JPH08337478A - Method for joining ceramics by superplastic diffusion - Google Patents

Method for joining ceramics by superplastic diffusion

Info

Publication number
JPH08337478A
JPH08337478A JP14436895A JP14436895A JPH08337478A JP H08337478 A JPH08337478 A JP H08337478A JP 14436895 A JP14436895 A JP 14436895A JP 14436895 A JP14436895 A JP 14436895A JP H08337478 A JPH08337478 A JP H08337478A
Authority
JP
Japan
Prior art keywords
sic
joining
ceramics
composite material
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14436895A
Other languages
Japanese (ja)
Inventor
Takayuki Nagano
永野  孝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP14436895A priority Critical patent/JPH08337478A/en
Publication of JPH08337478A publication Critical patent/JPH08337478A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enable joining ensuring strength close to that of materials to be joined at low temp. and pressure in a short time by vapordepositing an Si3 N4 - SiC composite material on a ceramic chip, superposing this chip on other ceramic chip and joining them under special conditions. CONSTITUTION: Amorphous powder of <=1μm average particle diameter contg. Si, C and N is press-compacted and fired to obtain an Si3 N4 /SiC composite material having 25-75vol.% SiC content. This composite material is vapor- deposited by CVD on the joining surface of at least one of ceramic chips 1 to be joined. The chips 1 are then superposed on each other, 5-30MPa pressure is applied in the directions of arrows and the chips 1 are joined by heating to 1,550-1,650 deg.C in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超塑性拡散接合を利用
した、Si3 4 /SiC複合材料を用いた窒化珪素
(Si3 4 )系および炭化珪素(SiC)系セラミッ
クス間の拡散接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to diffusion between silicon nitride (Si 3 N 4 ) and silicon carbide (SiC) ceramics using a Si 3 N 4 / SiC composite material utilizing superplastic diffusion bonding. Regarding the joining method.

【0002】[0002]

【従来の技術】窒化珪素(Si3 4 )系および炭化珪
素(SiC)系の材料は、優れた耐熱性を示し、熱膨張
係数が低いため耐熱衝撃抵抗性に優れ、耐摩耗性も高い
ことが知られている。したがって、各種の高強度耐熱部
品に応用が試みられている。具体的にいえば、ガスター
ビン部品、エンジン部品、切削工具、ベアリング、化学
プラント部材、半導体製造用部材、電気絶縁材料、各種
充填用フィラー等が挙げられる。また、自動車等のエン
ジンにおける応用例の一つとして、ターボチャージャー
(過給器)のローターが挙げられる。
2. Description of the Related Art Silicon nitride (Si 3 N 4 ) based materials and silicon carbide (SiC) based materials exhibit excellent heat resistance and have a low coefficient of thermal expansion and thus excellent thermal shock resistance and wear resistance. It is known. Therefore, application to various high-strength heat-resistant parts has been attempted. Specific examples include gas turbine parts, engine parts, cutting tools, bearings, chemical plant members, semiconductor manufacturing members, electrical insulating materials, and various fillers for filling. Further, as one of application examples in engines of automobiles and the like, there is a rotor of a turbocharger (supercharger).

【0003】このような窒化珪素または窒化珪素を主成
分とする材料を接合しようとする際には、いくつかの問
題があった。たとえば、このような窒化珪素系材料同士
を接合する場合に、ろう材や金属箔などのインサート材
を使用して接合しようとすると、室温における強度は比
較的よいものが得られても、高温における強度は、母材
の強度より劣るという問題があった。また、この窒化珪
素材またはその複合材同士を直に接合しようとする場合
には、コストと時間のかかる鏡面研磨を接合面に施さな
いと、よい結果が得られない問題があった。
There are some problems in joining such silicon nitride or a material containing silicon nitride as a main component. For example, when joining such silicon nitride-based materials with each other by using an insert material such as a brazing filler metal or a metal foil, even if the strength at room temperature is relatively good, the strength at room temperature is high. There was a problem that the strength was inferior to that of the base material. Further, in the case of directly joining the silicon nitride material or the composite material thereof, there is a problem that good results cannot be obtained unless mirror-polishing, which requires cost and time, is performed on the joining surface.

