JP4017817B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP4017817B2
JP4017817B2 JP2000336398A JP2000336398A JP4017817B2 JP 4017817 B2 JP4017817 B2 JP 4017817B2 JP 2000336398 A JP2000336398 A JP 2000336398A JP 2000336398 A JP2000336398 A JP 2000336398A JP 4017817 B2 JP4017817 B2 JP 4017817B2
Authority
JP
Japan
Prior art keywords
supply amount
temperature
heat
fuel
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000336398A
Other languages
Japanese (ja)
Other versions
JP2002139225A (en
Inventor
浩正 渡辺
庸徳 滝
志銘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2000336398A priority Critical patent/JP4017817B2/en
Publication of JP2002139225A publication Critical patent/JP2002139225A/en
Application granted granted Critical
Publication of JP4017817B2 publication Critical patent/JP4017817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、バーナ燃焼等を熱源に用いる暖房装置に関する。
【0002】
【従来の技術】
従来、燃料ガスの燃焼により得た熱で熱媒を加熱し、これを放熱器に循環させて放熱する暖房装置では、熱媒の温度を検出し、この検出温度によって燃料ガスの燃焼を制御するFB制御が行われている。このような暖房装置において、熱媒の循環量が減少したとき、熱媒温度のオーバーシュート等の異常現象の発生を回避するため、熱交換器の出湯側にサーミスタを設け、熱媒の検出温度が所定値、例えば88℃に到達したとき、バーナ燃焼を停止させたり、燃焼ガス量を最小にする等の方法が採られてきた。温水が沸騰温度を越えたら、燃料供給量を最小又は停止させる従来の技術として、例えば、特開平11−118257号「温水熱交換器内蔵型ストーブ」が存在している。
【0003】
【発明が解決しようとする課題】
ところで、熱媒の循環量が多く、容量の大きい暖房能力が要求される製品では、循環する熱媒に急激な流量変化が生じたとき、サーミスタの検出温度が所定値に達する前に熱媒に局部沸騰が生じたり、燃料ガス量の低減までの時間差で熱媒温度にオーバーシュートが生じたりするおそれがあった。
【0004】
温水を熱媒とする暖房装置には放熱負荷として複数の放熱器が接続されており、これら放熱器には床暖房パネル等の低温(60℃)の熱放出をするもの、ファンコンベクタ等のように高温(80℃)の熱放出をするものが存在している。高温で制御させている場合、放熱器を一斉に停止させたとすると、循環流量が減少して熱交換器内の温水が急激に上昇し、沸騰による釜鳴り現象が生じる。温水温度が沸騰領域温度を越えたとき、燃料供給量を減少させても、FB制御の応答遅延や熱交換器の熱伝導遅延等により、温水温度にオーバーシュートが生じ、温水温度が沸騰温度を越える。このとき、釜鳴りが発生する。
【0005】
例えば、熱交換器の出口温度が80℃、循環流量が15リットル、給水温度が50℃のとき、循環流量が2リットルまで減少したとすれば、熱交換器の出口温度をXとすると、
(80−50)×15=現在の熱量=(X−50)×2 ・・・(1)
となり、熱交換器の出口温度Xは、X=275℃となり、沸騰温度を遙に越えてしまう。
【0006】
ところで、暖房装置において、具体的な温水回路では流量センサが設置されていないのが一般的であり、最小の循環流量は放熱端末で0.5〜1.0リットル/分、熱交換器等の管路内でも3リットル/分と少なく、大流量から小流量、即ち、24〜30リットル/分から3リットル/分のような急激な流量変化に対応している。そして、熱交換器内で熱交換されるフィンパイプの長さは1.0〜2.0m程度であり、この先端にサーミスタが設置されている。FB制御では、管内を流れる流速は1.5m/秒以下のため、管内を流れるのに1〜2秒位必要である。このようなFB制御において、熱交換器の出口で温度検出を行い、その温度検出に基づいて燃料供給量を制限しても、局部沸騰やオーバーシュート等を生じてしまうことが確認された。
【0007】
このように、熱媒の局部沸騰や熱媒温度のオーバーシュートを回避する手段として暖房制御で通常用いられてきたFB制御では、反応速度の関係で熱負荷の急変による急激な流量変化に対する局部沸騰やオーバーシュートを回避することができなかった。
【0008】
そこで、本発明は、熱負荷の急変に伴う熱媒の急激な温度上昇等を回避した暖房装置を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明の暖房装置は、バーナ(4)、熱交換手段(熱交換器6)、温度検出手段(温度センサ28)、制御手段(主制御装置80等)、放熱手段(放熱器51〜57)等を備えて、熱媒の検出温度によってバーナ燃焼を制御するとともに、単位時間当たりの熱媒の温度上昇が所定値を越えたとき、バーナの燃料供給量を所定値以下に低下させる等して、熱負荷の急変に伴う熱媒の温度上昇を回避でき、FB制御の反応速度遅延による局部沸騰やオーバーシュートの発生を未然に防止できる。
【0010】
本発明の暖房装置は、燃料の燃焼熱を用いて暖房する暖房装置であって、燃料を燃焼させるバーナ(4)と、このバーナに対する燃料供給量を調節する燃料比例弁(12)と、前記バーナによる前記燃料の燃焼熱によって前記熱媒を加熱する熱交換手段(熱交換器6)と、この熱交換手段で加熱した前記熱媒を循環させて放熱させる放熱手段(放熱器51〜57)と、前記熱交換手段で加熱した前記熱媒を前記放熱手段に循環させる循環路と、前記循環路に前記熱媒を圧送させるポンプ(循環ポンプ24)と、前記熱交換手段の出口側に設置され、前記循環路に循環する前記熱媒の温度を検出する温度検出手段(温度センサ28)と、前記熱媒の検出温度により前記燃料比例弁の開度を調節して前記燃料の燃焼を制御し、前記熱媒の温度が単位時間に所定値を超える温度に到達する急激な温度上昇を生じたとき、前記燃料比例弁の開度を絞って前記バーナに対する燃料供給量を最小量又は所定値以下に低下させて前記燃料を燃焼させ、前記燃料供給量が所定値以下に低下した後、前記熱媒の温度が所定値以下に低下したとき、前記燃料供給量を低下前の前記燃料供給量より低く、かつ最小供給量より高い値に制御する制御手段(主制御装置80等)とを備えたことを特徴とする。即ち、熱媒の温度変化に応じたバーナの通常の燃焼制御とは別に、単位時間当たりの熱媒の温度上昇を監視し、この温度傾斜が所定値を越えたとき、バーナに対する燃料供給量を所定値以下に低下させており、熱負荷の急変に伴う熱媒の急激な温度上昇等を回避することができる。
【0011】
また、本発明の暖房装置は、前記燃料供給量の低下は最小量に減少させる。即ち、熱負荷の急変に伴う急激な温度上昇を抑制するには、燃料供給量の大幅な減少が必要である。
【0012】
本発明の暖房装置において、前記燃料供給量を低下前の前記燃料供給量より低く、かつ最小供給量より高い値は、低下前の前記燃料供給量の1/2の燃料供給量であることを特徴とする。即ち、大幅な燃料供給量の削減によって熱媒の温度が所定値以下に低下したとき、沸騰やオーバーシュートを生じない程度の制御領域として、燃料供給量より低く、かつ最小供給量より高い値として、前記燃料供給量を低下前の前記燃料供給量の1/2の燃料供給量に制御することにより、暖房を持続させる。
【0014】
【発明の実施の形態】
以下、本発明及びその実施の形態を図面に示した実施例を参照して詳細に説明する。
【0015】
図1及び図2は、本発明の暖房装置の実施例を示し、図1はその配管構成、図2は制御系統を示している。
【0016】
この暖房装置は、熱媒として温水を使用し、熱源機として給湯装置が用いられている。即ち、暖房装置本体2は給湯装置で構成され、給水を加熱する手段として発熱手段であるバーナ4、熱交換手段である熱交換器6を備えている。バーナ4には、燃料管8を通して燃料ガスGが供給され、燃料管8には燃料ガスGの供給、供給停止を行う燃料元弁10、燃料ガスGの供給量を調節する燃料比例弁12が設けられ、また、バーナ4の下部には燃焼用空気を供給するファン14が設けられ、バーナ4の燃焼部近傍には点火手段として放電器16が設けられている。
