JPH08177626A - Exhaust heat recovery system - Google Patents

Exhaust heat recovery system

Info

Publication number
JPH08177626A
JPH08177626A JP6335613A JP33561394A JPH08177626A JP H08177626 A JPH08177626 A JP H08177626A JP 6335613 A JP6335613 A JP 6335613A JP 33561394 A JP33561394 A JP 33561394A JP H08177626 A JPH08177626 A JP H08177626A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
exhaust heat
temperature sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6335613A
Other languages
Japanese (ja)
Inventor
Kosuke Nakatani
浩介 中谷
Hiroshi Fujimoto
洋 藤本
Koji Okuda
浩二 奥田
Shojiro Matsumura
章二朗 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP6335613A priority Critical patent/JPH08177626A/en
Publication of JPH08177626A publication Critical patent/JPH08177626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

PURPOSE: To make unstabilization avoidable in control due to an installation part of an inlet temperature sensor, by giving a delay of time corresponding to a deviation between an actual installation part of the inlet temperature sensor and an optimum installation part where arrival time of cooling water agrees with operating time of necessary heat radiation. CONSTITUTION: In the first comparator means 19 of a microcomputer 17, a measured temperature by a cooling water temperature sensor 15 is compared with the first present temperature, to output a drive signal to a driver 18 through a control regulating means 24. In a change factor arithmetic means 25, a measured temperature by an inlet temperature sensor 16 of cooling water is input, to calculate this change factor. Further in the third comparator means 21, the change factor is compared with a preset value, to calculate an opening of a three-way valve 12. On the other hand, in the second comparator means 20, a measured temperature by the inlet temperature sensor 16 is compared with the second preset temperature, to output a priority signal to the control regulating means 24 through a time delay means 23. In the time delay means 23, the drive signal is output with a delay by the delay time set in a delay time setter 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コジェネレーションシ
ステムなどに用いるために、ガスエンジンやディーゼル
エンジンの冷却ジャケットといったエンジン冷却部と、
温水吸収式冷凍機や給湯設備や暖房装置などの排熱回収
部とを配管を介して接続するとともに、排熱回収部から
エンジン冷却部への冷却水供給側配管に、三方弁とバイ
パス配管とから構成されるような冷却量変更手段を備え
た排熱用熱交換器を設け、かつ、冷却水供給側配管の排
熱回収部と前記排熱用熱交換器との間に冷却水の温度を
測定する入口温度センサを設け、その入口温度センサで
測定される冷却水の温度に基づいて冷却量変更手段を作
動する冷却量制御手段を備えた排熱回収システムに関す
る。
BACKGROUND OF THE INVENTION The present invention relates to an engine cooling section such as a cooling jacket for a gas engine or a diesel engine, for use in a cogeneration system or the like.
While connecting the exhaust heat recovery part of the hot water absorption refrigerator, hot water supply equipment, heating device, etc. via piping, connect the three-way valve and the bypass pipe to the cooling water supply side piping from the exhaust heat recovery part to the engine cooling part. Is provided with a heat exchanger for exhaust heat having a cooling amount changing means, and the temperature of the cooling water is between the exhaust heat recovery part of the pipe for supplying cooling water and the heat exchanger for exhaust heat. The present invention relates to an exhaust heat recovery system provided with an inlet temperature sensor for measuring, and a cooling amount control means for operating a cooling amount changing means based on the temperature of cooling water measured by the inlet temperature sensor.

【0002】[0002]

【従来の技術】排熱回収システムでは、通常、冷却水供
給側配管のバイパス配管よりも下流側にエンジン冷却部
に供給される冷却水の温度を測定する冷却水温度センサ
を設けるとともに、冷却水温度センサで測定される冷却
水の温度が設定温度になるように冷却量変更手段を作動
する冷却量制御手段を備え、エンジン冷却部に供給され
る冷却水の温度が設定温度になるように、排熱用熱交換
器に分配供給する冷却水量を制御している。これによ
り、冷却ジャケット内の冷却水の温度が上昇しすぎてエ
ンジン保護回路が作動し、エンジンを自動的に停止す
る、いわゆるエンジントリップの発生を回避できるよう
にしている。
2. Description of the Related Art In an exhaust heat recovery system, a cooling water temperature sensor for measuring the temperature of cooling water to be supplied to an engine cooling section is usually provided downstream of a bypass pipe of a cooling water supply side pipe, and the cooling water is also provided. A cooling amount control unit that operates the cooling amount changing unit so that the temperature of the cooling water measured by the temperature sensor becomes the set temperature is provided, so that the temperature of the cooling water supplied to the engine cooling unit becomes the set temperature. The amount of cooling water distributed to the heat exchanger for exhaust heat is controlled. As a result, the temperature of the cooling water in the cooling jacket rises too much, the engine protection circuit operates, and the so-called engine trip, which automatically stops the engine, can be avoided.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来例
では、例えば、温水吸収式冷凍機が急に停止するなどの
ように排熱需要量が急激に減少した場合、後流に三方弁
などを介して水温を下げるための排熱用熱交換器を設け
ていても、水温が急上昇すると制御遅れのために排熱用
熱交換器で熱が十分奪われず、冷却水の温度が設定温度
よりもオーバーシュートし、高温の冷却水がエンジンに
戻ってエンジンがトリップする。
However, in the conventional example, when the exhaust heat demand suddenly decreases, such as when the hot water absorption refrigerator suddenly stops, for example, a three-way valve is used in the wake. Even if an exhaust heat heat exchanger is installed to lower the water temperature, the exhaust heat heat exchanger does not fully absorb heat due to control delays when the water temperature rises rapidly, and the temperature of the cooling water exceeds the set temperature. A shot is made and hot cooling water returns to the engine, causing the engine to trip.

【0004】そのため、オーバーシュートによる最大温
度を見込んで設定温度を低くしている。ところが、通常
時においてエンジン冷却部から取り出される冷却水の温
度が低くなってしまい、排熱回収効率が低下する欠点が
あった。
Therefore, the set temperature is lowered in anticipation of the maximum temperature due to overshoot. However, there is a drawback that the temperature of the cooling water taken out from the engine cooling section becomes low during normal times, and the exhaust heat recovery efficiency decreases.

【0005】そこで、冒頭に記載したように、排熱回収
部から出た冷却水の温度を入口温度センサで測定し、そ
の測定した温度に基づいて三方弁などの冷却量変更手段
を作動するフィードフォワード制御を行い、早期に冷却
量変更手段を作動してオーバーシュートを防止するもの
が提案された。
Therefore, as described at the beginning, the temperature of the cooling water discharged from the exhaust heat recovery unit is measured by the inlet temperature sensor, and the feed for operating the cooling amount changing means such as the three-way valve based on the measured temperature. It has been proposed to perform forward control and activate the cooling amount changing means at an early stage to prevent overshoot.