【0004】その他にも、たとえば、窒化珪素系材料お
よび炭化珪素(SiC)系材料は、共有結合性結晶で非
常にクリープ抵抗が高いため、その接合にはホットプレ
ス、熱間静水圧プレスなどの大型のプレス装置を必要と
する。また、接合強度は、界面の密着性が劣るため、母
材の強度に比べて低い接合強度しか得ることができな
い。そして、母材のセラミックスの焼結温度付近の高い
接合温度が必要である。さらに、同系異種材料間の接合
を行おうとすると、母材としてのセラミックスの焼結温
度付近の温度が接合に必要となるため、それらの材料間
の熱膨張係数の差から高い残留応力が発生し、接合強度
が低下するといった問題もある。
In addition, for example, silicon nitride-based materials and silicon carbide (SiC) -based materials are covalently bonded crystals and have a very high creep resistance, so that they are joined by hot pressing, hot isostatic pressing, or the like. Requires a large press machine. Moreover, since the bonding strength of the interface is inferior, the bonding strength is lower than that of the base material. Further, a high joining temperature near the sintering temperature of the base material ceramics is required. Furthermore, when attempting to join different materials of the same series, a temperature near the sintering temperature of the ceramics as the base material is required for joining, so high residual stress occurs due to the difference in the coefficient of thermal expansion between these materials. However, there is also a problem that the bonding strength is reduced.

【0005】[0005]

【発明が解決しようとする課題】上記のような、窒化珪
素系および炭化珪素系の材料同士の接合の際に生じる問
題に鑑み、本発明の目的は、母材強度に近い強度を有す
る接合を、従来よりも低い温度と圧力、そして短い時間
での接合を可能にする窒化珪素系および炭化珪素系セラ
ミックスの接合方法を提供することにある。
SUMMARY OF THE INVENTION In view of the problems that occur when joining silicon nitride-based and silicon carbide-based materials as described above, an object of the present invention is to provide a bond having a strength close to that of the base metal. Another object of the present invention is to provide a method for joining silicon nitride-based and silicon carbide-based ceramics, which enables joining at a temperature and pressure lower than conventional ones and in a short time.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では、Si/C/Nを含有してなる非晶質粉
末を出発原料としたSi3 4 /SiC複合材料が高い
温度で示す超塑性現象を利用することにより、拡散結合
を行う。
In order to achieve the above object, in the present invention, a Si 3 N 4 / SiC composite material starting from an amorphous powder containing Si / C / N is high. Diffusion bonding is performed by utilizing the superplastic phenomenon indicated by temperature.

【0007】本発明は、非晶質粉末を用いて得られた結
晶粒径が1μm以下のSi3 4 系またはSiC系また
はSi3 4 /SiC系のセラミックス間の接合方法で
あって、非晶質粉末を用いて得られた粒径が1μm以下
のSi3 4 /SiC系複合材料を、結合されるセラミ
ックスの少なくとも一方にあるいは中間層として用い、
1550〜1650℃の温度、5〜30MPaの圧力
で、非酸化性雰囲気中で接合を行うことを特徴とするセ
ラミックス間の超塑性拡散接合方法を提供する。
The present invention relates to a method for joining Si 3 N 4 system or SiC system or Si 3 N 4 / SiC system ceramics having a crystal grain size of 1 μm or less obtained by using amorphous powder, A Si 3 N 4 / SiC composite material having a particle size of 1 μm or less obtained by using an amorphous powder is used for at least one of the ceramics to be bonded or as an intermediate layer,
Provided is a superplastic diffusion bonding method between ceramics, which comprises performing bonding in a non-oxidizing atmosphere at a temperature of 1550 to 1650 ° C. and a pressure of 5 to 30 MPa.