【0017】
熱交換器6には温水循環路として戻り管18及び往き管20が接続され、加熱すべき水が戻り管18から熱交換器6に供給される。戻り管18側には膨張タンク22、圧送手段として循環ポンプ24、流量センサ26が設けられ、また、往き管20側には熱交換器6の出口側の熱媒温度、即ち、温水温度を検出する手段として温度センサ28が設置されている。この実施例では、流量センサ26を設置して熱媒流量を計測しているが、このような流量センサ26を設置しない場合もあり得る。また、膨張タンク22は温水の加熱による膨張圧力を大気に開放する手段であって、この膨張タンク22には上水供給管30を通して上水Wが供給される。上水供給管30には開閉弁32が設けられ、この開閉により膨張タンク22への上水Wの補給調整が行われる。また、戻り管18と往き管20との間には放熱負荷側の圧力損失による温水HWの循環不良を緩和する手段としてバイパス管34が設けられている。
【0018】
そして、暖房装置本体2の戻り管18にはヘッダ36、往き管20にはヘッダ38が設けられており、各ヘッダ36、38より放熱負荷に対応する複数の管路40、42が分岐され、各管路40、42間には複数の放熱負荷、放熱手段として放熱器51、52、53、54、55、56、57が設置されている。例えば、放熱器51〜54は床暖房パネル又はファンコンベクタで構成されて第1の居住室61に設置され、放熱器55は床暖房パネル又はファンコンベクタで構成されて第2の居住室62に設置され、また、放熱器56、57は床暖房パネル又はファンコンベクタで構成されて第3の居住室63に設置されている。各管路40、42側には温水HWの供給、供給遮断を切り換える温水供給弁71、72、73、74、75、76、77が設置されている。
【0019】
また、この暖房装置には、制御手段として暖房装置本体2側の給湯制御を行う主制御装置80、この主制御装置80と連係される外部制御装置82、主制御装置80を遠隔操作するメインリモートコントローラ(以下、「メインリモコン」という)84、外部制御装置82を通して主制御装置80を遠隔操作する複数のサブリモートコントローラとしての室内リモートコントローラ(以下、「室内リモコン」という)86、88、90が設けられている。各室内リモコン86、88、90は、第1〜第3の居住室61〜63に設置されている。
【0020】
これら主制御装置80、外部制御装置82、メインリモコン84及び室内リモコン86、88、90について説明すると、図2に示すように、主制御装置80は制御演算素子としてCPU、記憶手段としてRAM、ROM等を備えた制御演算部92、駆動回路94、検出回路96、通信回路98、100を備えている。駆動回路94の駆動出力は、循環ポンプ24、燃料元弁10、燃料比例弁12、ファン14、放電器16等の各アクチュエータに加えられ、検出回路96には流量センサ26、温度センサ28等のセンサ出力が加えられている。通信回路98、100は外部制御装置82又はメインリモコン84と連係させる通信手段であって、通信回路98は外部制御装置82と制御データの授受、通信回路100はメインリモコン84と制御データの授受を行う。
【0021】
外部制御装置82は、制御演算を行うCPU、記憶媒体であるRAM、ROM等を備える制御演算部102、駆動回路104、通信回路106、108を備えている。駆動回路104には第1〜第3の温水供給弁系統110、112、114に対する出力が得られ、この実施例では温水供給弁系統110は温水供給弁71〜74、温水供給弁系統112は温水供給弁75、温水供給弁系統114は温水供給弁76、77を構成している。そして、通信回路106は主制御装置80の通信回路98と有線又は無線によって連係され、また、通信回路108は室内リモコン86、88、90と有線又は無線等で接続されている。
【0022】
メインリモコン84は、CPU、RAM、ROM等を備えた制御演算部116、通信回路118、駆動回路120、表示装置122、入力回路124及びスイッチ126等を備えている。通信回路118は主制御装置80側の通信回路100と有線又は無線によって接続され、駆動回路120から得られる表示出力が液晶表示器、蛍光表示管又はLED表示器等の表示装置122に加えられ、運転状態や設定温度等が表示される。また、入力回路124には運転スイッチ、温度設定スイッチ等のスイッチ126からの入力が加えられている。なお、設定温度は主制御装置80に固定値として記憶させたものを使用してもよい。
【0023】
そして、室内リモコン86、88、90は、各室で用いられる操作手段であって、各々CPU、RAM、ROM等を備えた制御演算部128、通信回路130、検出回路132、入力回路134、駆動回路136、温度センサ138、スイッチ140、表示器142等を備えている。通信回路130は、外部制御装置82の通信回路108と有線又は無線によって接続され、検出回路132には温度センサ138で検出された室内温度が取り込まれ、入力回路134には放熱負荷である各放熱器51〜57の放熱動作を指令する運転スイッチや設定温度を選択する選択スイッチ等のスイッチ140からスイッチ入力が加えられている。また、駆動回路136に得られる表示出力は、液晶等の表示器142に加えられ、この表示器142により室温、設定温度又は運転状態等が表示される。
【0024】
次に、動作を説明すると、この暖房装置においても、温度センサ28の検出温度によってバーナ4に対する燃料ガスGの供給量を制御するFB制御を用いている。
【0025】
そして、このFB制御の補強手段としてPID制御を用いている。このPID制御では、例えば、熱交換器6の出湯温度が所定時間として0.5秒間に所定の温度上昇として0.5℃だけ上昇し、且つ熱交換器6の出湯温度の最高温度として80℃の高温、即ち、目標温度以上を検出したとき、バーナ4に対する燃料供給量を所定値以下、例えば、最小供給量(最小号数)に制御することで、可及的速やかに熱交換器6の温度上昇を抑制する。次の所定時間(=0.5秒)に所定の温度上昇(=0.5℃)を検出し、熱交換器6の出湯温度として目標温度以上を検出したとき、同様の制御、即ち、バーナ4に対する燃料供給量を所定値以下として最小供給量(最小号数)を維持する。この結果、温水温度の過渡的な温度上昇を防止でき、温水温度のオーバーシュートや局部沸騰を未然に防止でき、この程度の温水温度の低下は暖房運転における床温度等には殆ど影響しない。実施例では、熱交換器6の出口側の温水温度の単位時間当たりの温度上昇を0.5℃としているが、これは、測定誤差を考えると限界の温度であり、また、所定時間として0.5秒としているのは、現状、0.1秒(=100ms)以下の設定ができないことによるが、所定時間、所定温度上昇は任意に設定できる。
【0026】
そして、出湯温度が下降したとき、最小号数出力、即ち、最小供給量に降下させた直前の燃料供給量以下、例えば、その供給量の半分の供給量に相当する号数を供給した後、通常のFB制御に復帰させる。
【0027】
このような制御について、その制御動作を図3に示すフローチャートを参照して説明する。ステップS1では、メインリモコン84の運転スイッチがONになったか否かを判定し、メインリモコン84がONのとき、ステップS2に移行し、運転状態を維持し、ステップS2では室内リモコン86、88、90の中、1つ以上がONとなっているか否かを判定する。室内リモコン86、88、90の何れかがONの場合、ステップS3に移行し、暖房装置本体2の燃焼及び温水の循環を開始し、設定温度に燃焼制御を行う。ステップS1、ステップS2でNOの場合、運転停止状態が維持される。
【0028】
ステップS4では、放熱負荷の急変を判定しており、その急変として例えば、室内リモコン86、88、90の総てに運転停止命令が入力されたとき、メインリモコン84より運転停止命令が入力されたとき、又は、室温が設定温度に到達したとき等、総ての温水供給弁71〜77が一斉に閉止されたか否かが判定される。放熱負荷の急変時(ステップS4でYESの場合)には、ステップS5に移行し、燃料元弁10を閉止してバーナ4の燃焼を停止するとともに循環ポンプ24を停止させる。また、このような温水供給弁71〜77が閉止されていない場合には、ステップS6に移行する。
【0029】
ステップS6では、放熱負荷の急変として熱交換器6の出湯温度が所定時間で所定温度上昇、例えば、0.5秒で0.5℃以上上昇したか否かを判定する。0.5℃以上の温度上昇が生じたときには循環流量の減少に伴う出湯温度の上昇勾配が高いものと判断し、ステップS7に移行して燃料比例弁12の開度を最小供給量まで減少させる。また、急激な温度上昇が生じていないときには、燃料供給量を設定温度に調整するためステップS1に移行させる。
【0030】