【0006】ところが、フィードフォワード制御を行う
場合、入口温度センサが冷却水の温度上昇を感知して
も、その感知の基となった冷却水が排熱用熱交換器に到
達して供給されるまでの間に時間差が有る。一方、三方
弁などの冷却量変更手段では、温水吸収式冷凍機が急に
停止するなどのように排熱需要量が急激に減少して、エ
ンジン排熱の全量を排熱用熱交換器で放熱しなければな
らないような場合、そのエンジン排熱の全量を放熱する
に必要な開度を得るまでに時間を要するといったよう
に、冷却量変更手段側において、必要な放熱を行う状態
まで作動するのに時間を要する。
However, in the case of performing the feedforward control, even if the inlet temperature sensor detects the temperature rise of the cooling water, the cooling water which is the basis of the detection reaches the heat exchanger for exhaust heat and is supplied. There is a time lag between. On the other hand, with a cooling amount changing means such as a three-way valve, the exhaust heat demand suddenly decreases, such as when the hot water absorption refrigerator suddenly stops, and the entire amount of engine exhaust heat is transferred to the exhaust heat exchanger. When it is necessary to radiate heat, it takes time to obtain the required opening to radiate all the exhaust heat of the engine. It takes time.

【0007】このため、冷却水の排熱用熱交換器への到
達時間が、冷却量変更手段での必要放熱状態を得るに必
要な作動時間よりも長い場合に、温度が上昇していない
冷却水をも排熱用熱交換器に供給してしまい、エンジン
冷却部に戻す冷却水の温度を必要以上に低くし、また、
その影響を継続して受けるなど制御が不安定となってハ
ンチングを生じ、三方弁などの冷却量変更手段が必要以
上に作動され、早期の機械的摩損などを惹き起こして耐
久性が低下したり、やはり安全を見込むために多少設定
温度を低くしなければならず、エンジン冷却部に戻され
る冷却水の温度が低くなって排熱回収効率が低下すると
いった問題を生じ、未だ改善の余地があった。また、こ
のような問題を回避するためには、上述到達時間と必要
作動時間とが等しくなる最適位置に入口温度センサを設
置すれば良いが、諸装置の設置や配管の設置場所などの
関係から入口温度センサを所望の位置に設置しづらいの
が現状である。
For this reason, when the arrival time of the cooling water to the heat exchanger for exhaust heat is longer than the operation time required to obtain the required heat radiation state in the cooling amount changing means, the cooling is not raised. Water is also supplied to the heat exchanger for exhaust heat, and the temperature of the cooling water returned to the engine cooling section is lowered to an unnecessarily high level.
The control becomes unstable and hunting occurs due to the continuous influence, and the cooling amount changing means such as the three-way valve is operated more than necessary, causing early mechanical wear and the like and the durability decreases. However, for safety reasons, the set temperature must be lowered a little, and the temperature of the cooling water returned to the engine cooling section becomes low, which causes a problem of reduced exhaust heat recovery efficiency, and there is still room for improvement. It was Further, in order to avoid such a problem, it is sufficient to install the inlet temperature sensor at the optimum position where the arrival time and the required operation time are equal, but it is necessary to install various devices and installation locations of pipes. At present, it is difficult to install the inlet temperature sensor at a desired position.

【0008】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の排熱回収システ
ムは、入口温度センサを最適設置箇所と外れた任意の位
置に設置できながら、その設置位置に起因して制御が不
安定になることを回避できるようにすることを目的と
し、また、請求項2に係る発明の排熱回収システムは、
入口温度センサ自体のムダ時間に起因して制御が不安定
になることを回避できるようにすることを目的とし、ま
た、請求項3に係る発明の排熱回収システムは、エンジ
ントリップを発生させずに、エンジン冷却部に供給され
る冷却水の温度を極力高くして排熱回収効率を一層向上
できるようにすることを目的とする。
The present invention has been made in view of such circumstances, and in the exhaust heat recovery system of the invention according to claim 1, the inlet temperature sensor can be installed at an arbitrary position deviated from the optimum installation location. However, the purpose is to prevent the control from becoming unstable due to its installation position, and the exhaust heat recovery system of the invention according to claim 2 is
The purpose is to prevent the control from becoming unstable due to the waste time of the inlet temperature sensor itself, and the exhaust heat recovery system of the invention according to claim 3 does not cause an engine trip. Another object of the present invention is to make the temperature of the cooling water supplied to the engine cooling section as high as possible to further improve the exhaust heat recovery efficiency.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
上述のような目的を達成するために、エンジン冷却部と
排熱回収部とを配管を介して接続するとともに、排熱回
収部からエンジン冷却部への冷却水供給側配管に、冷却
量変更手段を備えた排熱用熱交換器を設け、かつ、冷却
水供給側配管の排熱回収部と排熱用熱交換器との間に冷
却水の温度を測定する入口温度センサを設け、その入口
温度センサで測定される冷却水の温度に基づいて冷却量
変更手段を作動する冷却量制御手段を備えた排熱回収シ
ステムにおいて、入口温度センサによる温度測定時と冷
却量制御手段による制御動作時との間に、入口温度セン
サで測定された冷却水が冷却量変更手段で制御される箇
所に到達するに必要な時間から、冷却量変更手段におい
て排熱用熱交換器に冷却水を全く供給しない状態から必
要な放熱量を確保するのに必要な冷却水量に達するまで
変化させるに必要な時間を差し引いた時間の遅れを持た
せる時間遅れ手段を介在させて構成する。
The invention according to claim 1 is
In order to achieve the above-mentioned object, the engine cooling unit and the exhaust heat recovery unit are connected via a pipe, and a cooling amount changing unit is provided in a cooling water supply side pipe from the exhaust heat recovery unit to the engine cooling unit. Is provided with an exhaust heat exchanger, and an inlet temperature sensor for measuring the temperature of the cooling water is provided between the exhaust heat recovery part of the cooling water supply side pipe and the exhaust heat exchanger, and its inlet In an exhaust heat recovery system provided with a cooling amount control means for operating a cooling amount changing means based on the temperature of cooling water measured by a temperature sensor, during temperature measurement by an inlet temperature sensor and during control operation by a cooling amount control means. During the period, from the time required for the cooling water measured by the inlet temperature sensor to reach the location controlled by the cooling amount changing means, no cooling water is supplied to the exhaust heat exchanger in the cooling amount changing means. Securing the required heat radiation amount from the state Constitute by interposing a time delay means to provide the delay time by subtracting the time required for changing to reach the amount of cooling water required for that.

【0010】排熱回収部としては、温水吸収式冷凍機や
給湯設備や暖房装置などが用いられる。
As the exhaust heat recovery unit, a hot water absorption refrigerator, a hot water supply facility, a heating device or the like is used.

【0011】また、請求項2に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項1
に係る発明の排熱回収システムにおける時間遅れ手段
を、冷却水の実際の温度変化から、その温度変化を測定
値として入口温度センサが感知し始めるまでの時間との
差を時間の遅れから差し引いて構成する。
The exhaust heat recovery system of the invention according to claim 2 is the same as that of claim 1 in order to achieve the above object.
The time delay means in the exhaust heat recovery system of the invention according to claim 1 subtracts the difference from the actual temperature change of the cooling water until the inlet temperature sensor starts to sense the temperature change as a measured value from the time delay. Configure.

