will be described. The degree of cooling of the hot water supply pipe 22 is predicted from the remote control set temperature T1 set at the end of the last hot water supply, The optimum ΔT · ΔL is obtained, and the rise of the hot water discharge temperature from the hot water tap 23 is made faster. The degree of cooling of the hot water supply pipe 22 increases as the temperature set at the time of last hot water discharge increases and the temperature difference from the surroundings increases. Therefore, in order to correct this, the pipe cooling degree B as shown below is defined to control the hot water temperature.
[0035]
B = ((T1-15) / (75-15)) 2
Therefore, the required heating heat capacity M of the hot water supply pipe is M = B × copper tube mass (V) × specific gravity (γ) × specific heat (Cp) × temperature difference.
[0036]
In fact, as in Reference Example 4 , there is an elapsed time from the end of the last hot water discharge to the start of the second hot water,
M = A × B × copper tube mass (V) × specific gravity (γ) × specific heat (Cp) × temperature difference. ΔT · ΔL = M / Q is used to obtain the optimum ΔT · ΔL, hot water having a hot water temperature ΔT higher than the temperature T set by the remote controller 24 at the start of hot water supply is discharged by ΔL for a certain period of time, and then hot water is supplied to the temperature set by the remote controller 24. When the temperature is returned, the rise of the hot water discharge temperature at the hot water tap can be made faster.
[0037]
(Example 2)
FIG. 8 shows a second embodiment of the present invention. To explain the operation and action, the degree of cooling of the hot water supply pipe 22 is predicted from the previous continuous hot water discharge time Y, the optimum ΔT · ΔL is obtained, and the rise of the hot water discharge temperature from the hot water tap 23 is accelerated. The degree of cooling of the hot water supply pipe 22 increases as the previous continuous hot water discharge time Y becomes shorter, and becomes constant when the hot water supply pipe set temperature arrival time C at which the hot water supply pipe 22 becomes equal to the hot water supply set temperature T is exceeded. Therefore, in order to correct this, the pipe cooling degree E as shown below is defined to control the hot water temperature.
[0038]
Y ≧ C E = 1
Y <C E = e (1-Y / C)
Therefore, the required heating heat capacity M of the hot water supply pipe is M = E × copper tube mass (V) × specific gravity (γ) × specific heat (Cp) × temperature difference. In addition, since the required heating heat capacity M also varies depending on the elapsed time from the end of the last hot water discharge to the start of the second hot water discharge, and the remote controller set temperature set at the end of the previous hot water discharge as in Examples 4 and 5,
M = A × B × E × copper tube mass (V) × specific gravity (γ) × specific heat (Cp) × temperature difference.
[0039]
ΔT · ΔL = M / Q is used to obtain the optimum ΔT · ΔL, hot water having a hot water temperature ΔT higher than the temperature T set by the remote controller 24 at the start of hot water supply is discharged by ΔL for a certain period of time, and then hot water is supplied to the temperature set by the remote controller 24. When the temperature is returned, the rise of the hot water discharge temperature at the hot water tap can be made faster.
[0040]
The reference examples and the technical significance of each example are summarized as follows.
[0041]
(1) The temperature of the hot water supply pipe is quickly set from a cooled state by returning hot water at a hot water temperature higher than the temperature set by the remote control at the time of hot water for a certain period of time and then returning the hot water temperature to the temperature set by the remote control. It is possible to heat to the hot water supply temperature, and it is possible to eliminate the heat release from the hot water by the hot water supply pipe in the initial stage of hot water discharge, and to speed up the rise of the hot water discharge temperature from the hot water tap. In addition, since one hot water supply pipe can be configured, there is no need for extensive piping work for installing two hot water pipes in a reciprocating manner, and the same installation form as that of a conventional hot water heater can be adopted.
[0042]
(2) A hot water supply pipe thermistor that detects the temperature of the hot water supply pipe is provided, and the degree of cooling of the hot water supply pipe is predicted based on the temperature of the hot water supply pipe thermistor, so that ΔT and ΔL with high accuracy are determined. Since the hot water temperature is returned to the temperature set by the remote controller after hot water having a high temperature of + ΔT is discharged for ΔL time, the temperature of the hot water supply pipe can be quickly heated from the cooled state to the set hot water temperature. It is possible to eliminate the heat release from the hot water by the hot water supply pipe and to speed up the rising temperature of the hot water from the hot water tap.
[0043]
(3) An outside air temperature sensor is provided at a position communicating with the outside air outside the exterior of the water heater or inside the water heater, and ΔT and ΔL are determined by accurately predicting the cooling degree of the hot water supply pipe from the outside air temperature. Heat release from the hot water supply pipe can be eliminated, and the temperature rise of the hot water from the hot water tap can be increased.