このような制御において、熱交換器6の出湯温度及びバーナ4への燃料供給量の推移を図4を参照して説明すると、Mは熱交換器6の出湯温度の推移、Nは燃料供給量(号数)の推移を示している。期間t1 において総ての温水供給弁71〜77が開かれて総ての放熱器51〜57より放熱される。a点において、例えば室内リモコン86、90をOFFにして温水供給弁71〜74、76、77が閉止されると、循環流量は大幅に減少する。
【0031】
この循環流量の減少に伴い、出湯温度は上昇傾向に転ずる。期間t2 は温度上昇を検出するサンプリング時間であって、この実施例では0.5秒毎に出湯温度値を取り込み、このサンプリング時間経過後の検出温度が設定温度に移行するように、燃料比例弁12の開度が調整される。即ち、FB制御が実行される。このとき、燃料供給量を例えば20号とする。
【0032】
ここで、期間t1 が経過したとき、例えば0.5℃以上の温度上昇が生じると、循環流量が大幅に減少したと判定し、期間t2 経過後に燃料供給量を最小供給量まで減少させる。この実施例では、燃料比例弁12が操作できる最小供給量は3号であるから、この最小供給量に減少させた後、期間t3 において、この燃料供給量を維持させ、熱交換器6を通過する温水の温度上昇量を抑制する。
【0033】
その後、期間t4 において、出湯温度が設定温度に移行するように燃料比例弁12の開度を調整する。この実施例では、循環流量の減少を出湯温度の上昇勾配から監視し、上昇勾配が高ければ即座に燃料供給量を減少させ、出湯温度を温水の沸騰温度未満に抑制している。
【0034】
次に、他の制御動作例を図5に示すフローチャートを参照して説明する。この動作例は、流量センサ26を用いた場合であり、所定時間当たり所定流量以上減少したか否かを判断し、その結果、燃料供給量を減少させている。
【0035】
ステップS11では、メインリモコン84の運転スイッチがONになったか否かが判定される。メインリモコン84がONの場合、ステップS12に移行し、室内リモコン86、88、90の中、1つ以上がONとなっているか否かが判定される。メインリモコン84又は室内リモコンリモコン86、88、90の何れもがOFFの場合には、運転停止状態となる。ステップS13では、燃焼及び温水の循環が行われる。
【0036】
ステップS14では、放熱負荷の急変を判定しており、その急変として例えば、室内リモコン86、88、90の総てに運転停止命令が入力されたとき、メインリモコン84より運転停止命令が入力されたとき、又は、室温が設定温度に到達したとき等、総ての温水供給弁71〜77が一斉に閉止されたか否かが判定される。負荷の急変時(ステップS14でYESの場合)には、ステップS15に移行し、燃料元弁10を閉止してバーナ4の燃焼を停止するとともに循環ポンプ24を停止させる。また、このような温水供給弁71〜77が閉止されていない場合には、ステップS16に移行する。
【0037】
ステップS16では、循環流量が所定時間当たり所定流量以上減少したか否かを判定し、放熱負荷の急変として急激な流量減少が生じたとき、熱交換器6の出湯温度が沸騰温度を越えて上昇するものとし、ステップS17に移行して燃料比例弁12の開度を最小供給量に減少させる。また、急激な流量減少が生じていないときには燃料供給量を設定温度に調整するため、ステップS11に移行する。
【0038】
このような制御によっても同様に、放熱負荷の急変時、温水温度のオーバーシュートや沸騰を防止でき、釜鳴り等の異常現象を未然に防止できる。
【0039】
次に、他の制御動作例を図6に示すフローチャートを参照して説明する。この動作例は、外部制御装置82の各温水供給弁系統110、112、114の遮断動作を確認してバーナ4に対する燃料供給量を減少させている。
【0040】
ステップS21〜S25の動作は、図3又は図5に示した制御動作と同様である。
【0041】
ステップS24で総ての温水供給弁71〜77が閉止していないと判断された場合には、ステップS26で温水供給弁71〜77の中、1つ以上が閉止されたか否かが判定される。この場合、温水供給弁71〜77の一部又は全部の閉止によって循環流量が減少するので、温水供給弁71〜77の閉止が確認されたとき、ステップS27に移行して燃料比例弁12の開度を最小供給量まで減少させ、また、温水供給弁71〜77の閉止が確認されないとき、ステップS21に移行する。
【0042】
次に、他の制御動作例を図7に示すフローチャートを参照して説明する。この動作例は、放熱負荷の急変に伴う熱交換器6の出湯温度の温度勾配を監視して燃料供給量を減少させるとともに、循環流量が減少したときに最小供給量まで減少させた後、出湯温度を設定温度に可及的に収束させるため燃料供給量を所定量回復させている。
【0043】
ステップS31〜S35の動作は、図3、図5又は図6の制御動作と同様である。
【0044】
ステップS34で温水供給弁71〜77の総てが閉止していないと判定された場合、ステップS36では、熱交換器6の出湯温度が0.5秒で0.5℃以上上昇したか否かを判定する。0.5℃以上の温度上昇が認められたとき、循環流量の減少に伴う出湯温度の上昇勾配が大きいと判断し、ステップS37に移行して燃料比例弁12の開度を最小供給量まで減少させる。
【0045】
また、急激な温度上昇が認められないときにはステップS31に移行する。ステップS38では所定時間経過したか否かが判定され、待機時間はこの例では0.5秒程度で、燃料供給量の減少に伴う出湯温度の安定化を図る。
【0046】
ステップS39では燃料供給量を減少前と減少後の中間の燃料供給量まで増加させる。この実施例では燃料供給量の減少前が20号、減少後が3号であるから11.5号まで燃料供給量を回復させる。燃料供給量を回復させることにより出湯温度を設定温度に可及的に回復させることができる。その後、ステップS31からのルーチンを再び実行し、出湯温度が再び急激に上昇するときにはステップS36〜S39を実行して適切な燃料供給量に調整を行う。
【0047】
このような制御によっても同様に、放熱負荷の急変時、温水温度のオーバーシュートや沸騰を防止でき、釜鳴り等の異常現象を未然に防止できる。
【0048】
この制御動作による燃料供給制御を図8を参照して説明すると、図8において、Mは熱交換器6の出湯温度の推移、Nは燃料供給量の推移を示している。期間t5 において、総ての温水供給弁71〜77が開かれて総ての放熱器51〜57より放熱が行われる。b点において、例えば室内リモコン86、88をOFFさせ、温水供給弁71〜75を閉止させると、循環流量が大幅に減少し、この循環流量の減少に伴い、出湯温度が上昇する。期間t6 は、温度上昇を検出するサンプリング時間であって、0.5秒間隔で出湯温度値が取り込まれる。この期間t6 が経過したとき、上昇温度が例えば0.5℃以上である場合、温水供給弁71〜77が閉じて循環流量が大幅に減少したと判断し、期間t6 の経過後に燃料供給量を最小供給量まで減少させる。
【0049】
この実施例では燃料比例弁12が操作できる最小供給量は3号であるから、この最小供給量に減少させた後、期間t7 において、この燃料供給量を維持させて熱交換器6を通過する温水の温度上昇量を抑制する。期間t7 が経過すると、減少前の燃料供給量(例えば20号)と最小供給量(例えば3号)との中間(例えば11.5号)まで燃料供給量を回復させ、期間t8 において出湯温度が設定温度になるように燃料比例弁12の開度を調整する。Aは、同一号数を示している。
【0050】
このような制御によれば、FB制御の応答遅れを補完するとともに、燃料制御の連続性を維持し、急激な温度変化を伴うことなく、信頼性の高い暖房制御を実現することができる。
【0051】
なお、実施例では、燃料ガスのバーナ燃焼を熱源として用いた場合について説明したが、本発明の暖房装置では、灯油燃焼を熱源としてもよく、また、電熱を熱源としてもよい。
【0052】
【発明の効果】
以上説明したように、本発明によれば、熱負荷の急変に伴う熱媒の温度上昇を回避でき、FB制御の反応速度遅延による局部沸騰やオーバーシュートの発生を未然に防止でき、信頼性の高い暖房制御を実現できるとともに、熱交換手段等を損耗から防護でき、寿命特性の優れた暖房装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の暖房装置の一実施例を示す配管構成図である。
【図2】暖房装置の制御装置を示すブロック図である。
【図3】温水温度の監視及び燃料供給量の制御を示すフローチャートである。
【図4】出湯温度及び燃料供給量の推移を示すグラフである。
【図5】温水流量の監視及び燃料供給量の制御を示すフローチャートである。
【図6】他の温水流量の監視及び燃料供給量の制御を示すフローチャートである。
【図7】他の温水流量の監視及び燃料供給量の制御を示すフローチャートである。
【図8】他の出湯温度及び燃料供給量の推移を示すグラフである。
【符号の説明】
4 バーナ
6 熱交換器(熱交換手段)
26 流量センサ(流量検出手段)