【0012】また、請求項3に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項1
または請求項2に係る発明の排熱回収システムにおい
て、冷却水供給側配管の排熱用熱交換器よりも下流側で
エンジン冷却部に供給される冷却水の温度を測定する冷
却水温度センサを設け、冷却量制御手段を、冷却水温度
センサで測定される冷却水の温度が設定温度になるよう
に冷却量変更手段を作動する第1の制御手段と、その第
1の制御手段よりも優先して冷却量変更手段を作動する
第2の制御手段とから構成し、第2の制御手段に、入口
温度センサで測定される冷却水の温度の変化率を算出す
る変化率算出手段と、変化率算出手段で算出される変化
率に応じた冷却量を演算する冷却量演算手段とを備え、
変化率算出手段で算出された変化率が設定値を越えたと
きにのみ、冷却量演算手段で演算された冷却量になるよ
うに冷却量変更手段を作動制御するように構成する。
The exhaust heat recovery system of the invention according to claim 3 is the same as that of claim 1 in order to achieve the above-mentioned object.
Alternatively, in the exhaust heat recovery system of the invention according to claim 2, a cooling water temperature sensor for measuring the temperature of the cooling water supplied to the engine cooling unit on the downstream side of the exhaust heat heat exchanger of the cooling water supply side pipe is provided. First cooling means for activating the cooling amount changing means so that the temperature of the cooling water measured by the cooling water temperature sensor reaches the set temperature, and the cooling amount control means is prioritized over the first controlling means. And a second control means for operating the cooling amount changing means, and the second control means includes a change rate calculating means for calculating a change rate of the temperature of the cooling water measured by the inlet temperature sensor, and a change rate. A cooling amount calculation means for calculating a cooling amount according to the change rate calculated by the rate calculation means,
Only when the rate of change calculated by the rate-of-change calculating means exceeds the set value, the cooling-amount changing means is operated and controlled so as to reach the cooling amount calculated by the cooling-amount calculating means.

【0013】請求項1または請求項2に係る発明の排熱
回収システムにおける冷却量制御手段としては、入口温
度センサで測定される冷却水の温度に基づき、設定温度
との温度差に応じた放熱量が得られるように冷却量変更
手段を作動制御するように構成しても良い(請求項
4)。
The cooling amount control means in the exhaust heat recovery system of the invention according to claim 1 or 2 is based on the temperature of the cooling water measured by the inlet temperature sensor, and discharges according to the temperature difference from the set temperature. The cooling amount changing means may be operated and controlled so as to obtain the amount of heat (claim 4).

【0014】[0014]

【作用】請求項1に係る発明の排熱回収システムの構成
によれば、入口温度センサの設置箇所に応じ、その設置
箇所と、冷却水の排熱用熱交換器への到達時間と冷却量
変更手段での必要放熱状態を得るに必要な作動時間とが
一致する最適設置箇所とのズレに対応する時間の遅れを
時間遅れ手段により持たせ、排熱需要量が急激に減少し
たときに、それによって温度が急激に上昇した冷却水を
入口温度センサが感知した後、その冷却水が排熱用熱交
換器に到達すると同時に、排熱用熱交換器で必要な放熱
量を確保する状態を得ることができる。
According to the configuration of the exhaust heat recovery system of the invention as claimed in claim 1, the installation location of the inlet temperature sensor, the arrival time of the cooling water to the heat exchanger for exhaust heat, and the cooling amount. The time delay means has a time delay corresponding to the deviation from the optimal installation location where the operation time required to obtain the necessary heat radiation state in the changing means matches, and when the exhaust heat demand sharply decreases, After the inlet temperature sensor senses the cooling water whose temperature has risen rapidly, the cooling water reaches the heat exchanger for exhaust heat, and at the same time, secures the necessary amount of heat dissipation in the heat exchanger for exhaust heat. Obtainable.

【0015】また、請求項2に係る発明の排熱回収シス
テムの構成によれば、入口温度センサにおいて、冷却水
の実際の温度変化を感知し始めるまでの時間にムダ時間
があっても、そのムダ時間分を時間遅れ手段により差し
引き、冷却水の温度が急激に上昇したときに、その上昇
した冷却水が排熱用熱交換器に到達すると同時に、排熱
用熱交換器で必要な放熱量を確保する状態を得ることが
できる。
According to the structure of the exhaust heat recovery system of the second aspect of the invention, even if the inlet temperature sensor has a dead time until it starts to sense the actual temperature change of the cooling water, When the waste water is subtracted by the time delay means and the temperature of the cooling water rises sharply, the rising cooling water reaches the heat exchanger for exhaust heat and at the same time, the amount of heat radiation required by the heat exchanger for exhaust heat. Can be obtained.

【0016】また、請求項3に係る発明の排熱回収シス
テムの構成によれば、通常時には、エンジン冷却部に供
給される冷却水の温度を設定温度に維持するように制御
しながら、排熱需要量が急激に減少したり増大したりし
た場合に、そのことを排熱用熱交換器への入口側での冷
却水の温度の設定値以上の変化率で判別し、急激な温度
変化があったときに、温度の変化率に応じた冷却量を冷
却量演算手段で演算し、その演算された冷却量になるよ
うに冷却量変更手段を即座に作動させ、排熱用熱交換器
での冷却量を制御し、排熱需要量の急激な変動にかかわ
らず、エンジン冷却部に供給される冷却水の温度変化を
精度良く抑えることができる。
According to the structure of the exhaust heat recovery system of the third aspect of the present invention, the exhaust heat recovery system is controlled so that the temperature of the cooling water supplied to the engine cooling section is maintained at the set temperature during normal operation. When the demand amount suddenly decreases or increases, it is judged by the rate of change of the temperature of the cooling water at the inlet side of the heat exchanger for exhaust heat that is equal to or higher than the set value, and a sudden temperature change is detected. When there is, the cooling amount according to the rate of change of temperature is calculated by the cooling amount calculation means, and the cooling amount changing means is immediately activated so that the calculated cooling amount is obtained. It is possible to accurately control the temperature change of the cooling water supplied to the engine cooling unit regardless of the rapid change of the exhaust heat demand amount by controlling the cooling amount of.

【0017】[0017]

【実施例】次に、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0018】図1は、本発明に係る排熱回収システムの
第1実施例を示すブロック図であり、ガスエンジン1
に、伝動クラッチ2を介して発電機3が連動連結されて
いる。
FIG. 1 is a block diagram showing a first embodiment of an exhaust heat recovery system according to the present invention, a gas engine 1
Further, a generator 3 is interlocked and coupled via a transmission clutch 2.