【0008】本発明において接合されるセラミックス
は、Si3 4 系、SiC系、Si34 /SiC複合
系のセラミックスである。セラミックスの平均粒径は、
約1μm以下であることが好ましく、その下限は特に限
定されないものと考えられる。平均粒径が1μm以上で
あると、変形抵抗が高くなり、超塑性変形が起こりにく
くなる。このような条件を満たすセラミックスの場合、
出発物質の平均粒径は、約0.8μm以下であればよ
く、その製造方法は特に限定されない。また、出発物質
の好ましい平均粒径の範囲は、0.2〜0.6μmであ
る。一般に、出発物質の粒径が大きいと、得られたセラ
ミックスの粒径も大きくなり好ましくなく、また、出発
物質の粒径が小さすぎると、表面エネルギーが増大し
て、粒子の凝集が起こりやすくなって、好ましくない。
これらのセラミックスは、実質的にSi 3 4 またはS
iCまたはその両方のみからなるもののほか、焼成前に
添加される公知の焼結助剤等の添加物を含んだものであ
ってもよい。通常、何らかの不純物相を有するセラミッ
クスの方が、粒界にアモルファス相が形成されるので、
変形抵抗が小さくなり、好ましい。焼成後の粒径の範囲
は、通常、1〜5μm程度である。
Ceramics to be bonded in the present invention
Is Si3NFourSystem, SiC system, Si3NFour/ SiC composite
System ceramics. The average particle size of ceramics is
It is preferably about 1 μm or less, and the lower limit is particularly limited.
It is thought that it is not decided. If the average particle size is 1 μm or more
If so, the deformation resistance becomes high and superplastic deformation is hard to occur.
It becomes. In the case of ceramics that meet these conditions,
The average particle size of the starting material should be about 0.8 μm or less.
However, its manufacturing method is not particularly limited. Also the starting material
The range of the average particle size is preferably 0.2 to 0.6 μm.
It In general, the larger the particle size of the starting material, the more
The particle size of the mix becomes large, which is not preferable, and the start
If the particle size of the material is too small, the surface energy will increase
Then, aggregation of particles is likely to occur, which is not preferable.
These ceramics are essentially Si 3NFourOr S
In addition to iC or both, before firing
It contains additives such as known sintering aids to be added.
You may. Usually a ceramic with some impurity phase
Cus forms an amorphous phase at the grain boundaries,
The deformation resistance is small, which is preferable. Range of particle size after firing
Is usually about 1 to 5 μm.

【0009】これらのセラミックスに対して接合され
る、本発明のSi3 4 /SiC系複合材料は、Si,
C,Nを含有する非晶質粉末を出発原料として用いて製
造される、平均粒径が約1μm以下のセラミックスであ
る。CVD法によって得られる非晶質の粉末は、粒径が
小さくても均一に分布した微粉末が得られる。この出発
物質の粒径の好ましい範囲は、約0.02〜0.6μm
である。
The Si 3 N 4 / SiC composite material of the present invention, which is bonded to these ceramics, is made of Si,
A ceramic having an average particle size of about 1 μm or less, which is produced by using an amorphous powder containing C and N as a starting material. With the amorphous powder obtained by the CVD method, even if the particle size is small, a fine powder uniformly distributed can be obtained. The preferred range of particle size for this starting material is about 0.02-0.6 μm.
Is.

【0010】単一相の物質ではなく、二相混合複合材料
を用いるのは、焼成中の粒成長が抑制され、かつ、粒子
のアスペクト比が1に近くなるためである。このセラミ
ックス中のSiCの重量分率は、一般に、0〜100重
量%の範囲内にあって良いが、接合強度や接合時間の面
で優れた接合性を得るためには約25重量%〜75体積
%が望ましい。SiCが25〜75重量%の範囲のセラ
ミックスは、低応力で超塑性変形が起こるため、接合材
料として優れたものである。SiCが25重量%以下で
あると、SiCの粒子分散効果による粒子の微細化が起
こりにくく、変形抵抗が増大する。また、SiC量が7
5重量%を越えると、変形抵抗の増大が著しくなる。な
お、Si3 4 とSiCとを直接に接合することは可能
であるが、熱膨張係数差から生じる残留応力などのた
め、接合強度は半分程度となる。
The reason why a two-phase mixed composite material is used instead of a single-phase substance is that grain growth during firing is suppressed and the aspect ratio of the grains is close to 1. The weight fraction of SiC in this ceramic may be generally in the range of 0 to 100% by weight, but about 25% by weight to 75% by weight in order to obtain excellent bondability in terms of bonding strength and bonding time. Volume% is desirable. Ceramics with SiC in the range of 25 to 75% by weight are excellent as a joining material because superplastic deformation occurs at low stress. If the SiC content is 25% by weight or less, it is difficult for the particles to become fine due to the particle dispersion effect of SiC, and the deformation resistance increases. In addition, the amount of SiC is 7
If it exceeds 5% by weight, the deformation resistance increases remarkably. Although it is possible to directly bond Si 3 N 4 and SiC, the bonding strength becomes about half due to residual stress caused by the difference in thermal expansion coefficient.