28 温度センサ(温度検出手段)
51〜57 放熱器(放熱手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating device using burner combustion or the like as a heat source.
[0002]
[Prior art]
Conventionally, in a heating apparatus that heats a heat medium with heat obtained by combustion of fuel gas and circulates the heat medium to a radiator to dissipate heat, the temperature of the heat medium is detected and combustion of the fuel gas is controlled by the detected temperature. FB control is performed. In such a heating device, when the circulation amount of the heat medium decreases, a thermistor is provided on the outlet side of the heat exchanger to avoid the occurrence of abnormal phenomena such as overshoot of the heat medium temperature, and the detected temperature of the heat medium When the temperature reaches a predetermined value, for example, 88 ° C., methods such as stopping burner combustion and minimizing the amount of combustion gas have been adopted. For example, Japanese Patent Application Laid-Open No. 11-118257 “Stove with Built-in Hot Water Heat Exchanger” exists as a conventional technique for minimizing or stopping the fuel supply amount when the hot water exceeds the boiling temperature.
[0003]
[Problems to be solved by the invention]
By the way, in products that require a large amount of heating medium circulation and large capacity heating capacity, when the flow rate of the circulating heat medium suddenly changes, the thermistor detects the temperature before the temperature reaches the specified value. There is a possibility that local boiling occurs or overshoot occurs in the heat medium temperature due to the time difference until the fuel gas amount is reduced.
[0004]
A heating device using hot water as a heat medium is connected with a plurality of radiators as heat radiation loads. These radiators release heat at low temperatures (60 ° C) such as floor heating panels, fan convectors, etc. Some of them release heat at a high temperature (80 ° C.). If the heatsinks are stopped all at once when controlled at a high temperature, the circulating flow rate decreases, the hot water in the heat exchanger rises rapidly, and a boiling phenomenon due to boiling occurs. When the hot water temperature exceeds the boiling region temperature, even if the fuel supply amount is decreased, overshoot occurs in the hot water temperature due to the delay in the response of the FB control, the heat conduction delay of the heat exchanger, etc. Over. At this time, a hook noise occurs.
[0005]
For example, when the outlet temperature of the heat exchanger is 80 ° C., the circulation flow rate is 15 liters, and the feed water temperature is 50 ° C., if the circulation flow rate is reduced to 2 liters,
(80-50) × 15 = current heat quantity = (X-50) × 2 (1)
Thus, the outlet temperature X of the heat exchanger is X = 275 ° C., which exceeds the boiling temperature.
[0006]
By the way, in a heating device, it is common that a flow sensor is not installed in a specific hot water circuit, and the minimum circulating flow rate is 0.5 to 1.0 liter / minute at a heat radiating terminal, such as a heat exchanger. Even in the pipeline, the flow rate is as small as 3 liters / minute, which corresponds to a rapid flow rate change from a large flow rate to a small flow rate, that is, from 24 to 30 liters / minute to 3 liters / minute. And the length of the fin pipe heat-exchanged within a heat exchanger is about 1.0-2.0 m, and the thermistor is installed in this front-end | tip. In the FB control, since the flow velocity flowing in the pipe is 1.5 m / second or less, it takes about 1 to 2 seconds to flow in the pipe. In such FB control, it has been confirmed that even if temperature detection is performed at the outlet of the heat exchanger and the fuel supply amount is limited based on the temperature detection, local boiling, overshoot, or the like occurs.