【0019】ガスエンジン1のエンジン冷却部の出口と
入口とにわたって、第1のポンプ4を介装した主配管5
が接続されている。主配管5に、排熱回収部としての温
水吸収式冷凍機6と給湯設備7それぞれが、互いに並列
に送り配管8aおよび戻り配管8bを介して接続されて
いる。更に、温水吸収式冷凍機6に、第2のポンプ9を
介装した冷房用配管10を介して冷房装置11…が接続
され、エンジン冷却によって発生する排熱を冷房や給湯
の熱源として利用するように構成されている。前記主配
管5と送り配管8aおよび戻り配管8bの全体を配管と
称する。
A main pipe 5 having a first pump 4 interposed between the outlet and the inlet of the engine cooling portion of the gas engine 1.
Is connected. A hot water absorption refrigerator 6 as an exhaust heat recovery unit and a hot water supply facility 7 are connected to the main pipe 5 in parallel with each other via a feed pipe 8a and a return pipe 8b. Further, a cooling device 11 ... Is connected to the hot water absorption refrigerator 6 via a cooling pipe 10 in which a second pump 9 is interposed, and exhaust heat generated by engine cooling is used as a heat source for cooling or hot water supply. Is configured. The main pipe 5, the feed pipe 8a, and the return pipe 8b are collectively referred to as pipes.

【0020】また、主配管5の戻り配管8bとの接続箇
所よりも下流となる冷却水供給側配管に、冷却量変更手
段としての三方弁12とバイパス配管13とを介して排
熱用熱交換器14が接続されている。三方弁12は排熱
用熱交換器14への入口側に設けても良い。
Further, heat exchange for exhaust heat is provided to a cooling water supply side pipe downstream of the connection point of the main pipe 5 with the return pipe 8b via a three-way valve 12 as a cooling amount changing means and a bypass pipe 13. Device 14 is connected. The three-way valve 12 may be provided on the inlet side to the heat exchanger 14 for exhaust heat.

【0021】前記冷却水供給側配管の三方弁12との接
続箇所よりも下流側に、エンジン冷却部に供給される冷
却水の温度を測定する冷却水温度センサ15が設けられ
ている。また、冷却水供給側配管のバイパス配管13と
の上流側接続箇所よりも上流側に、三方弁12に供給さ
れる冷却水、すなわち、排熱用熱交換器14への入口側
での冷却水の温度を測定する入口温度センサ16が設け
られている。
A cooling water temperature sensor 15 for measuring the temperature of the cooling water supplied to the engine cooling section is provided downstream of the connection point of the cooling water supply side pipe with the three-way valve 12. Further, the cooling water supplied to the three-way valve 12, that is, the cooling water on the inlet side to the heat exchanger 14 for exhaust heat, is provided on the upstream side of the upstream connection point of the cooling water supply side pipe with the bypass pipe 13. An inlet temperature sensor 16 is provided to measure the temperature of the.

【0022】冷却水温度センサ15および入口温度セン
サ16がマイクロコンピュータ17に接続され、そのマ
イクロコンピュータ17に三方弁12のドライバ18
(図2参照)が接続されている。
The cooling water temperature sensor 15 and the inlet temperature sensor 16 are connected to a microcomputer 17, and the microcomputer 17 has a driver 18 for the three-way valve 12.
(See FIG. 2) are connected.

【0023】マイクロコンピュータ17には、図2のブ
ロック図に示すように、第1、第2および第3の比較手
段19,20,21と異常検出手段22と時間遅れ手段
23と制御規制手段24と変化率算出手段25と冷却量
演算手段26とが備えられている。
As shown in the block diagram of FIG. 2, the microcomputer 17 includes first, second and third comparing means 19, 20, 21, an abnormality detecting means 22, a time delaying means 23 and a control regulating means 24. A change rate calculation means 25 and a cooling amount calculation means 26 are provided.

【0024】第1の比較手段19では、冷却水温度セン
サ15で測定されるエンジン冷却部に供給する冷却水の
温度Tを入力し、その温度Tと第1の設定温度Ta(例
えば、83℃)と比較し、測定温度Tが第1の設定温度T
aよりも高いときには開き信号を出力し、開度が大にな
る側に、すなわち、排熱用熱交換器14に流す冷却水量
を増加し、逆に、測定温度Tが第1の設定温度Taより
も低いときには閉じ信号を出力し、開度が小になる側
に、すなわち、排熱用熱交換器14に流す冷却水量を減
少するように、それぞれ駆動信号を制御規制手段24を
介してドライバ18に出力するようになっている。この
冷却水温度センサ15と第1の比較手段19とから成る
構成をして第1の制御手段と称する。
In the first comparison means 19, the temperature T of the cooling water supplied to the engine cooling section measured by the cooling water temperature sensor 15 is input, and the temperature T and the first set temperature Ta (for example, 83 ° C.). ), The measured temperature T is the first set temperature T
When it is higher than a, an opening signal is output, and the amount of cooling water flowing to the exhaust heat exchanger 14 is increased on the side where the opening is large, and conversely, the measured temperature T is the first set temperature Ta. When it is lower than the above, a closing signal is output, and the drive signal is output to each driver via the control restricting means 24 so that the opening degree becomes smaller, that is, the amount of cooling water flowing to the exhaust heat heat exchanger 14 is decreased. It is designed to output to 18. The cooling water temperature sensor 15 and the first comparing means 19 are referred to as a first controlling means.

【0025】変化率算出手段25では、入口温度センサ
16で測定される冷却水の入口温度T1を入力し、その
温度の変化率dTを算出するようになっている。そし
て、この算出した変化率dTを第3の比較手段21に入
力して設定値Kと比較し、変化率dTが設定値Kを越え
たときに、または、ある範囲内の値を一定時間以上保持
した場合(入口温度が上昇し続けた場合)、冷却量演算
手段26で変化率dTに応じた冷却量を演算するように
なっている。すなわち、変化率dTが大きい程排熱用熱
交換器14に流す冷却水の量が増すような三方弁12の
所定開度を演算するようになっている。この演算された
開度に対応した駆動信号を時間遅れ手段23と制御規制
手段24を介してドライバ18に出力するようになって
いる。この入口温度センサ16と変化率算出手段25と
第3の比較手段21と冷却量演算手段26とから成る構
成をして第2の制御手段と称する。また、前述した第1
の制御手段と第2の制御手段とから成る構成をして冷却
量制御手段と称する。
The change rate calculating means 25 inputs the inlet temperature T1 of the cooling water measured by the inlet temperature sensor 16 and calculates the change rate dT of the temperature. Then, the calculated change rate dT is input to the third comparison means 21 and compared with the set value K, and when the change rate dT exceeds the set value K, or a value within a certain range is kept for a certain time or longer. When held (when the inlet temperature continues to rise), the cooling amount calculation means 26 calculates the cooling amount according to the change rate dT. That is, the predetermined opening degree of the three-way valve 12 is calculated such that the larger the rate of change dT, the larger the amount of cooling water flowing to the heat exchanger 14 for exhaust heat. A drive signal corresponding to the calculated opening is output to the driver 18 via the time delay means 23 and the control regulation means 24. The inlet temperature sensor 16, the change rate calculating means 25, the third comparing means 21, and the cooling amount calculating means 26 are constituted to be referred to as a second control means. In addition, the above-mentioned first
The control means and the second control means are referred to as a cooling amount control means.