[0044]
(4) By predicting the degree of cooling of the hot water supply pipe from the elapsed time from the end of the previous hot water discharge to the start of re-hot water, ΔT and ΔL are determined to eliminate heat dissipation from the hot water in the hot water supply pipe in the initial stage of hot water, and the hot water discharge temperature from the hot water tap Can rise faster.
[0045]
(5) By predicting the degree of cooling of the hot water supply pipe from the temperature set by the remote controller at the time of the previous hot water discharge, ΔT and ΔL are determined, and heat dissipation from the hot water at the initial hot water supply pipe is eliminated, and the temperature of hot water discharged from the hot water tap is determined. The rise can be made faster.
[0046]
(6) By predicting the degree of cooling of the hot water supply pipe from the previous continuous hot water discharge time, ΔT and ΔL are determined to eliminate heat dissipation from the hot water in the hot water supply pipe at the initial stage of hot water discharge, and the rise of the hot water discharge temperature from the hot water tap is made faster. Can do.
[0047]
【The invention's effect】
As described above, the hot water supply apparatus of the present invention has remarkably improved rising characteristics of the hot water temperature, and can greatly enhance its usability.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a water heater in Reference Embodiment 1 of the present invention. FIG. 2 is a characteristic diagram of hot water temperature control of the water heater. FIG. 3 is a configuration diagram of a water heater in Reference Embodiment 2 of the present invention. FIG. 5 is a flow chart showing the hot water temperature control of the water heater in Reference Embodiment 4 of the present invention. FIG. 6 is a flow chart of the water heater in Reference Embodiment 4 of the present invention. FIG. 7 is a flowchart showing the hot water temperature control of the water heater in Embodiment 1 of the present invention. FIG. 8 is a flowchart showing the hot water temperature control of the water heater in Embodiment 2 of the present invention. Schematic diagram of hot water supply system [Explanation of symbols]
12 Burner 14 Gas Block 15 Heat Exchanger 16 Inlet Pipe 17 Outlet Pipe 18 Water Volume Control Valve 19 Inlet Thermistor 20 Outlet Thermistor 21 Hot Water Thermistor 22 Hot Water Pipe 23 Hot Water Tap 24 Remote Control 25 Control Unit
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09879097A JP3855353B2 (en) | 1997-04-16 | 1997-04-16 | Water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09879097A JP3855353B2 (en) | 1997-04-16 | 1997-04-16 | Water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10288395A JPH10288395A (en) | 1998-10-27 |
JP3855353B2 true JP3855353B2 (en) | 2006-12-06 |
Family
ID=14229171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09879097A Expired - Fee Related JP3855353B2 (en) | 1997-04-16 | 1997-04-16 | Water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3855353B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5761553B2 (en) * | 2011-02-03 | 2015-08-12 | 株式会社ノーリツ | Water heater |
CN106969495A (en) * | 2017-03-06 | 2017-07-21 | 熊雄 | Intelligent constant-temperature water-saving water heater and control method |
-
1997
- 1997-04-16 JP JP09879097A patent/JP3855353B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10288395A (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6153328B2 (en) | Cogeneration system and heating equipment | |
JP6429851B2 (en) | Cogeneration system and heating equipment | |
JP3855353B2 (en) | Water heater | |
JP4477566B2 (en) | Hot water system | |
JP2613357B2 (en) | Water heater | |
CN208269401U (en) | A kind of quick-heating type gas-heating water heater and heating system | |
JP2007278674A (en) | Water heater | |
JP3970209B2 (en) | Hot water heater / heat source device and control method thereof | |
JP3171979B2 (en) | Circulating warm water heater | |
JP2007187325A (en) | Instantaneous hot water supply system | |
JP2001324217A (en) | Gas water heater | |
JP7049652B2 (en) | Water heaters and methods | |
JP3168924B2 (en) | Hot water heating system | |
JP6268984B2 (en) | Heat source machine | |
JP2908229B2 (en) | Hot water supply temperature control device | |
JP7504042B2 (en) | Fluid circulation heating system | |
JP2017187182A (en) | Combustor | |
JP2004085112A (en) | Space heating apparatus | |
JP3133701B2 (en) | Water heater | |
JP2003240336A (en) | Calculating method for fuel consumption and hot water heating heat source machine | |
JPH08121874A (en) | Circulation type water heater | |
CN115289692A (en) | Mode switching control method for gas water heater | |
JP6330406B2 (en) | Water heater | |
JPH08338310A (en) | Exhaust heat recovery system | |
JP3731450B2 (en) | Hot water storage water heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060904 |
|
LAPS | Cancellation because of no payment of annual fees |