[0007]
As described above, in the FB control that is normally used in the heating control as a means for avoiding the local boiling of the heating medium and the overshooting of the heating medium temperature, the local boiling with respect to the rapid flow rate change due to the sudden change of the thermal load due to the reaction rate And overshoot could not be avoided.
[0008]
Then, this invention makes it a subject to provide the heating apparatus which avoided the rapid temperature rise etc. of the heat medium accompanying the sudden change of a thermal load.
[0009]
[Means for Solving the Problems]
The heating device of the present invention includes a burner (4), a heat exchange means (heat exchanger 6), a temperature detection means (temperature sensor 28), a control means (main control device 80, etc.), and a heat dissipation means (heatsinks 51 to 57). The burner combustion is controlled by the detected temperature of the heating medium, and when the temperature increase of the heating medium per unit time exceeds a predetermined value, the fuel supply amount of the burner is reduced to a predetermined value or less. In addition, it is possible to avoid the temperature rise of the heat medium due to a sudden change in the heat load, and it is possible to prevent the occurrence of local boiling and overshoot due to the reaction rate delay of the FB control.
[0010]
The heating device of the present invention is A heating device for heating using combustion heat of fuel, a burner (4) for burning fuel, a fuel proportional valve (12) for adjusting a fuel supply amount to the burner, and combustion heat of the fuel by the burner By the above Heat exchanging means (heat exchanger 6) for heating the heat medium, and heat dissipating means (heat radiators 51 to 57) for circulating and dissipating the heat medium heated by the heat exchanging means, A circulation path that circulates the heat medium heated by the heat exchange means to the heat dissipation means, a pump that pressure-feeds the heat medium to the circulation path (circulation pump 24), and an outlet side of the heat exchange means, Circulates in the circuit Temperature detection means (temperature sensor 28) for detecting the temperature of the heat medium; The combustion of the fuel is controlled by adjusting the opening degree of the fuel proportional valve according to the detected temperature of the heat medium, and the temperature of the heat medium suddenly rises to reach a temperature exceeding a predetermined value per unit time. The fuel proportional valve is throttled to reduce the fuel supply amount to the burner to a minimum amount or a predetermined value or less to burn the fuel, and after the fuel supply amount decreases to a predetermined value or less, the heat When the temperature of the medium drops below a predetermined value, the fuel supply amount is controlled to a value lower than the fuel supply amount before the decrease and higher than the minimum supply amount. Control means (main control device 80 etc.) are provided. That is, apart from the normal combustion control of the burner according to the temperature change of the heating medium, the temperature increase of the heating medium per unit time is monitored, and when this temperature gradient exceeds a predetermined value, the fuel supply amount to the burner is adjusted. The temperature is reduced to a predetermined value or less, and a rapid temperature rise of the heat medium accompanying a sudden change in heat load can be avoided.
[0011]
Also, Heating device of the present invention so Reduce the fuel supply amount to the minimum amount . That is, In order to suppress a rapid temperature rise caused by a sudden change in the heat load, it is necessary to greatly reduce the fuel supply amount.
[0012]
Heating device of the present invention In the above A value that is lower than the fuel supply amount before the decrease and higher than the minimum supply amount. Is a fuel supply amount that is ½ of the fuel supply amount before the decrease. It is characterized by that. That is, a value that is lower than the fuel supply amount and higher than the minimum supply amount as a control region that does not cause boiling or overshoot when the temperature of the heat medium decreases below a predetermined value due to a significant reduction in the fuel supply amount. The fuel supply amount is controlled to a fuel supply amount that is ½ of the fuel supply amount before the decrease. To maintain the heating.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention and its embodiments will be described in detail with reference to examples shown in the drawings.
[0015]
FIG.1 and FIG.2 shows the Example of the heating apparatus of this invention, FIG. 1 shows the piping structure, FIG. 2 has shown the control system.
[0016]
In this heating device, hot water is used as a heat medium, and a hot water supply device is used as a heat source device. That is, the heating device body 2 is constituted by a hot water supply device, and includes a burner 4 as a heat generating means and a heat exchanger 6 as a heat exchanging means as means for heating the water supply. The burner 4 is supplied with a fuel gas G through a fuel pipe 8. The fuel pipe 8 has a fuel main valve 10 for supplying and stopping the supply of the fuel gas G, and a fuel proportional valve 12 for adjusting the supply amount of the fuel gas G. A fan 14 for supplying combustion air is provided at the lower part of the burner 4, and a discharger 16 is provided as an ignition means in the vicinity of the combustion part of the burner 4.
[0017]
A return pipe 18 and an outgoing pipe 20 are connected to the heat exchanger 6 as a hot water circulation path, and water to be heated is supplied from the return pipe 18 to the heat exchanger 6. An expansion tank 22 is provided on the return pipe 18 side, a circulation pump 24 and a flow rate sensor 26 are provided as pressure feeding means, and a heat medium temperature on the outlet side of the heat exchanger 6, that is, a hot water temperature is detected on the outgoing pipe 20 side. A temperature sensor 28 is installed as a means to do this. In this embodiment, the flow rate sensor 26 is installed and the heat medium flow rate is measured, but such a flow rate sensor 26 may not be installed. The expansion tank 22 is a means for releasing the expansion pressure due to heating of warm water to the atmosphere, and the expansion water 22 is supplied with clean water W through a clean water supply pipe 30. An open / close valve 32 is provided in the clean water supply pipe 30, and replenishment adjustment of clean water W to the expansion tank 22 is performed by opening and closing. In addition, a bypass pipe 34 is provided between the return pipe 18 and the forward pipe 20 as a means for alleviating poor circulation of the hot water HW due to pressure loss on the heat radiation load side.
[0018]
And the header 36 is provided in the return pipe 18 of the heating apparatus main body 2, and the header 38 is provided in the outgoing pipe 20, The several pipe lines 40 and 42 corresponding to a thermal radiation load are branched from each header 36 and 38, A plurality of heat dissipating loads and heat dissipating means 51, 52, 53, 54, 55, 56, 57 are installed between the pipes 40, 42 as heat dissipating means. For example, the radiators 51 to 54 are configured by a floor heating panel or a fan convector and installed in the first living room 61, and the radiator 55 is configured by a floor heating panel or a fan convector and installed in the second living room 62. In addition, the radiators 56 and 57 are configured by floor heating panels or fan convectors and are installed in the third living room 63. Hot water supply valves 71, 72, 73, 74, 75, 76, and 77 that switch between supply and cutoff of the hot water HW are installed on the pipe lines 40 and 42 side.
[0019]
In addition, the heating device includes a main control device 80 that performs hot water supply control on the heating device body 2 side as a control means, an external control device 82 that is linked to the main control device 80, and a main remote that remotely operates the main control device 80. A controller (hereinafter referred to as “main remote controller”) 84, indoor remote controllers (hereinafter referred to as “indoor remote controllers”) 86, 88, 90 as a plurality of sub remote controllers that remotely operate the main controller 80 through the external controller 82. Is provided. Each indoor remote controller 86, 88, 90 is installed in the first to third living rooms 61-63.