【0026】第2の比較手段20では、入口温度センサ
16で測定される冷却水の入口温度T1を入力して第2
の設定温度Tbと比較し、入口温度T1が第2の設定温
度Tb(例えば、83℃)を越えたときにのみ時間遅れ手
段23を介して制御規制手段24に優先信号を出力し、
上述第2の制御手段を作動して変化率dTに基づく制御
を行うようになっている。
In the second comparing means 20, the inlet temperature T1 of the cooling water measured by the inlet temperature sensor 16 is input to the second comparing means 20.
Compared with the set temperature Tb of No. 2, the priority signal is output to the control restriction unit 24 via the time delay unit 23 only when the inlet temperature T1 exceeds the second set temperature Tb (for example, 83 ° C.),
The second control means is operated to perform control based on the change rate dT.

【0027】また、異常検出手段22では、マイクロコ
ンピュータ17に対する断線を検知して異常検知信号を
出力する断線検知器27、および、マイクロコンピュー
タ17の電圧降下などに起因する動作異常を検出して異
常検知信号を出力する動作異常検出器28のそれぞれか
らの異常検知信号に応答して制御規制手段24に異常信
号を出力し、その制御規制手段24において、異常信号
に応答して上述第2の制御手段の作動を停止するように
なっている(図4参照)。
The abnormality detecting means 22 detects a disconnection to the microcomputer 17 and outputs an abnormality detection signal, and a disconnection detector 27 detects an operation abnormality due to a voltage drop of the microcomputer 17 and detects an abnormality. An abnormality signal is output to the control regulation means 24 in response to the abnormality detection signal from each of the operation abnormality detectors 28 that output detection signals, and the control regulation means 24 responds to the abnormality signal by the second control. The operation of the means is stopped (see FIG. 4).

【0028】また、時間遅れ手段23では、排熱需要量
が急激に減少したときに、それによって温度が急激に上
昇した冷却水を入口温度センサ16が感知した後、その
冷却水が排熱用熱交換器14に到達すると同時に、排熱
用熱交換器14で必要な放熱量を確保する状態を得るこ
とができるに足る遅れ時間が、設定値を変更可能な遅れ
時間設定器29から入力され、その設定された遅れ時間
だけ遅らせてから駆動信号を制御規制手段24を介して
ドライバ18に出力するようになっている。この遅れ時
間としては、主配管5の最も下流の戻り配管8bとの接
続箇所よりも下流箇所に流速センサを設け、その冷却水
の流速に基づいて計算し、そこで求められた時間を入力
するようにしてもよい。
In the time delay means 23, when the exhaust heat demand suddenly decreases, the inlet temperature sensor 16 senses the cooling water whose temperature has risen sharply, and then the cooling water is used for exhaust heat. At the same time as reaching the heat exchanger 14, a delay time sufficient to obtain a state in which a necessary heat radiation amount is secured in the exhaust heat heat exchanger 14 is input from a delay time setter 29 capable of changing a set value. The drive signal is output to the driver 18 via the control restricting means 24 after being delayed by the set delay time. As this delay time, a flow velocity sensor is provided at a position downstream of the connection point with the most downstream return pipe 8b of the main pipe 5, calculated based on the flow velocity of the cooling water, and the calculated time is input. You may

【0029】すなわち、先ず、図3の模式図に示すよう
に、三方弁12が駆動信号を受けて、全閉状態から必要
放熱状態を得る開度まで操作されるに必要な作動時間
(使用する三方弁に応じて自ずと特定される)と一致す
る最適設置箇所Iと、入口温度センサ16の実際の設置
箇所Aとに基づき、両箇所I,Aの距離差Lと主配管5
内を流れる冷却水の流速Vとから遅れ時間Td1を求め
る。次いで、入口温度センサ16の特性から特定され
る、冷却水の実際の温度変化から、その温度変化を測定
値として入口温度センサ16が感知し始めるまでの時間
との差であるムダ時間Td2を考慮し、このムダ時間T
d2を前述した遅れ時間Td1から差し引くことによ
り、設定遅れ時間Td(=Td1−Td2)を求めるの
である。
That is, first, as shown in the schematic diagram of FIG. 3, the operating time (used) which the three-way valve 12 receives from the drive signal and is operated from the fully closed state to the opening for obtaining the required heat radiation state is used. Based on the optimum installation location I that is automatically specified according to the three-way valve) and the actual installation location A of the inlet temperature sensor 16, the distance difference L between the locations I and A and the main pipe 5
The delay time Td1 is obtained from the flow velocity V of the cooling water flowing inside. Next, the waste time Td2, which is the difference between the actual temperature change of the cooling water identified from the characteristics of the inlet temperature sensor 16 and the time when the inlet temperature sensor 16 starts to sense the temperature change as a measured value, is considered. This wasteful time T
The set delay time Td (= Td1−Td2) is obtained by subtracting d2 from the delay time Td1 described above.

【0030】例えば、三方弁12において、排熱用熱交
換器14に冷却水が供給されていない待機状態から必要
放熱状態を得る開度まで操作されるに必要な作動時間が
10秒、冷却水の流速Vが2m/秒であるとすれば、最適
設置箇所Iは三方弁12よりも上流側20mになる。一
方、実際の設置箇所Aが三方弁12よりも上流側40mで
あったとすれば、遅れ時間Td1=(40−20)÷2=10
秒となる。そして、入口温度センサ16のムダ時間Td
2が2秒であったとすれば、設定遅れ時間Td=10−2
=8秒となる。
For example, in the three-way valve 12, the operating time required to operate from a standby state in which cooling water is not supplied to the exhaust heat heat exchanger 14 to an opening for obtaining a required heat radiation state.
If the cooling water flow velocity V is 2 m / sec for 10 seconds, the optimum installation location I is 20 m upstream of the three-way valve 12. On the other hand, if the actual installation location A is 40 m upstream of the three-way valve 12, the delay time Td1 = (40−20) / 2 = 10
Seconds. Then, the dead time Td of the inlet temperature sensor 16
If 2 is 2 seconds, the set delay time Td = 10-2
= 8 seconds.

【0031】次に、上記構成による制御動作を図4のフ
ローチャートを用いて説明する。先ず、異常信号が有る
かどうかを判断し(S1)、異常信号が無ければ入口温
度センサ16で測定される入口温度T1を入力して(S
2)第2の設定温度Tbと比較する(S3)。ここで、
入口温度T1が第2の設定温度Tbを越えるときには、
変化率dTを算出して(S4)から、その変化率dTが
設定値Kより大きいか、または、一定時間増加が続いて
いるかどうかを判断する(S5)。
Next, the control operation according to the above configuration will be described with reference to the flowchart of FIG. First, it is determined whether there is an abnormal signal (S1), and if there is no abnormal signal, the inlet temperature T1 measured by the inlet temperature sensor 16 is input (S1).
2) Compare with the second set temperature Tb (S3). here,
When the inlet temperature T1 exceeds the second set temperature Tb,
The rate of change dT is calculated (S4), and then it is determined whether the rate of change dT is greater than the set value K or whether the rate of increase dT continues for a certain period of time (S5).