【0011】このSi3 4 /SiC系複合材料の製造
方法としては、公知のCVD法による方法が好適であ
る。セラミックスの複合材料は、通常、異なる組成の粉
末を混合し、プレス成形した後、焼成することによって
得られる。このとき、粉末の粒径が小さくなると、表面
エネルギーの増大により、同種の粉末が凝集する傾向が
みられ、流動性が低下する。その結果得られた焼結体内
部に欠陥が生じ、破壊源となりやすい。したがって、別
々に調製した異なる粉末を混合せずに、第二相粒子が第
一層粒子に均一に分散している粉末原料が得られること
が望ましい。CVD法により得られる複合粉末は、微粒
子が均一に分散しており、欠陥のない焼結体が得られ
る。また、ガス流量を変化させることにより、組成を自
由に変更することができる点も有利である。
As a method for producing this Si 3 N 4 / SiC composite material, a known CVD method is suitable. A ceramic composite material is usually obtained by mixing powders having different compositions, press-molding them, and then firing them. At this time, if the particle size of the powder becomes small, the surface energy increases, and the powders of the same kind tend to agglomerate, and the fluidity decreases. As a result, a defect is generated inside the obtained sintered body, which easily becomes a source of destruction. Therefore, it is desirable to obtain a powder raw material in which the second phase particles are uniformly dispersed in the first layer particles without mixing different powders prepared separately. In the composite powder obtained by the CVD method, fine particles are uniformly dispersed, and a sintered body having no defects can be obtained. It is also advantageous that the composition can be freely changed by changing the gas flow rate.

【0012】接合の対象となるセラミックスの粒子のア
スペクト比は、1〜2程度が好ましく、1に近いのが最
も好ましい。1に近いほど、粒界滑りが起こりやすいた
め、変形抵抗が小さくなり、超塑性接合に有利になるか
らである。接合の際の温度としては、超塑性発現温度域
である1550〜1650℃が望ましい。1550℃よ
り低い温度では、材料の塑性変形抵抗が高く、接合界面
の密着化が困難である。1650℃より高い温度では、
Si3 4 の熱分解による強度劣化が顕著となる。
The aspect ratio of the ceramic particles to be joined is preferably about 1 to 2, and most preferably close to 1. The closer the value is to 1, the more easily the grain boundary slip occurs, and the smaller the deformation resistance becomes, which is advantageous for superplastic bonding. The temperature at the time of joining is preferably 1550 to 1650 ° C, which is the superplasticity developing temperature range. At a temperature lower than 1550 ° C., the plastic deformation resistance of the material is high, and it is difficult to adhere to the bonding interface. At temperatures above 1650 ° C,
The strength deterioration due to the thermal decomposition of Si 3 N 4 becomes remarkable.

【0013】なお、接合加熱時の雰囲気としては、窒化
珪素や炭化珪素の酸化を防止するために、非酸化性雰囲
気が好ましい。非酸化性雰囲気としては、窒素(N2
ガスあるいはアルゴン(Ar)ガスを炉内に満たすこと
が特に好ましい。接合圧力としては、5〜30MPaが
好ましい。5MPa以下では、接合界面の密着化が不十
分であり、30MPa以上では圧縮用治具のクリープ変
形等の問題が生じうる。また、30MPa以上の圧力
は、本発明による接合を十分に達成するのには、通常、
必要でない。接合強度は、一般に、接合圧力とともに増
加するが、ある値を越えると一定の値を示すからであ
る。(これ以上の圧力が必要な場合、接合温度を上昇さ
せることが必要である。)このような圧力域で接合がで
きるため、ホットプレス、熱間等方圧プレス(HIP)
などは必要なく、ハンドプレスなどを用いることができ
る。
The atmosphere for heating the bonding is preferably a non-oxidizing atmosphere in order to prevent the oxidation of silicon nitride and silicon carbide. Nitrogen (N 2 ) is used as the non-oxidizing atmosphere.
It is particularly preferable to fill the furnace with gas or argon (Ar) gas. The joining pressure is preferably 5 to 30 MPa. If it is 5 MPa or less, the adhesion of the bonding interface is insufficient, and if it is 30 MPa or more, problems such as creep deformation of the compression jig may occur. Further, a pressure of 30 MPa or more is usually required to sufficiently achieve the bonding according to the present invention.
Not necessary. This is because the bonding strength generally increases with the bonding pressure, but when it exceeds a certain value, it shows a constant value. (If a higher pressure is required, it is necessary to raise the bonding temperature.) Since bonding can be performed in such a pressure range, hot pressing, hot isostatic pressing (HIP)
However, a hand press or the like can be used.