[0020]
The main controller 80, the external controller 82, the main remote controller 84, and the indoor remote controllers 86, 88, 90 will be described. As shown in FIG. 2, the main controller 80 is a CPU as a control arithmetic element, and a RAM and a ROM as storage means. And the like, a control arithmetic unit 92, a drive circuit 94, a detection circuit 96, and communication circuits 98 and 100. The drive output of the drive circuit 94 is applied to each actuator such as the circulation pump 24, the fuel main valve 10, the fuel proportional valve 12, the fan 14 and the discharger 16, and the detection circuit 96 includes a flow sensor 26, a temperature sensor 28, etc. Sensor output is applied. The communication circuits 98 and 100 are communication means linked to the external control device 82 or the main remote controller 84. The communication circuit 98 exchanges control data with the external control device 82, and the communication circuit 100 exchanges control data with the main remote controller 84. Do.
[0021]
The external control device 82 includes a CPU that performs control calculations, a control calculation unit 102 that includes a storage medium such as RAM and ROM, a drive circuit 104, and communication circuits 106 and 108. In the drive circuit 104, outputs to the first to third hot water supply valve systems 110, 112, and 114 are obtained. In this embodiment, the hot water supply valve system 110 has hot water supply valves 71 to 74, and the hot water supply valve system 112 has hot water. The supply valve 75 and the hot water supply valve system 114 constitute hot water supply valves 76 and 77. The communication circuit 106 is linked to the communication circuit 98 of the main controller 80 by wire or wireless, and the communication circuit 108 is connected to the indoor remote controllers 86, 88, 90 by wire or wireless.
[0022]
The main remote controller 84 includes a control calculation unit 116 including a CPU, RAM, ROM, and the like, a communication circuit 118, a drive circuit 120, a display device 122, an input circuit 124, a switch 126, and the like. The communication circuit 118 is connected to the communication circuit 100 on the main controller 80 side by wire or wirelessly, and the display output obtained from the drive circuit 120 is applied to a display device 122 such as a liquid crystal display, a fluorescent display tube, or an LED display, The operating status and set temperature are displayed. An input from the switch 126 such as an operation switch or a temperature setting switch is applied to the input circuit 124. The set temperature may be stored in the main controller 80 as a fixed value.
[0023]
The indoor remote controllers 86, 88, and 90 are operation means used in each room, and each includes a control calculation unit 128, a communication circuit 130, a detection circuit 132, an input circuit 134, and a drive each having a CPU, a RAM, a ROM, and the like. A circuit 136, a temperature sensor 138, a switch 140, a display 142, and the like are provided. The communication circuit 130 is connected to the communication circuit 108 of the external control device 82 by wire or wirelessly, the room temperature detected by the temperature sensor 138 is taken into the detection circuit 132, and each heat radiation as a heat radiation load is taken into the input circuit 134. Switch inputs are applied from a switch 140 such as an operation switch for instructing the heat radiation operation of the devices 51 to 57 and a selection switch for selecting a set temperature. The display output obtained by the drive circuit 136 is applied to a display unit 142 such as a liquid crystal, and the display unit 142 displays room temperature, set temperature, operating state, or the like.
[0024]
Next, the operation will be described. Also in this heating apparatus, FB control for controlling the supply amount of the fuel gas G to the burner 4 by the temperature detected by the temperature sensor 28 is used.
[0025]
PID control is used as reinforcing means for this FB control. In this PID control, for example, the tapping temperature of the heat exchanger 6 is increased by 0.5 ° C. as a predetermined temperature rise in 0.5 seconds as a predetermined time, and the maximum temperature of the tapping temperature of the heat exchanger 6 is 80 ° C. Of the heat exchanger 6 is controlled as soon as possible by controlling the fuel supply amount to the burner 4 to a predetermined value or less, for example, the minimum supply amount (minimum number). Reduces temperature rise. When a predetermined temperature rise (= 0.5 ° C.) is detected at the next predetermined time (= 0.5 seconds) and a temperature equal to or higher than the target temperature is detected as the tapping temperature of the heat exchanger 6, the same control, that is, the burner The minimum supply amount (minimum number) is maintained by setting the fuel supply amount for 4 to a predetermined value or less. As a result, a transient temperature rise in the hot water temperature can be prevented, and overshooting and local boiling of the hot water temperature can be prevented, and such a decrease in the hot water temperature has little effect on the floor temperature or the like in the heating operation. In the embodiment, the temperature rise per unit time of the hot water temperature on the outlet side of the heat exchanger 6 is set to 0.5 ° C., but this is a limit temperature in consideration of measurement error, and is 0 as the predetermined time. The reason for setting it to .5 seconds is that the current temperature cannot be set to 0.1 seconds (= 100 ms) or less, but the predetermined temperature rise can be arbitrarily set for a predetermined time.
[0026]
And when the tapping temperature falls, after supplying the minimum number output, that is, the fuel supply amount immediately before being lowered to the minimum supply amount, for example, the number corresponding to the supply amount half of the supply amount, Return to normal FB control.
[0027]
Such control will be described with reference to the flowchart shown in FIG. In step S1, it is determined whether or not the operation switch of the main remote controller 84 has been turned ON. When the main remote controller 84 is ON, the process proceeds to step S2 to maintain the operation state. In step S2, the indoor remote controllers 86, 88, It is determined whether one or more of 90 are ON. When any one of the indoor remote controllers 86, 88, 90 is ON, the process proceeds to step S3, where the combustion of the heating device body 2 and the circulation of hot water are started, and the combustion control is performed to the set temperature. In the case of NO in step S1 and step S2, the operation stop state is maintained.
[0028]
In step S4, a sudden change in the heat radiation load is determined. As the sudden change, for example, when an operation stop command is input to all of the indoor remote controllers 86, 88, 90, an operation stop command is input from the main remote controller 84. Whether or not all the hot water supply valves 71 to 77 are closed at the same time, for example, when the room temperature reaches the set temperature. When the heat radiation load changes suddenly (in the case of YES at step S4), the routine proceeds to step S5, where the fuel source valve 10 is closed to stop the combustion of the burner 4 and the circulation pump 24 is stopped. Moreover, when such hot water supply valves 71 to 77 are not closed, the process proceeds to step S6.
[0029]
In step S6, it is determined whether or not the tapping temperature of the heat exchanger 6 has increased by a predetermined temperature in a predetermined time, for example, 0.5 ° C. or more in 0.5 seconds as a sudden change in the heat radiation load. When a temperature increase of 0.5 ° C. or more occurs, it is determined that the rising gradient of the tapping temperature accompanying the decrease in the circulation flow rate is high, and the routine proceeds to step S7 where the opening of the fuel proportional valve 12 is decreased to the minimum supply amount. . Further, when there is no rapid temperature rise, the process proceeds to step S1 in order to adjust the fuel supply amount to the set temperature.
[0030]
In such control, the transition of the tapping temperature of the heat exchanger 6 and the fuel supply amount to the burner 4 will be described with reference to FIG. 4. M is the transition of the tapping temperature of the heat exchanger 6, and N is the fuel supply amount. (Number of issues). Period t 1 All the hot water supply valves 71 to 77 are opened and heat is radiated from all the radiators 51 to 57. At point a, for example, when the indoor remote controllers 86 and 90 are turned off and the hot water supply valves 71 to 74, 76 and 77 are closed, the circulation flow rate is greatly reduced.