【0032】変化率dTが設定値Kより大きいときに
は、冷却量演算手段26により変化率dTに対応する冷
却量を演算して(S6)からステップS7に移行し、設
定遅れ時間Tdが経過してから、演算した冷却量に対応
した開度の駆動信号を出力し(S8)、冷房負荷の急激
な減少といった排熱需要量の急激な減少などに起因し
て、入口温度が設定温度を越えた状態で急激に上昇した
ときに、制御されるべき冷却水が排熱用熱交換器14に
到達した時点で必要な放熱量が得られるように三方弁1
2を即座に制御して排熱用熱交換器14に流す冷却水量
を増加させる。このステップS4、S5、S6、S7お
よびS8の制御が第2の制御手段に相当する。
When the rate of change dT is larger than the set value K, the cooling amount computing means 26 computes the cooling amount corresponding to the rate of change dT (S6), the process proceeds to step S7, and the set delay time Td elapses. Then, the drive signal of the opening degree corresponding to the calculated cooling amount is output (S8), and the inlet temperature exceeds the set temperature due to the rapid decrease of the exhaust heat demand amount such as the rapid decrease of the cooling load. When the cooling water to be controlled reaches the exhaust heat exchanger 14 when the temperature rapidly rises, the three-way valve 1
2 is immediately controlled to increase the amount of cooling water flowing through the exhaust heat heat exchanger 14. The control of steps S4, S5, S6, S7 and S8 corresponds to the second control means.

【0033】ステップS1において異常信号が有ると判
断したとき、および、ステップS3において入口温度T
1が第2の設定温度Tbを越えると判断したとき、なら
びに、ステップS5において変化率dTが設定値Kより
大きくないと判断したときには、いずれもステップS9
に移行してエンジン冷却部に供給する冷却水の温度Tを
入力し、その冷却水温度Tと第1の設定温度Taとを比
較する(S10)。
When it is determined in step S1 that there is an abnormal signal, and in step S3, the inlet temperature T
When it is determined that 1 exceeds the second set temperature Tb, and when it is determined in step S5 that the rate of change dT is not larger than the set value K, both are set in step S9.
The temperature T of the cooling water supplied to the engine cooling unit is input, and the temperature T of the cooling water is compared with the first set temperature Ta (S10).

【0034】ここで、冷却水温度Tが第1の設定温度T
aを越えるときには、閉じ信号を出力し(S11)、排
熱用熱交換器14側に流される冷却水の流量を多くして
冷却水温度Tが第1の設定温度Taになるように三方弁
12の開度を調整する。一方、冷却水温度Tが第1の設
定温度Taよりも低いときには、開き信号を出力し(S
12)、排熱用熱交換器14側に流される冷却水の流量
を少なくして冷却水温度Tが第1の設定温度Taになる
ように三方弁12の開度を調整する。
Here, the cooling water temperature T is the first set temperature T
When the temperature exceeds a, a closing signal is output (S11), the flow rate of the cooling water flowing to the exhaust heat heat exchanger 14 side is increased, and the cooling water temperature T becomes the first set temperature Ta. Adjust the opening of 12. On the other hand, when the cooling water temperature T is lower than the first set temperature Ta, an opening signal is output (S
12), the flow rate of the cooling water flowing to the exhaust heat heat exchanger 14 side is reduced, and the opening degree of the three-way valve 12 is adjusted so that the cooling water temperature T reaches the first set temperature Ta.

【0035】図5は、本発明に係る排熱回収システムの
第2実施例を示すブロック図であり、第1実施例と異な
るところは次の通りである。すなわち、第1実施例にお
ける冷却水温度センサ15が無くされ、そして、冷却水
供給側配管の三方弁12よりも上流側に、三方弁12に
供給される冷却水、すなわち、排熱用熱交換器14への
入口側での冷却水の温度を測定する入口温度センサ30
が設けられ、この入口温度センサ30がマイクロコンピ
ュータ31に接続されるとともに、そのマイクロコンピ
ュータ31に三方弁12のドライバ18(図6参照)が
接続されている。
FIG. 5 is a block diagram showing a second embodiment of the exhaust heat recovery system according to the present invention. The difference from the first embodiment is as follows. That is, the cooling water temperature sensor 15 in the first embodiment is eliminated, and the cooling water supplied to the three-way valve 12, that is, the heat exchange for exhaust heat, is provided upstream of the three-way valve 12 in the cooling water supply side pipe. Inlet temperature sensor 30 for measuring the temperature of cooling water on the inlet side to the vessel 14
The inlet temperature sensor 30 is connected to the microcomputer 31, and the driver 18 of the three-way valve 12 (see FIG. 6) is connected to the microcomputer 31.

【0036】マイクロコンピュータ31には、図6のブ
ロック図に示すように、比較手段32と時間遅れ手段3
3とが備えられている。比較手段32では、入口温度セ
ンサ30で測定される冷却水の入口温度T1を入力し、
その温度T1と設定温度Tcと比較し、測定温度T1と
設定温度Tcの温度差に基づき、温度差が大きい程開度
が大になる側に、すなわち、排熱用熱交換器14に流す
冷却水量を増加し、逆に、温度差が小さい程開度が小に
なる側に、すなわち、排熱用熱交換器14に流す冷却水
量を減少するように、それぞれ駆動信号を時間遅れ手段
33に出力するようになっている。時間遅れ手段33で
は、前述第1実施例と同様に、遅れ時間設定器34から
入力される設定遅れ時間Tdだけ遅らせてから駆動信号
をドライバ18に出力するようになっている。
In the microcomputer 31, as shown in the block diagram of FIG. 6, the comparison means 32 and the time delay means 3 are provided.
3 and 3 are provided. In the comparison means 32, the inlet temperature T1 of the cooling water measured by the inlet temperature sensor 30 is input,
The temperature T1 is compared with the set temperature Tc, and based on the temperature difference between the measured temperature T1 and the set temperature Tc, the larger the temperature difference is, the larger the opening degree is, that is, the amount of cooling water flowing to the exhaust heat heat exchanger 14. On the contrary, the driving signal is output to the time delay means 33 so that the opening degree becomes smaller as the temperature difference becomes smaller, that is, the cooling water amount flowing to the exhaust heat heat exchanger 14 decreases. Has become. The time delay unit 33 delays the set delay time Td input from the delay time setting unit 34 before outputting the drive signal to the driver 18, as in the first embodiment.

【0037】また、排熱用熱交換器14に流す冷却水流
量を変更するのに、三方弁12に代えて、例えば、主配
管5の冷却水供給側配管とバイパス配管13それぞれに
個別に流量調整弁を設け、両流量調整弁を互いに連動さ
せて排熱用熱交換器14に流す冷却水流量を変更するよ
うに構成するものでも良い。
Further, in order to change the flow rate of the cooling water flowing to the heat exchanger 14 for exhaust heat, instead of the three-way valve 12, for example, the flow rate is individually supplied to the cooling water supply side pipe of the main pipe 5 and the bypass pipe 13, respectively. An adjusting valve may be provided and both flow rate adjusting valves may be interlocked with each other to change the flow rate of the cooling water flowing to the heat exchanger 14 for exhaust heat.

【0038】上記実施例では、遅れ時間として、入口温
度センサ16のムダ時間Td2をも考慮しているが、使
用する入口温度センサ16において、そのムダ時間が無
視できる程度のものである場合には考慮しなくても良
い。
In the above embodiment, the dead time Td2 of the inlet temperature sensor 16 is also taken into consideration as the delay time. However, in the case of the inlet temperature sensor 16 used, the dead time is negligible. You do not have to consider it.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、請求項
1に係る発明の排熱回収システムによれば、入口温度セ
ンサの設置箇所が、冷却水が入口温度センサ設置箇所か
ら排熱用熱交換器に到達する到達時間と、排熱用熱交換
器に必要放熱状態を得るに必要な冷却量変更手段の作動
時間とが一致する最適設置箇所とズレたところに入口温
度センサが設置されていても、そのズレに起因する遅れ
を時間遅れ手段で補償する。排熱需要量が急激に減少し
たときに、それによって温度が急激に上昇した冷却水を
入口温度センサが感知した後、その冷却水が排熱用熱交
換器に到達すると同時に、排熱用熱交換器で必要な放熱
量を確保する状態を得ることができるから、入口温度セ
ンサを最適設置箇所と外れた任意の位置に設置できなが
ら、その設置位置に起因して制御が不安定になることを
回避でき、入口温度センサを設置するための施工性を向
上できるようになり、また、三方弁などの冷却量変更手
段の必要以上の作動を無くして耐久性を向上できるとと
もに排熱回収効率が低下することを回避できるようにな
った。
As is apparent from the above description, according to the exhaust heat recovery system of the first aspect of the present invention, the location where the inlet temperature sensor is installed is such that the cooling water flows from the location where the inlet temperature sensor is installed to exhaust heat. The inlet temperature sensor is installed at a position that is different from the optimum installation location where the arrival time to reach the exchanger and the operation time of the cooling amount changing means required to obtain the required heat radiation state for the exhaust heat heat exchanger are the same. However, the delay caused by the deviation is compensated by the time delay means. When the exhaust heat demand sharply decreases, the cooling water whose temperature rises sharply due to it is detected by the inlet temperature sensor, and then the cooling water reaches the exhaust heat exchanger and at the same time the exhaust heat Since the exchanger can secure the required amount of heat radiation, the inlet temperature sensor can be installed at an arbitrary position deviating from the optimum installation location, but the control becomes unstable due to the installation location. It is possible to improve the workability for installing the inlet temperature sensor, improve the durability by eliminating unnecessary operation of the cooling amount changing means such as the three-way valve, and improve the exhaust heat recovery efficiency. You can now avoid lowering.

【0040】また、請求項2に係る発明の排熱回収シス
テムによれば、入口温度センサが、入口温度センサ部の
冷却水の実際の温度変化を感知し始めるまでの時間にム
ダ時間がある場合に、そのムダ時間分を請求項1に記載
の時間遅れから更に差し引き、冷却水の温度が急激に上
昇したときに、その上昇した冷却水が排熱用熱交換器に
到達すると同時に、排熱用熱交換器で必要な放熱量を確
保する状態を得ることができるから、入口温度センサ自
体のムダ時間に起因する耐久性や排熱回収効率の低下を
回避でき、一層好適に実施できるようになった。
Further, according to the exhaust heat recovery system of the second aspect of the present invention, when the inlet temperature sensor starts to sense the actual temperature change of the cooling water of the inlet temperature sensor unit, there is a waste time. The waste time is further subtracted from the time delay according to claim 1, and when the temperature of the cooling water rises sharply, the rising cooling water reaches the heat exchanger for exhaust heat and, at the same time, the exhaust heat is exhausted. Since it is possible to obtain a state in which the required heat release amount is secured by the heat exchanger for use, it is possible to avoid a decrease in durability and exhaust heat recovery efficiency due to the waste time of the inlet temperature sensor itself, so that it can be more preferably implemented. became.

【0041】また、請求項3に係る発明の排熱回収シス
テムの構成によれば、入口温度センサの設置箇所のズレ
や入口温度センサのムダ時間をも考慮した上に、排熱需
要量の急激な減少に起因する排熱用熱交換器の入口側で
の冷却水の急激な温度上昇に即座に対応して冷却量変更
手段を作動し、排熱用熱交換器での冷却量を増加するこ
とができ、排熱需要量の急激な変動にかかわらず、エン
ジン冷却部に供給される冷却水の温度変化を精度良く抑
えるから、エンジントリップを発生させずに、エンジン
冷却部に供給される冷却水の温度を極力高くして排熱回
収効率を一層向上できるようになった。
Further, according to the configuration of the exhaust heat recovery system of the invention as claimed in claim 3, the deviation of the installation location of the inlet temperature sensor and the dead time of the inlet temperature sensor are taken into consideration, and the exhaust heat demand is rapidly increased. The cooling amount changing means is activated immediately in response to a rapid temperature rise of the cooling water at the inlet side of the exhaust heat heat exchanger to increase the cooling amount in the exhaust heat exchanger. Since the temperature change of the cooling water supplied to the engine cooling unit is accurately suppressed regardless of the rapid change in the exhaust heat demand, the cooling supplied to the engine cooling unit can be performed without causing an engine trip. It has become possible to raise the temperature of water as much as possible to further improve the efficiency of exhaust heat recovery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排熱回収システムの第1実施例を
示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of an exhaust heat recovery system according to the present invention.

【図2】マイクロコンピュータの構成を示すブロック図
である。
FIG. 2 is a block diagram showing a configuration of a microcomputer.

【図3】遅れ時間の設定に係わる模式図である。FIG. 3 is a schematic diagram related to setting a delay time.

【図4】フローチャートである。FIG. 4 is a flowchart.

【図5】本発明に係る排熱回収システムの第2実施例を
示すブロック図である。
FIG. 5 is a block diagram showing a second embodiment of the exhaust heat recovery system according to the present invention.

【図6】マイクロコンピュータの構成を示すブロック図
である。
FIG. 6 is a block diagram showing a configuration of a microcomputer.

【符号の説明】[Explanation of symbols]

1…ガスエンジン 5…主配管 6…温水吸収式冷凍機 7…給湯設備 8a…送り配管 8b…戻り配管 12…三方弁 13…バイパス配管 14,14a…排熱用熱交換器 15…冷却水温度センサ 16…入口温度センサ 17…マイクロコンピュータ 23,35…時間遅れ手段 25…変化率算出手段 26…冷却量演算手段 DESCRIPTION OF SYMBOLS 1 ... Gas engine 5 ... Main piping 6 ... Hot water absorption refrigerator 7 ... Hot water supply equipment 8a ... Feed piping 8b ... Return piping 12 ... Three-way valve 13 ... Bypass piping 14, 14a ... Heat exhaust heat exchanger 15 ... Cooling water temperature Sensor 16 ... Inlet temperature sensor 17 ... Microcomputer 23, 35 ... Time delay means 25 ... Change rate calculation means 26 ... Cooling amount calculation means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松村 章二朗 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shojiro Matsumura 4-1-2, Hiranocho, Chuo-ku, Osaka City Osaka Gas Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 エンジン冷却部と排熱回収部とを配管を
介して接続するとともに、前記排熱回収部からエンジン
冷却部への冷却水供給側配管に、冷却量変更手段を備え
た排熱用熱交換器を設け、かつ、前記冷却水供給側配管
の前記排熱回収部と前記排熱用熱交換器との間に冷却水
の温度を測定する入口温度センサを設け、その入口温度
センサで測定される冷却水の温度に基づいて前記冷却量
変更手段を作動する冷却量制御手段を備えた排熱回収シ
ステムにおいて、 前記入口温度センサによる温度測定時と前記冷却量制御
手段による制御動作時との間に、前記入口温度センサで
測定された冷却水が前記冷却量変更手段で制御される箇
所に到達するに必要な時間から、前記冷却量変更手段に
おいて前記排熱用熱交換器に冷却水を全く供給しない状
態から必要な放熱量を確保するのに必要な冷却水量に達
するまで変化させるに必要な時間を差し引いた時間の遅
れを持たせる時間遅れ手段を介在させたことを特徴とす
る排熱回収システム。
1. An exhaust heat which connects an engine cooling part and an exhaust heat recovery part through a pipe, and has a cooling amount changing means in a cooling water supply side pipe from the exhaust heat recovery part to the engine cooling part. And an inlet temperature sensor for measuring the temperature of cooling water between the exhaust heat recovery section of the cooling water supply side pipe and the exhaust heat heat exchanger, and the inlet temperature sensor In the exhaust heat recovery system including the cooling amount control means for operating the cooling amount changing means based on the temperature of the cooling water measured in step 1, when the temperature is measured by the inlet temperature sensor and the control operation by the cooling amount control means is performed. In the meantime, from the time required for the cooling water measured by the inlet temperature sensor to reach the location controlled by the cooling amount changing means, the cooling water is cooled to the exhaust heat heat exchanger in the cooling amount changing means. No water supply Exhaust heat recovery system which is characterized in that by interposing a time delay means to provide the delay time by subtracting the time required for changing to reach the amount of cooling water required to ensure the required dissipation from.
【請求項2】 請求項1に記載の時間遅れ手段が、入口
温度センサ部の冷却水の実際の温度変化から、その温度
変化を測定値として入口温度センサが感知し始めるまで
の時間との差を請求項1に記載の時間の遅れから更に差
し引いたものである排熱回収システム。
2. The time delay means according to claim 1, the difference between the actual temperature change of the cooling water of the inlet temperature sensor unit and the time from when the inlet temperature sensor starts to sense the temperature change as a measured value. An exhaust heat recovery system which is obtained by further deducting from the time delay according to claim 1.
【請求項3】 請求項1または請求項2に記載の排熱回
収システムにおいて、冷却水供給側配管の排熱用熱交換
器よりも下流側でエンジン冷却部に供給される冷却水の
温度を測定する冷却水温度センサを設け、冷却量制御手
段を、前記冷却水温度センサで測定される冷却水の温度
が設定温度になるように冷却量変更手段を作動する第1
の制御手段と、その第1の制御手段よりも優先して冷却
量変更手段を作動する第2の制御手段とから成り、前記
第2の制御手段が、入口温度センサで測定される冷却水
の温度の変化率を算出する変化率算出手段と、前記変化
率算出手段で算出される変化率に応じた冷却量を演算す
る冷却量演算手段とを備え、前記変化率算出手段で算出
された変化率が設定値を越えたときにのみ、前記冷却量
演算手段で演算された冷却量になるように前記冷却量変
更手段を作動制御するものである排熱回収システム。
3. The exhaust heat recovery system according to claim 1 or 2, wherein the temperature of the cooling water supplied to the engine cooling part is provided downstream of the exhaust heat heat exchanger of the cooling water supply side pipe. A cooling water temperature sensor for measuring is provided, and a cooling amount control means is provided to operate the cooling amount changing means so that the temperature of the cooling water measured by the cooling water temperature sensor becomes a set temperature.
Control means and second control means for operating the cooling amount changing means in preference to the first control means, wherein the second control means controls the cooling water measured by the inlet temperature sensor. A change rate calculating means for calculating a temperature change rate and a cooling amount calculating means for calculating a cooling amount according to the change rate calculated by the change rate calculating means are provided, and the change calculated by the change rate calculating means. An exhaust heat recovery system for controlling the operation of the cooling amount changing means so that the cooling amount is calculated by the cooling amount calculating means only when the rate exceeds a set value.
【請求項4】 請求項1または請求項2に記載の排熱回
収システムにおいて、冷却量制御手段が、入口温度セン
サで測定される冷却水の温度に基づき、設定温度との温
度差に応じた放熱量が得られるように冷却量変更手段を
作動制御するものである排熱回収システム。
4. The exhaust heat recovery system according to claim 1 or 2, wherein the cooling amount control means responds to a temperature difference from a set temperature based on the temperature of the cooling water measured by the inlet temperature sensor. An exhaust heat recovery system that controls the operation of the cooling amount changing means so that the amount of heat radiation can be obtained.
JP6335613A 1994-12-20 1994-12-20 Exhaust heat recovery system Pending JPH08177626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6335613A JPH08177626A (en) 1994-12-20 1994-12-20 Exhaust heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6335613A JPH08177626A (en) 1994-12-20 1994-12-20 Exhaust heat recovery system

Publications (1)

Publication Number Publication Date
JPH08177626A true JPH08177626A (en) 1996-07-12

Family

ID=18290549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6335613A Pending JPH08177626A (en) 1994-12-20 1994-12-20 Exhaust heat recovery system

Country Status (1)

Country Link
JP (1) JPH08177626A (en)

Similar Documents

Publication Publication Date Title
JP7311760B2 (en) Hot water supply device and hot water system
JP6607375B2 (en) Auxiliary heat source machine
JP2613357B2 (en) Water heater
JPH08177626A (en) Exhaust heat recovery system
JP3804693B2 (en) Waste heat recovery system
JP2651561B2 (en) Temperature control device for co-generation system
JPH08338310A (en) Exhaust heat recovery system
JP3382693B2 (en) Hot water heater and its hot water temperature control method
JP2676197B2 (en) Temperature control device for co-generation system
JP2514593B2 (en) Optimal temperature controller for cogeneration system
JP2960607B2 (en) Cogeneration system
JPH07247834A (en) Exhaust heat recovery system
JP3384855B2 (en) Hot water heater and its hot water temperature control method
JP3171181B2 (en) Control method in number control system of fluid heaters
JP2552586B2 (en) Inlet water temperature detection method and hot water supply control method in water heater
JP2976883B2 (en) Startup control method in the number control system of fluid heaters
JPH07174436A (en) River water utilizing heat recovery system
JPH08151922A (en) Exhaust heat recovery system
JP2542165B2 (en) Optimal temperature controller for cogeneration system
JP2935643B2 (en) Absorption chiller / heater
JP2002156101A (en) Number of sets control method for fluid heater
JP2593575B2 (en) Cogeneration system
JPH0972611A (en) Water heater
JPH07247835A (en) Exhaust heat recovery system
JP3251122B2 (en) Exhaust heat recovery system