【0014】接合加熱前の接合の対象となるセラミック
ス表面は、#200または#400程度のダイヤモンド
ホイール等の研磨材料を用いて仕上げるだけで十分であ
る。たとえば、鏡面仕上げといった時間とコストを要す
る仕上げは不要である。また、上述のCVD法を利用し
て、Si3 4 /SiC複合材料を、接合の対象となる
セラミックスの表面に、非晶質膜として蒸着することが
できる。この非晶質膜を挟んでセラミックスを接合し、
加圧焼結することにより、同種または異種のセラミック
スを接合し、複雑な形状を有する部品を製造することが
できる。また、CVD法による中間的な組成を有する膜
を蒸着することにより、組成が相当程度異なる2個のセ
ラミック片を強固に接合することが可能となる。また、
本発明方法によれば、2個のセラミックス片を接合する
のみでなく、3個以上のセラミックス片を重ねて一度に
接合することも可能である。さらに、組成を段階的また
は連続的に変化させた、セラミックスの薄板を積層し、
同時に接合して一体化することにより、傾斜機能材料を
製造することが可能である。
It is sufficient to finish the ceramics surface to be bonded before the bonding is heated with a polishing material such as a diamond wheel of about # 200 or # 400. For example, time-consuming and costly finishing such as mirror finishing is unnecessary. Further, the above-mentioned CVD method can be used to deposit the Si 3 N 4 / SiC composite material as an amorphous film on the surface of the ceramic to be bonded. Ceramics are bonded with this amorphous film sandwiched,
By pressure sintering, ceramics of the same kind or different kinds can be joined to manufacture a component having a complicated shape. Further, by depositing a film having an intermediate composition by the CVD method, it becomes possible to firmly bond two ceramic pieces having considerably different compositions. Also,
According to the method of the present invention, not only two ceramic pieces can be joined but also three or more ceramic pieces can be overlapped and joined at one time. Furthermore, by laminating ceramic thin plates whose composition is changed stepwise or continuously,
It is possible to manufacture a functionally gradient material by simultaneously joining and integrating them.

【0015】[0015]

【実施例】【Example】

(実施例1)試験片の材料としては、CVD法により得
られた、Siが58重量%、Cが7重量%、Nが33.
9重量%、Oが1重量%未満、Fe、Al、Caの合計
が50ppm未満の組成を有する、平均粒径が約0.3
μmであるSi3 4 /SiC非晶質粉末に、焼結助剤
として6重量%のY2 3 、2重量%のAl2 3 を添
加し、N2 ガス中で、ホットプレス圧力34MPa、1
650℃の条件の下で、1時間にわたって焼結させた。
得られた焼結体をダイヤモンドカッターで切断し、#4
00のダイヤモンドホイールにより平面研削して接合面
を準備した。接合面の面粗さは、Rmax<3μmであ
った。試験片の最終寸法は15×25×20mmであっ
た。また、試験片の結晶粒径は、約0.6μmであっ
た。
(Example 1) As a material of the test piece, Si was 58 wt%, C was 7 wt%, and N was 33.
9% by weight, O less than 1% by weight, Fe, Al, Ca total less than 50 ppm, average particle size of about 0.3
6 wt% Y 2 O 3 and 2 wt% Al 2 O 3 were added as sintering aids to the Si 3 N 4 / SiC amorphous powder of μm, and hot pressing pressure was applied in N 2 gas. 34 MPa, 1
It was sintered under the condition of 650 ° C. for 1 hour.
The obtained sintered body was cut with a diamond cutter to obtain # 4.
A diamond wheel No. 00 was used for surface grinding to prepare a joint surface. The surface roughness of the joint surface was Rmax <3 μm. The final dimensions of the test piece were 15 x 25 x 20 mm. The crystal grain size of the test piece was about 0.6 μm.