[0031]
As the circulating flow rate decreases, the tapping temperature turns upward. Period t 2 Is a sampling time for detecting an increase in temperature, and in this embodiment, a tapping temperature value is taken every 0.5 seconds and the fuel proportional valve 12 is set so that the detected temperature shifts to the set temperature after the sampling time has elapsed. The opening is adjusted. That is, FB control is executed. At this time, the fuel supply amount is set to 20, for example.
[0032]
Where period t 1 When a temperature rise of 0.5 ° C. or more occurs, for example, it is determined that the circulation flow rate has greatly decreased, and the period t 2 After the elapse of time, the fuel supply amount is reduced to the minimum supply amount. In this embodiment, since the minimum supply amount that can be operated by the fuel proportional valve 12 is No. 3, after the reduction to this minimum supply amount, the period t Three In this case, the fuel supply amount is maintained, and the temperature rise amount of the hot water passing through the heat exchanger 6 is suppressed.
[0033]
Then period t Four , The opening degree of the fuel proportional valve 12 is adjusted so that the hot water temperature shifts to the set temperature. In this embodiment, the decrease in the circulation flow rate is monitored from the rising gradient of the hot water temperature, and if the rising gradient is high, the fuel supply amount is immediately decreased, and the hot water temperature is suppressed below the boiling temperature of the hot water.
[0034]
Next, another control operation example will be described with reference to the flowchart shown in FIG. This operation example is a case where the flow rate sensor 26 is used, and it is determined whether or not the flow rate has decreased by a predetermined amount or more per predetermined time, and as a result, the fuel supply amount is decreased.
[0035]
In step S11, it is determined whether or not the operation switch of the main remote controller 84 has been turned ON. If the main remote controller 84 is ON, the process proceeds to step S12, and it is determined whether one or more of the indoor remote controllers 86, 88, 90 are ON. When any of the main remote controller 84 or the indoor remote controller remote controllers 86, 88, 90 is OFF, the operation is stopped. In step S13, combustion and hot water circulation are performed.
[0036]
In step S14, a sudden change in the heat radiation load is determined. As the sudden change, for example, when an operation stop command is input to all the indoor remote controllers 86, 88, 90, an operation stop command is input from the main remote controller 84. Whether or not all the hot water supply valves 71 to 77 are closed at the same time, for example, when the room temperature reaches the set temperature. When the load changes suddenly (in the case of YES at step S14), the routine proceeds to step S15 where the fuel source valve 10 is closed to stop the combustion of the burner 4 and the circulation pump 24 is stopped. If such hot water supply valves 71 to 77 are not closed, the process proceeds to step S16.
[0037]
In step S16, it is determined whether or not the circulating flow rate has decreased by a predetermined amount or more per predetermined time. When a rapid flow rate decrease occurs due to a sudden change in the heat radiation load, the tapping temperature of the heat exchanger 6 rises above the boiling temperature. In step S17, the opening of the fuel proportional valve 12 is reduced to the minimum supply amount. Further, when there is no rapid flow rate decrease, the process proceeds to step S11 in order to adjust the fuel supply amount to the set temperature.
[0038]
Similarly, such control can prevent overshoot and boiling of the hot water temperature when the heat radiation load suddenly changes, and can prevent abnormal phenomena such as squealing.
[0039]
Next, another control operation example will be described with reference to the flowchart shown in FIG. In this operation example, the fuel supply amount to the burner 4 is decreased by confirming the shutoff operation of each hot water supply valve system 110, 112, 114 of the external control device 82.
[0040]
The operations in steps S21 to S25 are the same as the control operations shown in FIG. 3 or FIG.
[0041]
If it is determined in step S24 that all the hot water supply valves 71 to 77 are not closed, it is determined in step S26 whether one or more of the hot water supply valves 71 to 77 are closed. . In this case, since the circulation flow rate is reduced by closing some or all of the hot water supply valves 71 to 77, when it is confirmed that the hot water supply valves 71 to 77 are closed, the process proceeds to step S27 and the fuel proportional valve 12 is opened. When the degree is reduced to the minimum supply amount and the warm water supply valves 71 to 77 are not confirmed to be closed, the process proceeds to step S21.
[0042]
Next, another control operation example will be described with reference to a flowchart shown in FIG. In this operation example, the temperature gradient of the hot water temperature of the heat exchanger 6 due to a sudden change in the heat radiation load is monitored to reduce the fuel supply amount, and when the circulating flow rate is decreased, the fuel supply amount is reduced to the minimum supply amount. In order to converge the temperature to the set temperature as much as possible, the fuel supply amount is recovered by a predetermined amount.
[0043]
The operations in steps S31 to S35 are the same as the control operations in FIG. 3, FIG. 5, or FIG.
[0044]
If it is determined in step S34 that all of the hot water supply valves 71 to 77 are not closed, in step S36, whether or not the tapping temperature of the heat exchanger 6 has increased by 0.5 ° C. or more in 0.5 seconds. Determine. When a temperature increase of 0.5 ° C. or more is recognized, it is determined that the rising gradient of the hot water temperature accompanying the decrease in the circulation flow rate is large, and the routine proceeds to step S37 where the opening of the fuel proportional valve 12 is decreased to the minimum supply amount. Let
[0045]
Further, when a rapid temperature rise is not recognized, the process proceeds to step S31. In step S38, it is determined whether or not a predetermined time has elapsed. In this example, the standby time is about 0.5 seconds, and the temperature of the hot water is stabilized as the fuel supply amount decreases.
[0046]
In step S39, the fuel supply amount is increased to an intermediate fuel supply amount before and after the decrease. In this embodiment, the fuel supply amount is recovered to No. 11.5 because the fuel supply amount is No. 20 before the decrease and No. 3 after the decrease. By recovering the fuel supply amount, the tapping temperature can be restored to the set temperature as much as possible. Thereafter, the routine from step S31 is executed again, and when the hot water temperature rapidly rises again, steps S36 to S39 are executed to adjust the fuel supply amount to an appropriate amount.
[0047]
Similarly, such control can prevent overshoot and boiling of the hot water temperature when the heat radiation load suddenly changes, and can prevent abnormal phenomena such as squealing.
[0048]
The fuel supply control by this control operation will be described with reference to FIG. 8. In FIG. 8, M indicates the transition of the tapping temperature of the heat exchanger 6, and N indicates the transition of the fuel supply amount. Period t Five , All the hot water supply valves 71 to 77 are opened, and heat is radiated from all the radiators 51 to 57. At the point b, for example, when the indoor remote controllers 86 and 88 are turned off and the hot water supply valves 71 to 75 are closed, the circulating flow rate is greatly reduced, and the tapping temperature rises as the circulating flow rate decreases. Period t 6 Is a sampling time for detecting a temperature rise, and the hot water temperature value is taken at intervals of 0.5 seconds. This period t 6 When the rising temperature is, for example, 0.5 ° C. or more, it is determined that the hot water supply valves 71 to 77 are closed and the circulation flow rate is greatly reduced, and the period t 6 After the elapse of time, the fuel supply amount is reduced to the minimum supply amount.