【0016】このようにして準備した接合試験片を、上
述の接合面をあわせて2個重ねて、万能材料試験器付属
の炉内のSiC治具上にセットした。真空引きした後、
2を流して、炉内をN2 雰囲気とし、1600℃の接
合温度まで昇温した。なお、N2 雰囲気としたのは試験
片の酸化を防止するためである。炉内温度が安定した
後、20MPaの接合圧力で試験片を10%変形させ、
30分間保持した後、炉冷した。このときの圧力の負荷
は、図1に示した要領で行われた。2個の試験片1を重
ね、この上下にSiC板2を置いて、さらにSiCロッ
ド3により矢印の方向に圧力を加えた。得られた焼結体
はダイヤモンドカッターで切断し、ダイヤモンドホイー
ルで平面研削して、JIS1601に基づく曲げ試験に
より接合強度を評価した。クロスヘッド速度は、0.5
mm/minであった。その結果、接合強度は、615
MPaを示し、母材強度670MPaの約90%の強度
が得られた。
Two of the joining test pieces thus prepared were put together on the joining surfaces described above, and set on a SiC jig in a furnace attached to the universal material tester. After evacuating,
N 2 was flowed to make the inside of the furnace an N 2 atmosphere, and the temperature was raised to a joining temperature of 1600 ° C. The N 2 atmosphere is used to prevent oxidation of the test piece. After the temperature inside the furnace was stabilized, the test piece was deformed by 10% with a joining pressure of 20 MPa,
After holding for 30 minutes, the furnace was cooled. The pressure was applied at this time in the manner shown in FIG. Two test pieces 1 were stacked, a SiC plate 2 was placed on the upper and lower sides thereof, and pressure was further applied by a SiC rod 3 in the direction of the arrow. The obtained sintered body was cut with a diamond cutter, surface-ground with a diamond wheel, and the bonding strength was evaluated by a bending test based on JIS1601. Crosshead speed is 0.5
It was mm / min. As a result, the bonding strength is 615.
MPa, and a strength of about 90% of the base material strength of 670 MPa was obtained.

【0017】(実施例2)接合する2個の試験片の組成
が異なる場合でも、本発明による拡散接合法により強固
な接合が得られることを明らかにするため、Siが58
重量%、Cが7重量%、Nが33.9重量%(図2
(A)中の4)、および、Siが60重量%、Cが0重
量%、Nが40重量%(図2(A)中の5)の2種類の
非晶質粉末を準備し、実施例1と同様にして、2個の試
験片を作成した。この接合試験片を#400のダイヤモ
ンドホイールにより平面研削した面を合わせて、これも
実施例1と同様の条件下で接合した。得られた接合強度
は、580MPaを示し、母材強度670MPaの約8
7%の強度が得られた。図2(B)には、さらに組成の
異なる複合材料片6を重ねて、3個の試験片を接合する
場合を示す。
(Embodiment 2) Even if the composition of two test pieces to be joined is different, Si is 58 in order to clarify that strong joining can be obtained by the diffusion joining method according to the present invention.
Wt%, C 7 wt%, N 33.9 wt% (Fig. 2
4) in (A), and two kinds of amorphous powders of 60% by weight of Si, 0% by weight of C, and 40% by weight of N (5 in FIG. 2A) are prepared and implemented. Two test pieces were prepared in the same manner as in Example 1. The joining test pieces were joined together under the same conditions as in Example 1 by bringing the surfaces ground by a # 400 diamond wheel into pieces. The obtained bonding strength shows 580 MPa, which is about 8 of the base metal strength of 670 MPa.
A strength of 7% was obtained. FIG. 2B shows a case where composite material pieces 6 having different compositions are further stacked and three test pieces are joined.

【0018】(実施例3)CVD法により接合用のSi
C/Si3 4 膜を作成し、2個の試験片の接合を行っ
た。第1の試験片の組成は、Si3 4 であり、第2の
試験片は、SiCであった。ヘキサメチルジシラザンを
1000℃、N2 +NH3 雰囲気中で反応させ、N2
1350℃で6時間熱処理する条件下で、第1試験片の
接合用の表面にCVD法により約0.3mmの厚さの非
晶質蒸着膜を形成した。ここで、実施例1および2にお
けるような接合面の平面研削は特に必要でない。蒸着膜
の組成は、Siが62重量%、Nが31重量%、Cが
6.7重量%であり、非晶質の粒径は、約0.4μmで
あった。その後、この蒸着膜に第2の試験片を合わせ、
実施例1と同様の条件の下で、拡散接合を行った。得ら
れた接合強度は、520MPaを示し、母材強度の約7
8%の強度が得られた。
(Example 3) Si for bonding by the CVD method
A C / Si 3 N 4 film was formed and two test pieces were joined. The composition of the first test piece was Si 3 N 4 and the second test piece was SiC. Hexamethyldisilazane was reacted in an atmosphere of N 2 + NH 3 at 1000 ° C., and heat-treated in N 2 at 1350 ° C. for 6 hours. An amorphous vapor deposition film having a thickness was formed. Here, the surface grinding of the joint surface as in Examples 1 and 2 is not particularly necessary. The composition of the deposited film was Si 62% by weight, N 31% by weight, C 6.7% by weight, and the amorphous grain size was about 0.4 μm. After that, align the second test piece with this evaporated film,
Diffusion bonding was performed under the same conditions as in Example 1. The obtained bonding strength shows 520 MPa, which is about 7 times the base metal strength.
A strength of 8% was obtained.

【0019】(実施例4)本発明による接合技術によれ
ば、組成を段階的または連続的に変化させた、平均粒径
が1μm以下であるセラミックスの薄板を積層し、同時
に接合して一体化することにより、傾斜機能材料を製造
することが可能である。#400のダイヤモンドホイー
ルで研削後の組成の異なるSiC/Si3 4複合材料
の薄板を複数、SiC片とSi3 4 片の間に組成順に
積層し、N2 中、接合温度1600℃、接合圧力18M
Pa、変形量15%の条件で接合した。組成を図3に示
す。各材料間の界面は、超塑性変形により完全に密着化
された。
(Embodiment 4) According to the joining technique according to the present invention, ceramic thin plates having an average grain size of 1 μm or less, the composition of which is changed stepwise or continuously, are laminated and simultaneously joined and integrated. By doing so, a functionally graded material can be manufactured. A plurality of thin plates of SiC / Si 3 N 4 composite material having different compositions after grinding with a # 400 diamond wheel were laminated in the order of composition between the SiC piece and the Si 3 N 4 piece, and the joining temperature was 1600 ° C. in N 2 . Bonding pressure 18M
Bonding was performed under the conditions of Pa and a deformation amount of 15%. The composition is shown in FIG. The interface between the materials was completely adhered by superplastic deformation.

【0020】[0020]

【発明の効果】以上に詳述したように、本発明によれ
ば、母材の強度に近い接合強度が、比較的に低い温度と
圧力、短い時間で得ることができる。接合強度は、室温
のみでなく、高温時においても高い。また、接合と同時
に成形を行うことも可能である。さらに、接合前に、接
合面を鏡面仕上げする必要がなく、比較的簡単な表面仕
上げで接合を行っても、十分な接合強度が得られる。し
たがって、本発明方法は、温度的にも、応力的にも過酷
な条件下に置かれる、ターボローターとその軸部の接合
にも利用することができる。
As described in detail above, according to the present invention, a bonding strength close to that of the base material can be obtained at a relatively low temperature and pressure for a short time. The bonding strength is high not only at room temperature but also at high temperature. It is also possible to perform molding at the same time as joining. Furthermore, it is not necessary to mirror-finish the joint surface before joining, and sufficient joining strength can be obtained even if joining is performed with a relatively simple surface finish. Therefore, the method of the present invention can also be used for joining a turbo rotor and its shaft portion that are subjected to severe conditions both in terms of temperature and stress.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるセラミックスの接合方法の要領
を説明する図。
FIG. 1 is a view for explaining the procedure of a ceramics joining method according to the present invention.

【図2】本発明方法を、Si3 4 系またはSiC系の
セラミックスに対してSi3 4 /SiC系の複合材料
のセラミックスに接合する場合を(A)および(B)と
して示す。
FIG. 2 shows the method of the present invention for Si3NFourSystem or SiC system
Si for ceramics3N Four/ SiC composite material
When joining to ceramics of (A) and (B)
And show it.

【図3】本発明方法を、Si3 4 −SiC系傾斜機能
材料の製造に適用する例を示す。
FIG. 3 shows an example in which the method of the present invention is applied to the production of a Si 3 N 4 —SiC functionally gradient material.

【符号の説明】[Explanation of symbols]

1 試験片 2 SiC板 3 SiCロッド 1 Test piece 2 SiC plate 3 SiC rod

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si3 4 系またはSiC系またはSi
3 4 /SiC系のセラミックス間の接合方法であっ
て、平均粒径が1μm以下の非晶質粉末を用いて得られ
たSi3 4 /SiC系複合材料からなるセラミックス
片を、接合するセラミックス片の少なくとも一方に用
い、1550〜1650℃の温度、5〜30MPaの圧
力、非酸化性雰囲気中で接合を行うことを特徴とするセ
ラミックス間の超塑性拡散接合方法。
1. Si 3 N 4 system or SiC system or Si
A 3 N 4 / bonding method between SiC-based ceramics, the ceramics pieces with an average particle diameter of the Si 3 N 4 / SiC composite material obtained using the following amorphous powder 1 [mu] m, bonded A superplastic diffusion bonding method between ceramics, which is used for at least one of the ceramic pieces and is bonded in a temperature of 1550 to 1650 ° C., a pressure of 5 to 30 MPa, and a non-oxidizing atmosphere.
【請求項2】 Si3 4 系またはSiC系またはSi
3 4 /SiC系のセラミックス間の接合方法であっ
て、非晶質粉末を用いて得られた粒径が1μm以下のS
3 4 /SiC系複合材料を、接合されるセラミック
ス片の少なくとも一方の接合表面にCVD法により蒸着
し、他方のセラミックス片に重ねた後、1550〜16
50℃の温度、5〜30MPaの圧力、非酸化性雰囲気
中で接合を行うことを特徴とするセラミックス間の超塑
性拡散接合方法。
2. Si 3 N 4 system or SiC system or Si
A method for joining 3 N 4 / SiC-based ceramics, which is obtained by using amorphous powder and has a particle size of 1 μm or less.
After depositing the i 3 N 4 / SiC-based composite material on at least one bonding surface of the ceramic pieces to be bonded by the CVD method and stacking it on the other ceramic piece, 1550 to 16
A superplastic diffusion bonding method between ceramics, which comprises performing bonding in a non-oxidizing atmosphere at a temperature of 50 ° C. and a pressure of 5 to 30 MPa.
【請求項3】 接合される上記セラミックス片の組成が
異なることを特徴とする請求項1または2記載のセラミ
ックス間の超塑性拡散接合方法。
3. The superplastic diffusion bonding method between ceramics according to claim 1, wherein the ceramic pieces to be bonded have different compositions.
JP14436895A 1995-06-12 1995-06-12 Method for joining ceramics by superplastic diffusion Pending JPH08337478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14436895A JPH08337478A (en) 1995-06-12 1995-06-12 Method for joining ceramics by superplastic diffusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14436895A JPH08337478A (en) 1995-06-12 1995-06-12 Method for joining ceramics by superplastic diffusion

Publications (1)

Publication Number Publication Date
JPH08337478A true JPH08337478A (en) 1996-12-24

Family

ID=15360497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14436895A Pending JPH08337478A (en) 1995-06-12 1995-06-12 Method for joining ceramics by superplastic diffusion

Country Status (1)

Country Link
JP (1) JPH08337478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7055236B2 (en) * 1999-08-13 2006-06-06 Asahi Glass Company, Limited Joining method for high-purity ceramic parts
KR20180103509A (en) * 2017-03-10 2018-09-19 서울시립대학교 산학협력단 Residual stress free joined SiC ceramics and the processing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7055236B2 (en) * 1999-08-13 2006-06-06 Asahi Glass Company, Limited Joining method for high-purity ceramic parts
KR20180103509A (en) * 2017-03-10 2018-09-19 서울시립대학교 산학협력단 Residual stress free joined SiC ceramics and the processing method of the same

Similar Documents

Publication Publication Date Title
US20060130998A1 (en) Heat sink having a high thermal conductivity
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
US20110182682A1 (en) Cutting insert and cutting tool
JPH06506187A (en) Method of manufacturing ceramic bodies
JPH08337478A (en) Method for joining ceramics by superplastic diffusion
JPH0624854A (en) Ceramics-metal joining body
KR20140047607A (en) Aln substrate and method for producing same
KR101141263B1 (en) ADHESIVE MATERIALS OF WC-Fe BASED HARD METAL AND MANUFACTURING METHOD OF THE SAME
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
CN212833506U (en) Polycrystalline cubic boron nitride composite sheet with surface nitrided or boronized hard alloy matrix
CN113264775A (en) Dense composite material, method for producing same, joined body, and member for semiconductor manufacturing apparatus
JPH05163078A (en) Joint form made up of ceramic and metal
JP3221180B2 (en) Ceramic-metal bonded body and method of manufacturing the same
JPS5884186A (en) Ceramics bonding method
JP3202670B2 (en) Manufacturing method of multilayer ceramics
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JPH0648849A (en) Ceramic composite material
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JPS63191505A (en) High hard sintered body tool
JPS5864271A (en) Silicon nitride sintered body
JPH06239669A (en) Joined material of ceramic and metal and its production
CN113754445A (en) Hard alloy matrix polycrystalline cubic boron nitride composite sheet with surface nitriding or boronizing treatment and preparation method thereof
JP2997645B2 (en) Manufacturing method of ceramic laminate
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JPH08157265A (en) Aluminum nitride sintered compact, laminated substrate and its production