[0049]
In this embodiment, since the minimum supply amount that can be operated by the fuel proportional valve 12 is No. 3, after the reduction to this minimum supply amount, the period t 7 In this case, the fuel supply amount is maintained, and the temperature rise amount of the hot water passing through the heat exchanger 6 is suppressed. Period t 7 When elapses, the fuel supply amount is recovered to the middle (for example, 11.5) between the fuel supply amount before reduction (for example, No. 20) and the minimum supply amount (for example, No. 3), and the period t 8 In step 1, the opening degree of the fuel proportional valve 12 is adjusted so that the tapping temperature becomes the set temperature. A indicates the same number.
[0050]
According to such control, the response delay of the FB control can be complemented, the continuity of the fuel control can be maintained, and the highly reliable heating control can be realized without accompanying a rapid temperature change.
[0051]
In addition, although the Example demonstrated the case where the burner combustion of fuel gas was used as a heat source, in the heating apparatus of this invention, kerosene combustion may be used as a heat source and electric heat may be used as a heat source.
[0052]
【The invention's effect】
As described above, according to the present invention, it is possible to avoid the temperature increase of the heating medium due to a sudden change in the heat load, to prevent the occurrence of local boiling and overshoot due to the reaction speed delay of the FB control, and the reliability A high heating control can be realized, the heat exchange means and the like can be protected from wear, and a heating device with excellent life characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a piping configuration diagram showing an embodiment of a heating device of the present invention.
FIG. 2 is a block diagram showing a control device of the heating device.
FIG. 3 is a flowchart showing monitoring of hot water temperature and control of fuel supply amount.
FIG. 4 is a graph showing transitions of tapping temperature and fuel supply amount.
FIG. 5 is a flowchart showing monitoring of the hot water flow rate and control of the fuel supply amount.
FIG. 6 is a flowchart showing another hot water flow rate monitoring and fuel supply amount control.
FIG. 7 is a flowchart showing another hot water flow rate monitoring and fuel supply amount control.
FIG. 8 is a graph showing changes in other tapping temperature and fuel supply amount.
[Explanation of symbols]
4 Burner
6 Heat exchanger (heat exchange means)
26 Flow rate sensor (flow rate detection means)
28 Temperature sensor (temperature detection means)
51-57 radiator (heat dissipating means)

Claims (2)

燃料の燃焼熱を用いて暖房する暖房装置であって、
燃料を燃焼させるバーナと、
このバーナに対する燃料供給量を調節する燃料比例弁と、
前記バーナによる前記燃料の燃焼熱によって前記熱媒を加熱する熱交換手段と、
この熱交換手段で加熱した前記熱媒を循環させて放熱させる放熱手段と、
前記熱交換手段で加熱した前記熱媒を前記放熱手段に循環させる循環路と、
前記循環路に前記熱媒を圧送させるポンプと、
前記熱交換手段の出口側に設置され、前記循環路に循環する前記熱媒の温度を検出する温度検出手段と、
前記熱媒の検出温度により前記燃料比例弁の開度を調節して前記燃料の燃焼を制御し、前記熱媒の温度が単位時間に所定値を超える温度に到達する急激な温度上昇を生じたとき、前記燃料比例弁の開度を絞って前記バーナに対する燃料供給量を最小量又は所定値以下に低下させて前記燃料を燃焼させ、前記燃料供給量が所定値以下に低下した後、前記熱媒の温度が所定値以下に低下したとき、前記燃料供給量を低下前の前記燃料供給量より低く、かつ最小供給量より高い値に制御する制御手段と、
を備えたことを特徴とする暖房装置。
A heating device for heating using combustion heat of fuel,
A burner that burns fuel;
A fuel proportional valve for adjusting the fuel supply amount to the burner;
Heat exchange means for heating the heat medium by the combustion heat of the fuel by the burner;
A heat dissipating means for circulating and dissipating the heat medium heated by the heat exchanging means;
A circulation path for circulating the heat medium heated by the heat exchange means to the heat dissipation means;
A pump that pumps the heat medium into the circulation path;
A temperature detecting means installed on the outlet side of the heat exchanging means and detecting the temperature of the heat medium circulating in the circulation path;
The combustion of the fuel is controlled by adjusting the opening degree of the fuel proportional valve according to the detected temperature of the heat medium, and the temperature of the heat medium suddenly rises to reach a temperature exceeding a predetermined value per unit time. The fuel proportional valve is throttled to reduce the fuel supply amount to the burner to a minimum amount or a predetermined value or less to burn the fuel, and after the fuel supply amount decreases to a predetermined value or less, the heat Control means for controlling the fuel supply amount to a value lower than the fuel supply amount before the decrease and higher than the minimum supply amount when the temperature of the medium drops below a predetermined value;
A heating device comprising:
前記燃料供給量を低下前の前記燃料供給量より低く、かつ最小供給量より高い値は、低下前の前記燃料供給量の1/2の燃料供給量であることを特徴とする請求項1記載の暖房装置。  2. The fuel supply amount that is lower than the fuel supply amount before the decrease and higher than the minimum supply amount is a fuel supply amount that is ½ of the fuel supply amount before the decrease. Heating system.
JP2000336398A 2000-11-02 2000-11-02 Heating system Expired - Fee Related JP4017817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000336398A JP4017817B2 (en) 2000-11-02 2000-11-02 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000336398A JP4017817B2 (en) 2000-11-02 2000-11-02 Heating system

Publications (2)

Publication Number Publication Date
JP2002139225A JP2002139225A (en) 2002-05-17
JP4017817B2 true JP4017817B2 (en) 2007-12-05

Family

ID=18811979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000336398A Expired - Fee Related JP4017817B2 (en) 2000-11-02 2000-11-02 Heating system

Country Status (1)

Country Link
JP (1) JP4017817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101052A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Hot water supply apparatus

Also Published As

Publication number Publication date
JP2002139225A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
US10012396B2 (en) Combined space conditioning or heating and water heating system
US20150108230A1 (en) Multiple zone control system and method of operation
EP2103884B1 (en) Room heating and method for controlling the room heating
JP6566916B2 (en) Air conditioning system and operation control method
JP2009299941A (en) Hot water supply system
JP4923812B2 (en) Brine heat dissipation heating system
JP3774615B2 (en) Test run control method for hot water heater
KR101475720B1 (en) Heating device
JP4017817B2 (en) Heating system
JP5215039B2 (en) Control method for hot water heater
JP5988080B2 (en) Heat source equipment
JP5254660B2 (en) Control method for hot water heater
JP3804693B2 (en) Waste heat recovery system
JP5038641B2 (en) Heat source device, control method and control program for flow rate of heat medium
JP2017072345A (en) Heating device
JP3475638B2 (en) Hot water supply system
JP5316838B2 (en) Hot water heater
JP4064910B2 (en) Hot water floor heating method and apparatus
JP2006170480A (en) Hot water heating device
JP4382309B2 (en) Hot water storage water heater
JP2000205653A (en) Heat source facility
JP4233507B2 (en) Hot water heating system and operation method thereof
EP3525060B1 (en) Flow control module and method for controlling the flow in a hydronic system
JP2022134348A (en) Fluid circulation type heating system
JP3690842B2 (en) Waste heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4017817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees