JPH08333183A - Production of alumina refractory - Google Patents

Production of alumina refractory

Info

Publication number
JPH08333183A
JPH08333183A JP15700995A JP15700995A JPH08333183A JP H08333183 A JPH08333183 A JP H08333183A JP 15700995 A JP15700995 A JP 15700995A JP 15700995 A JP15700995 A JP 15700995A JP H08333183 A JPH08333183 A JP H08333183A
Authority
JP
Japan
Prior art keywords
base material
alumina
preform
refractory
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15700995A
Other languages
Japanese (ja)
Inventor
Takashi Yamamura
隆 山村
Ryosuke Nakamura
良介 中村
Shigeki Uchida
茂樹 内田
Koichiro Mori
孝一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP15700995A priority Critical patent/JPH08333183A/en
Publication of JPH08333183A publication Critical patent/JPH08333183A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To improve high-temperature strength and spalling resistance by kneading alumina raw materials and forming them to a preform having an open cell structure and a specific glass content, then reactively impregnating the preform with aluminum. CONSTITUTION: An alumina raw material such as aluminous shale with a silica content of <=5%, if necessary, a pore-forming agent, and a variety of oxides, carbides and, nitrides as components to be mixed are kneaded and formed through an arbitrary process and then fired usually at 800-1,800 deg.C for 1-several hours to prepare a preform which has a glass content of <=3% and open cells of which 15%-70% have 70μm or more cell diameters. A formed aluminum which has an almost same shape as that of the preform with a thickness of about 20mm is placed on the preform and pressed with a pressure of about 100MPa, then subjected to reactive impregnation in an oxygen atmosphere at 1,150 deg.C for 4 hours to give the objective alumina refractory. This refractory is useful in the sites which require excellent texture, strength, spalling resistance and abrasion resistance, for example, slide plates or sleeves for iron discharge outlets of a blast furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミナ質耐火物の製
造方法に関し、特に耐火物母材にアルミニウムを反応浸
透させることにより、優れた耐スポ−リング性及び熱間
強度を兼ね備えたアルミナ質耐火物の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alumina refractory material, and in particular, by reacting and infiltrating aluminum into a refractory base material, the alumina refractory material has excellent sponging resistance and hot strength. The present invention relates to a refractory manufacturing method.

【0002】[0002]

【従来の技術】熱間強度の大きな耐火物を製造する方法
として、耐火物の緻密化や結合強度の向上を意図した方
法が従来より行われている。その具体的な方法として
は、 (1) 超微粉原料を使用したり、高温で液相を生成する物
質を含まない高純度な原料を使用する方法 (2) 成形圧や焼成温度を高くしたり、成形にラバ−プレ
ス(CIP)を用いる方法 (3) HIPを用いて加圧焼成する方法 (4) 焼結促進剤を添加する方法 (5) セラミックスプレフォ−ム又は充填材の気孔に金属
を酸化させながら充填する方法(特公平3-75508号公報、
特開昭63-30376号公報、特開昭63-170256号公報参照) (6) ムライト含有セラミックス中に、アルミニウムを酸
化させながら反応浸透させる方法(特開平6-135766号公
報) が知られている。
2. Description of the Related Art As a method for producing a refractory having a high hot strength, a method intended to densify the refractory and improve the bonding strength has been conventionally performed. Specific methods include (1) using ultrafine powder raw materials, or using high-purity raw materials that do not contain substances that form a liquid phase at high temperatures (2) increasing molding pressure and firing temperature , A method of using a rubber press (CIP) for molding (3) a method of pressure burning using HIP (4) a method of adding a sintering accelerator (5) a metal in the pores of a ceramic preform or a filler. Method for filling while oxidizing (Japanese Patent Publication No. 3-75508)
(See JP-A-63-30376 and JP-A-63-170256) (6) A method of reacting and permeating aluminum into ceramic containing mullite while oxidizing it (JP-A-6-135766) is known. There is.

【0003】上記従来法のうち、(1)〜(4)の方法は、本
発明とは異なる方法であるが、(5),(6)の方法は、本発
明の先行技術に相当する。そこで、この(5),(6)の方法
について更に説明すると、これらの技術は、耐火物母
材、セラミックスプレフォ−ム及び充填材等に金属を反
応浸透させ、高強度化する方法である。
Among the above-mentioned conventional methods, the methods (1) to (4) are different from the present invention, but the methods (5) and (6) correspond to the prior art of the present invention. Therefore, further explaining the methods of (5) and (6), these techniques are methods for increasing the strength by reacting and permeating a metal into a refractory base material, a ceramic preform, a filler, and the like. .

【0004】[0004]

【発明が解決しようとする課題】前記(5),(6)の方法に
おいて、原料にウィスカ−や繊維を混合して製造した耐
火物母材、セラミックスプレフォ−ム及び充填材等に金
属を反応浸透させると、反応浸透物の耐スポ−リング性
の向上も期待できる。
In the methods (5) and (6), the refractory base material, the ceramic preform, the filler, etc. produced by mixing the raw material with whiskers or fibers are made of metal. The reaction permeation can be expected to improve the sponging resistance of the reaction permeate.

【0005】しかしながら、耐スポ−リング性の向上を
意図して、ウィスカ−や繊維を用いた場合、原料が高価
であるばかりでなく、ウィスカ−や繊維の分散が困難で
あるため、不均質なものと成り易い欠点を有している。
However, when whiskers and fibers are used for the purpose of improving the anti-spooling property, not only the raw materials are expensive, but also the whiskers and fibers are difficult to disperse, so that they are non-uniform. It has a drawback that it is easy to become a thing.

【0006】ところで、耐火物母材、セラミックスプレ
フォ−ム及び充填材等の特性は、反応浸透性や反応浸透
物の特性に対して大きな影響を与えるものであるが、過
去の文献において、それらの関係について詳細に説明し
たものは皆無である。そして、従来の技術では、この反
応浸透性や反応浸透物の特性を制御することは非常に困
難であった。
By the way, the characteristics of the refractory base material, the ceramics preform, the filler and the like have a great influence on the reaction permeability and the characteristics of the reaction permeate. There is no one that explained the relationship in detail. In the conventional technique, it is very difficult to control the reaction permeability and the characteristics of the reaction permeate.

【0007】そこで、本発明者等は、耐火物母材の特性
とアルミニウムを反応浸透させた反応浸透物の特性との
関係について鋭意研究を重ねた結果、高い熱間強度で、
しかも耐スポ−リング性に優れた耐火物(反応浸透物)を
製造するための反応浸透用母材の特性を解明し、本発明
を完成したものである。
Therefore, the inventors of the present invention have conducted extensive studies on the relationship between the characteristics of the refractory base material and the characteristics of the reaction permeation material obtained by reactively permeating aluminum.
Moreover, the characteristics of the base material for reaction infiltration for producing a refractory material (reaction infiltration material) having excellent sponging resistance have been clarified and the present invention has been completed.

【0008】即ち、本発明は、前記従来の欠点、問題点
を解消し、そして、高い熱間強度及び優れた耐スポ−リ
ング性を有するアルミナ質耐火物の製造方法を提供する
ことを目的とするものであり、また、特に熱間強度、耐
スポ−リング性、耐摩耗性などが要求される部材等の用
途に好適なアルミナ質耐火物を提供することを目的とす
る。
That is, an object of the present invention is to solve the above-mentioned conventional drawbacks and problems, and to provide a method for producing an alumina refractory material having high hot strength and excellent sparking resistance. In addition, it is an object of the present invention to provide an alumina refractory material suitable for applications such as members requiring particularly hot strength, sponging resistance, wear resistance and the like.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成する手段として、特に反応浸透用耐火物母材として ・ガラス含有量が3%以下の母材、 ・開口気孔のうち気孔径が70μm以上を15%以上有する
母材、を用いることを特徴とするものである。
Means for Solving the Problems The present invention is, as a means for achieving the above object, particularly as a refractory base material for reaction infiltration: a base material having a glass content of 3% or less; It is characterized by using a base material having 15% or more of 70 μm or more.

【0010】即ち、本発明は、「アルミナ系原料を用い
て混練・成形した後焼成し、ガラス含有量が3%以下
で、開口気孔のうち気孔径が70μm以上を15%以上有す
る母材を作製し、該母材にアルミニウムを反応浸透させ
ることを特徴とするアルミナ質耐火物の製造方法。」
(請求項1)、を要旨とする。
That is, according to the present invention, "a base material having a glass content of 3% or less and having a pore diameter of 70 μm or more and 15% or more of open pores is kneaded and molded using an alumina-based raw material and then fired. A method for producing an alumina refractory material, which is characterized by producing and reacting and permeating aluminum into the base material. "
(Claim 1) is the gist.

【0011】以下、本発明について詳細に説明すると、
本発明で用いる原料としては、その種類について特に限
定するものではなく、例えば、ばん土けつ岩,シリマナ
イト,ボ−キサイト,合成ムライト,電融アルミナ,焼
結アルミナ,仮焼アルミナ等の各種のアルミナ系原料を
使用することができる。また、その他気孔形成剤や混合
成分として各種の酸化物,炭化物,窒化物等を使用する
ことができ、これも本発明に包含されるものである。
The present invention will be described in detail below.
The type of raw material used in the present invention is not particularly limited, and examples thereof include shale shale, sillimanite, bauxite, synthetic mullite, fused alumina, sintered alumina, and calcined alumina. System raw materials can be used. In addition, various oxides, carbides, nitrides and the like can be used as the pore forming agent and the mixed component, and these are also included in the present invention.

【0012】本発明は、上記したようなアルミナ系原料
(又は該原料に上記したような混合成分を配合したもの)
を焼成して耐火物母材を作製するが、この母材中のガラ
ス含有量を3%以下にすることを特徴とする。このた
め、本発明で使用する原料(上記混合成分を含む)として
は、シリカ量が5%以下のものを用いるのが好ましい。
The present invention is based on the above-mentioned alumina raw material.
(Or a mixture of the raw materials with the above-mentioned mixed components)
Is fired to produce a refractory base material, which is characterized in that the glass content in the base material is 3% or less. Therefore, as the raw material (including the above-mentioned mixed components) used in the present invention, it is preferable to use a silica content of 5% or less.

【0013】本発明では、上記したように、耐火物母材
中のガラス量の割合を3%以下にすることを特徴とする
が、その理由について、図1に基づいて説明する。な
お、図1は、反応浸透物の熱間曲げ強度に及ぼす母材中
のガラス量の影響を示したグラフである。即ち、電融ア
ルミナ原料にカオリンをそれぞれ2%,4%,6%,8%,10%
混合し(この場合の母材中のガラス量は、図1に示すよ
うに、それぞれ0.8%,1.7%,2.6%,3.5%,4.3%とな
る)、後述する実施例1と同様な条件で母材を作製し
た。そして、該母材に実施例1と同条件でアルミニウム
を反応浸透させて製造した反応浸透物の“1400℃,N2
囲気における熱間曲げ強度”を測定した。この場合の反
応浸透物の熱間曲げ強度に及ぼす母材中のガラス量の影
響を示したグラフである。
As described above, the present invention is characterized in that the ratio of the amount of glass in the refractory base material is 3% or less. The reason for this will be described with reference to FIG. Note that FIG. 1 is a graph showing the influence of the amount of glass in the base material on the hot bending strength of the reaction permeate. That is, 2%, 4%, 6%, 8%, and 10% of kaolin was used as the raw material for fused alumina.
Mixed (the amounts of glass in the base material in this case are 0.8%, 1.7%, 2.6%, 3.5%, 4.3%, respectively, as shown in FIG. 1), and under the same conditions as in Example 1 described later. A base material was produced. Then, the "hot bending strength in a N 2 atmosphere at 1400 ° C." of the reaction permeation product produced by reacting and permeating aluminum into the base material under the same conditions as in Example 1 was measured. It is a graph which showed the influence of the amount of glass in a base material which acts on the hot bending strength of a reaction permeate in this case.

【0014】図1から明らかなように、母材中のガラス
量が3%を超えると、反応浸透物の熱間曲げ強度が低下
する。このため、本発明では、母材中のガラス量を3%
以下にする必要がある。母材中のガラス量が増加すると
(特に3%を超えると)、反応浸透物の熱間曲げ強度が低
下する理由は、熱間でガラス相が軟化・溶融し“粒界す
べり効果”が起こり、亀裂や空孔を生成したり進展させ
たりすることによると考えられるが、詳細は明らかでは
ない。
As is apparent from FIG. 1, when the amount of glass in the base material exceeds 3%, the hot bending strength of the reaction permeate decreases. Therefore, in the present invention, the glass amount in the base material is 3%.
Must be: When the amount of glass in the base material increases
The reason why the hot bending strength of the reaction permeate decreases when it exceeds 3% (particularly if it exceeds 3%) is that the glass phase softens and melts during the hot process, causing the "grain boundary sliding effect", which may cause cracks and voids. It may be due to progress, but details are not clear.

【0015】本発明において、母材製造のための成形方
法については、特に限定されるものではなく、例えば、
金型プレス成形,ラバ−プレス(等方静水圧プレス),押
出し成形,鋳込み成形,スリップキャスト,射出成形な
どの成形法を任意に用いることができる。母材の焼成条
件については、焼成温度や焼成時間についても特に限定
されるものではないが、本発明では、通常「800〜1800
℃で1時間〜数時間」焼成し、そして、母材中のガラス
量が3%以下で、しかも、後記するように、開口気孔の
うち気孔径が70μm以上を15%以上有したものになるよ
うに調整することが必要である。
In the present invention, the molding method for manufacturing the base material is not particularly limited, and for example,
Molding methods such as die press molding, rubber press (isostatic isostatic press), extrusion molding, casting molding, slip casting, injection molding and the like can be arbitrarily used. Regarding the firing conditions of the base material, the firing temperature and the firing time are not particularly limited, but in the present invention, it is usually "800 to 1800".
Calcination at 1 ° C to several hours ", and the glass content in the base material is 3% or less, and as will be described later, the open pores have a pore diameter of 70 µm or more and 15% or more. Need to be adjusted.

【0016】上記したように、本発明では、母材中のガ
ラス量は“原料の面から”及び“焼成条件の面から”の
両面の組合わせにより調製し、3%以下にする必要があ
るが、本発明では、さらに、母材の開口気孔のうち「気
孔径が70μm以上を15%以上有する」ものでなければな
らず、この点も本発明の特徴とするものである。以下、
この点について詳記する。
As described above, in the present invention, the amount of glass in the base material needs to be adjusted to 3% or less by the combination of both "from the viewpoint of raw material" and "from the viewpoint of firing conditions". However, in the present invention, the open pores of the base material must be “having a pore diameter of 70 μm or more and 15% or more”, which is also a feature of the present invention. Less than,
This point will be described in detail.

【0017】本発明者等は、「母材の開口気孔の気孔
径」と「該母材にアルミニウムを反応浸透させた反応浸
透物の耐スポ−リング性」との関係について研究を重ね
た結果、反応浸透物の耐スポ−リング性は“気孔径70μ
m以上の含有割合”と最も良く相関関係を示すことを見
い出した。「母材の開口気孔のうち気孔径70μm以上の
割合」と「反応浸透物の耐スポ−リング性」との関係に
ついて、図2に基づいて説明する。
As a result of repeated studies by the present inventors, the relationship between the "pore size of the open pores of the base material" and the "spooling resistance of the reaction permeate obtained by reacting and permeating aluminum into the base material" Spoiling resistance of the reaction permeate is 70 μm.
It has been found that it has the best correlation with the "content ratio of m or more". Regarding the relationship between "the ratio of the pore size of the open pores of the base material of 70 µm or more" and "the sponging resistance of the reaction permeate", A description will be given based on FIG.

【0018】図2は、母材の開口気孔のうち気孔径70μ
m以上の割合と反応浸透物のサイクル数(割れに至るま
での回数であって、これは“耐スポ−リング性の指標”
を表わす)との関係を示す図である。即ち、焼結アルミ
ナ原料にボ−ルクレ−を3%配合し、粒度の異なる6種
類の配合物とし、これらの配合物を60MPaの圧力で幅100
mm、厚み45mm、長さ160mmの形状に成形した後、1760℃
で3時間焼成して母材を得た。該母材に後述する実施例
1と同様な方法でアルミニウムを反応浸透させ、その
後、浸透部分を一辺36mmの立方体形状に加工し、『1000
℃/15分−水冷/3分−空冷/12分』の繰り返しによる
スポ−リング試験を実施し、割れに至るまでの回数(サ
イクル数)を測定した。図2は、この場合の耐スポ−リ
ング性の指標となる「サイクル数」と「母材の開口気孔
のうち気孔径が70μm以上の割合」との関係を示した図
である。
FIG. 2 shows a pore diameter of 70 μm among the open pores of the base material.
The ratio of m or more and the number of cycles of the reaction permeate (the number of times until cracking, which is an index of sponging resistance)
FIG. That is, 3% of ball clay was mixed with the sintered alumina raw material to prepare 6 kinds of compounds having different particle sizes, and these compounds were mixed at a pressure of 60 MPa and a width of 100%.
mm, thickness 45mm, length 160mm, then 1760 ℃
Then, it was baked for 3 hours to obtain a base material. Aluminum is reacted and infiltrated into the base material in the same manner as in Example 1 described later, and then the infiltrated portion is processed into a cubic shape with a side of 36 mm,
C./15 minutes-water cooling / 3 minutes-air cooling / 12 minutes "was repeated to carry out a spooling test, and the number of times (cycle number) until cracking was measured. FIG. 2 is a diagram showing the relationship between the “cycle number” which is an index of the anti-spooling property in this case and the “ratio of the open pores of the base material having a pore diameter of 70 μm or more”.

【0019】図2から明らかなように、母材の開口気孔
のうち気孔径が70μm以上を15%以上含有したものを母
材に用いた反応浸透物は、耐スポ−リング性に優れるこ
とが認められた。なお、本発明において、「母材の開口
気孔のうち気孔径が70μm以上の割合」を“15%以上”
とし、その上限について特に限定するものではないが、
通常“70%以下”が好ましい。その理由は、母材の開口
気孔のうち気孔径が70μm以上の割合を70%以上にする
ことは、容易ではなく、また、効果の向上も格別認めら
れないからである。
As is apparent from FIG. 2, the reaction permeation product using as the base material one having 15% or more of the open pores of the base material having a pore size of 70 μm or more is excellent in the anti-spooling property. Admitted. In the present invention, “the ratio of the open pores of the base material having a pore diameter of 70 μm or more” is “15% or more”.
And the upper limit is not particularly limited,
Generally, "70% or less" is preferable. The reason is that it is not easy to increase the ratio of the pore diameter of 70 μm or more among the open pores of the base material to 70% or more, and the improvement of the effect is not particularly recognized.

【0020】[0020]

【実施例】次に、本発明の実施例を比較例と共に挙げ、
本発明をより詳細に説明するが、本発明は、以下の実施
例にのみ限定されるものではない。
Next, examples of the present invention will be described together with comparative examples.
The present invention will be described in more detail, but the present invention is not limited only to the following examples.

【0021】ここで、以下の実施例1〜6及び比較例1
〜3で使用した母材製造用配合物の粒度について、まと
めて表1に示す。
Here, the following Examples 1 to 6 and Comparative Example 1
Table 1 shows the particle sizes of the base material-forming compounds used in Examples 1 to 3 together.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例1)焼結アルミナにボ−ルクレ−
を1%混合し、上記表1の粒度配合に示す粒度に調製
し、60MPaの圧力で幅85mm,厚み45mm,長さ110mmの形状
に成形し、この成形体を1760℃で3時間焼成して母材と
した。この母材中のガラス量は0.4%であり、開口気孔
のうち気孔径が70μm以上の割合は、22.5%であった。
(Example 1) A ball clay was added to sintered alumina.
1% was mixed to prepare a particle size shown in the particle size composition in Table 1 above, and molded at a pressure of 60 MPa into a shape with a width of 85 mm, a thickness of 45 mm and a length of 110 mm, and the molded body was baked at 1760 ° C. for 3 hours. I used it as the base material. The glass amount in this base material was 0.4%, and the ratio of the open pores having a pore diameter of 70 μm or more was 22.5%.

【0024】この母材上面に100MPaの圧力で幅85mm,厚
み20mm,長さ110mmの形状に成形したアルミニウム成形
体を載せ、酸素雰囲気中、1150℃、3時間保持の条件で
反応浸透させた。冷却後、反応浸透部分を切り出し、窒
素雰囲気中1400℃で熱間曲げ強度を測定した。また、浸
透部分を一辺36mmの立方体形状に加工し、『1000℃/15
分−水冷/3分−空冷/12分』の繰り返しによるスポ−
リング試験を実施した。
An aluminum molded body having a width of 85 mm, a thickness of 20 mm, and a length of 110 mm was placed on the upper surface of the base material at a pressure of 100 MPa, and the mixture was reacted and permeated under an oxygen atmosphere at 1150 ° C. for 3 hours. After cooling, the reaction permeated portion was cut out, and hot bending strength was measured at 1400 ° C. in a nitrogen atmosphere. In addition, the permeation part is processed into a cube shape with a side of 36 mm,
Minute-water cooling / 3 minutes-air cooling / 12 minutes "
A ring test was conducted.

【0025】その結果、反応浸透物の熱間曲げ強度は4
5.7MPaであった。なお、この値は、耐火物の中では非常
に大きな値である。一方、耐スポ−リング性の指標とな
るスポ−リングに至るまでのサイクル数は17回であり、
耐スポ−リング性にも優れていることが判明した。
As a result, the hot bending strength of the reaction permeate is 4
It was 5.7 MPa. This value is extremely large among refractory materials. On the other hand, the number of cycles to reach the spooling, which is an index of the spooling resistance, is 17,
It was also found to have excellent anti-spooling properties.

【0026】(実施例2)焼結アルミナ80%、仮焼アル
ミナ20%を混合し、表1の粒度配合に示す粒度とした
配合物を作製し、100MPaの圧力で幅85mm,厚み45mm,長
さ110mmの形状に成形した後、1650℃で3時間焼成して母
材とした。この母材のガラス量は0.01%と極微量であ
り、開口気孔のうち気孔径が70μm以上の割合は18.5%
であった。
(Example 2) 80% of sintered alumina and 20% of calcined alumina were mixed to prepare a mixture having a particle size shown in Table 1, and a pressure of 100 MPa gave a width of 85 mm, a thickness of 45 mm and a length of 45 mm. After being formed into a shape having a length of 110 mm, it was fired at 1650 ° C. for 3 hours to obtain a base material. The glass amount of this base material is 0.01%, which is a very small amount, and the ratio of open pores with a pore diameter of 70 μm or more is 18.5%.
Met.

【0027】該母材上面に母材重量に対し0.5%のパイ
レックスガラス粉末を塗布し、さらにその上部に100MPa
の圧力で幅85mm,厚み20mm,長さ110mmの形状に成形し
たアルミニウム成形体を載せ、実施例1と同条件で反応
浸透させた。その後、反応浸透部分について、実施例1
と同様な方法で熱間曲げ強度及び耐スポ−リング性の指
標となるサイクル数を測定した。その結果、反応浸透物
の熱間曲げ強度は46.5MPa、サイクル数は15回であっ
た。
0.5% of Pyrex glass powder with respect to the weight of the base material was applied on the upper surface of the base material, and 100 MPa was applied on the upper part
An aluminum compact molded into a shape having a width of 85 mm, a thickness of 20 mm and a length of 110 mm under the pressure was placed, and the reaction was permeated under the same conditions as in Example 1. Then, with respect to the reaction permeation portion, Example 1
The number of cycles, which is an index of hot bending strength and spooling resistance, was measured in the same manner as in (1). As a result, the hot bending strength of the reaction permeate was 46.5 MPa and the number of cycles was 15.

【0028】(実施例3)電融アルミナ96%、クロミア
3%、カオリン1%を混合し、表1の粒度配合に示す粒
度に調製した。これを100MPaの圧力で幅100mm,厚み45m
m,長さ160mmの形状に成形した後、1760℃で3時間焼成
して耐火物母材とした。この母材のガラス量は0.4%で
あり、開口気孔のうち気孔径が70μm以上の割合は42.3
%であった。
(Example 3) 96% of fused alumina, chromia
3% and 1% of kaolin were mixed to prepare particles having the particle sizes shown in Table 1. It is 100mm wide and 100mm wide and 45m thick.
After being molded into a shape of m and 160 mm in length, it was fired at 1760 ° C for 3 hours to form a refractory base material. The glass amount of this base material is 0.4%, and the ratio of open pores with a pore diameter of 70 μm or more is 42.3.
%Met.

【0029】該母材上面に、100MPaの圧力で幅100mm,
厚み20mm,長さ160mmの形状に成形したアルミニウム成
形体を載せ、実施例1と同条件でアルミニウムを反応浸
透させ、そして、実施例1と同様な方法で熱間曲げ強度
及び耐スポ−リング性の指標となるサイクル数を測定し
た。その結果、反応浸透物の熱間曲げ強度は41.2MPa、
サイクル数は23回であった。
On the upper surface of the base material, at a pressure of 100 MPa, a width of 100 mm,
An aluminum molded body having a thickness of 20 mm and a length of 160 mm was placed thereon, and aluminum was reactively permeated under the same conditions as in Example 1, and hot bending strength and sponging resistance were obtained in the same manner as in Example 1. The number of cycles, which is an index of, was measured. As a result, the hot bending strength of the reaction permeate is 41.2 MPa,
The number of cycles was 23.

【0030】(実施例4)焼結アルミナ60%、白ボ−キ
サイド36%、ボ−ルクレ−4%を混合し、表1の粒度配
合に示す粒度に調製し、100MPaの圧力で幅85mm、厚み
45mm、長さ110mmの形状に成形した後、1500℃で3時間焼
成して耐火物母材とした。この母材中のガラス量は2.6
%であり、開口気孔のうち気孔径が70μm以上の割合は
27.2%であった。
(Example 4) Sintered alumina 60%, white boxside 36%, and ball clay-4% were mixed to prepare particles having a particle size shown in Table 1, and a width of 85 mm at a pressure of 100 MPa, Thickness
After being formed into a shape with a length of 45 mm and a length of 110 mm, it was fired at 1500 ° C. for 3 hours to obtain a refractory base material. The amount of glass in this base material is 2.6
%, And the percentage of open pores with a pore size of 70 μm or more
It was 27.2%.

【0031】該母材上面に、100MPaの圧力で幅85mm,厚
み20mm,長さ110mmの形状に成形したアルミニウム成形
体を載せ、実施例1と同条件でアルミニウムを反応浸透
させ、そして、実施例1と同様な方法で熱間曲げ強度及
び耐スポ−リング性の指標となるサイクル数を測定し
た。その結果、反応浸透物の熱間曲げ強度は40.5MPa、
サイクル数は18回であった。
On the upper surface of the base material, an aluminum molded body having a width of 85 mm, a thickness of 20 mm and a length of 110 mm was placed under a pressure of 100 MPa, and aluminum was reacted and permeated under the same conditions as in Example 1, and The number of cycles, which is an index of hot bending strength and sponging resistance, was measured in the same manner as in 1. As a result, the hot bending strength of the reaction permeate was 40.5 MPa,
The number of cycles was 18 times.

【0032】(実施例5)電融アルミナ87%、炭化珪素
10%、パイレックス3%を混合し、表1の粒度配合に
示す粒度に調製し、60MPaの圧力で幅85mm,厚み45mm,
長さ110mmの形状に成形した後、1600℃で3時間焼成して
耐火物母材とした。この母材中のガラス量は1.3%であ
り、開口気孔のうち気孔径が70μm以上の割合は24.4%
であった。
(Embodiment 5) Fused alumina 87%, silicon carbide
10% and Pyrex 3% are mixed and adjusted to the particle size shown in the particle size composition of Table 1, width 85mm, thickness 45mm at a pressure of 60MPa,
After being formed into a shape with a length of 110 mm, it was fired at 1600 ° C. for 3 hours to obtain a refractory base material. The amount of glass in this base material is 1.3%, and the ratio of open pores with a pore diameter of 70 μm or more is 24.4%.
Met.

【0033】該母材上面に、100MPaの圧力で幅85mm,厚
み20mm,長さ110mmの形状に成形したアルミニウム成形
体を載せ、実施例1と同条件でアルミニウムを反応浸透
させ、そして、実施例1と同様な方法で熱間曲げ強度及
び耐スポ−リング性の指標となるサイクル数を測定し
た。その結果、反応浸透物の熱間曲げ強度は42.6MPa、
サイクル数は16回であった。また、反応浸透品の生成相
は、アルミナ,炭化珪素,アルミニウム,シリコンから
成っていた。
An aluminum molded body having a width of 85 mm, a thickness of 20 mm, and a length of 110 mm was placed on the upper surface of the base material at a pressure of 100 MPa, and the aluminum was reacted and permeated under the same conditions as in Example 1, and The number of cycles, which is an index of hot bending strength and sponging resistance, was measured in the same manner as in 1. As a result, the hot bending strength of the reaction permeate was 42.6 MPa,
The number of cycles was 16. Further, the production phase of the reaction-permeated product was composed of alumina, silicon carbide, aluminum and silicon.

【0034】(実施例6)焼結アルミナ90%、窒化珪素
7%、ボ−ルクレ−1%、気孔形成剤2%を混合し、表1
の粒度配合に示す粒度配合に調製し、60MPaの圧力で
幅85mm,厚み45mm,長さ110mmの形状に成形した後、176
0℃で3時間焼成して耐火物母材とした。この母材中のガ
ラス量は0.5%であり、開口気孔のうち気孔径が70μm
以上の割合は65.4%であった。
Example 6 Sintered alumina 90%, silicon nitride
7%, Bolecree-1%, and pore-forming agent 2% were mixed, and Table 1
Prepared to the particle size composition shown in the particle size composition and molded at a pressure of 60 MPa into a shape with a width of 85 mm, a thickness of 45 mm and a length of 110 mm, and then 176
The refractory base material was fired at 0 ° C for 3 hours. The amount of glass in this base material was 0.5%, and the pore diameter of the open pores was 70 μm.
The above rate was 65.4%.

【0035】該母材上面に、100MPaの圧力で幅85mm,厚
み20mm,長さ110mmの形状に成形したアルミニウム成形
体を載せ、実施例1と同条件でアルミニウムを反応浸透
させ、そして、実施例1と同様な方法で熱間曲げ強度及
び耐スポ−リング性の指標となるサイクル数を測定し
た。その結果、反応浸透物の熱間曲げ強度は39.2MPa、
サイクル数は22回であった。
An aluminum molded body having a width of 85 mm, a thickness of 20 mm and a length of 110 mm was placed on the upper surface of the base material under a pressure of 100 MPa, and the aluminum was reacted and permeated under the same conditions as in Example 1, and The number of cycles, which is an index of hot bending strength and sponging resistance, was measured in the same manner as in 1. As a result, the hot bending strength of the reaction permeate was 39.2 MPa,
The number of cycles was 22 times.

【0036】(比較例1)焼結アルミナ92%、カオリン
8%を混合し、表1の粒度配合に示す粒度に調製し、6
0MPaの圧力で幅100mm,厚み45mm,長さ160mmの形状に成
形した後、1500℃で3時間焼成したものを母材とした。
この母材中のガラス量は3.5%であり、開口気孔のうち
気孔径が70μm以上の割合は23.8%であった。
Comparative Example 1 Sintered alumina 92%, kaolin
8% was mixed and adjusted to the particle size shown in Table 1 for the particle size ratio.
A base material was formed by molding at a pressure of 0 MPa into a shape with a width of 100 mm, a thickness of 45 mm, and a length of 160 mm, and then firing at 1500 ° C. for 3 hours.
The glass amount in this base material was 3.5%, and the ratio of the open pores having a pore diameter of 70 μm or more was 23.8%.

【0037】該母材上面に、幅100mm,厚み20mm,長さ1
60mmの形状に成形したアルミニウム成形体を載せ、実施
例1と同条件でアルミニウムを反応浸透させた。その
後、反応浸透部分について、実施例1と同様な方法で熱
間曲げ強度及び耐スポ−リング性の指標となるサイクル
数を測定した。その結果、反応浸透物の熱間曲げ強度は
25.3MPa、サイクル数は16回であった。
On the upper surface of the base material, width 100 mm, thickness 20 mm, length 1
An aluminum molded body having a shape of 60 mm was placed, and aluminum was reactively permeated under the same conditions as in Example 1. Then, with respect to the reaction permeated portion, the number of cycles, which is an index of hot bending strength and spooling resistance, was measured in the same manner as in Example 1. As a result, the hot bending strength of the reactive permeate is
The number of cycles was 16 at 25.3 MPa.

【0038】この比較例1では、前記実施例1〜6と比
較して、熱間曲げ強度が小さいものであった。これは、
該比較例1では、本発明で規定する母材中のガラス含有
量の範囲(3%以下)を超えた“3.5%”のものであり、こ
のように母材中のガラス含有量が多いことが原因である
と考えられる。
In Comparative Example 1, the hot bending strength was small as compared with Examples 1 to 6 above. this is,
In Comparative Example 1, the glass content was "3.5%", which exceeded the range (3% or less) of the glass content in the base material specified in the present invention, and thus the glass content in the base material was large. Is believed to be the cause.

【0039】(比較例2)焼結アルミナ59%、電融アル
ミナ40%、ボ−ルクレ−1%を混合し、表1の粒度配合
に示す粒度に調製し、60MPaの圧力で幅85mm,厚み45m
m,長さ110mmの形状に成形した後、1760℃で3時間焼成
して耐火物母材とした。該母材中のガラス量は0.4%で
あり、開口気孔のうち気孔径が70μm以上の割合は12.1
%であった。
(Comparative Example 2) 59% of sintered alumina, 40% of fused alumina, and 1% of volley were mixed to prepare particles having a particle size composition shown in Table 1, and a pressure of 60 MPa gave a width of 85 mm and a thickness of 85 mm. 45m
After being molded into a shape of m and 110 mm in length, it was fired at 1760 ° C for 3 hours to form a refractory base material. The amount of glass in the base material was 0.4%, and the ratio of the open pores having a pore diameter of 70 μm or more was 12.1
%Met.

【0040】該母材上面に、100MPaの圧力で幅85mm,厚
み20mm,長さ110mmの形状に成形したアルミニウムを載
せ、実施例1と同条件でアルミニウムを反応浸透させ
た。その後、反応浸透部分について、実施例1と同様な
方法で熱間曲げ強度及び耐スポ−リング性の指標となる
サイクル数を測定した。その結果、反応浸透物の熱間曲
げ強度は44.6MPa、サイクル数は8回であった。
Aluminum formed into a shape of width 85 mm, thickness 20 mm, and length 110 mm under a pressure of 100 MPa was placed on the upper surface of the base material, and aluminum was reacted and permeated under the same conditions as in Example 1. Then, with respect to the reaction permeated portion, the number of cycles, which is an index of hot bending strength and spooling resistance, was measured in the same manner as in Example 1. As a result, the hot bending strength of the reaction permeate was 44.6 MPa and the number of cycles was 8.

【0041】この比較例2では、前記実施例1〜6と比
較してサイクル数が少なく、つまり耐スポ−リング性に
劣る結果となった。これは、該比較例2では、本発明で
規定する母材中の「開口気孔のうち気孔径が70μm以上
の割合=15%以上」の範囲外の“12.1%”であり、この
ように母材の開口気孔のうち70μm以上の割合が少なか
ったことが原因と考えられる。
In Comparative Example 2, the number of cycles was smaller than that in Examples 1 to 6, that is, the result was inferior in the spring resistance. In Comparative Example 2, this is “12.1%” which is outside the range of “ratio of pore diameter of open pores of 70 μm or more = 15% or more” in the base material specified in the present invention. It is considered that the ratio of 70 μm or more of the open pores of the material was small.

【0042】(比較例3)焼結アルミナ原料65%、仮焼
アルミナ25%、ボ−ルクレ−10%を混合し、表1の粒度
配合に示す粒度に調製し、60MPaの圧力で幅85mm,厚
み45mm,長さ110mmの形状に成形し、1600℃で3時間焼成
したものを母材とした。該母材のガラス量は3.9%であ
り、開口気孔のうち気孔径が70μm以上の割合は8.0%
であった。
(Comparative Example 3) Sintered alumina raw material 65%, calcined alumina 25%, and ball clay-10% were mixed to prepare a particle size shown in the particle size composition of Table 1, and a width of 85 mm at a pressure of 60 MPa, The base material was formed into a shape with a thickness of 45 mm and a length of 110 mm, and fired at 1600 ° C for 3 hours. The glass amount of the base material is 3.9%, and the ratio of the open pores having a pore diameter of 70 μm or more is 8.0%.
Met.

【0043】該母材上面に、100MPaの圧力で幅85mm,厚
み20mm,長さ110mmの形状に成形したアルミニウムを載
せ、実施例1と同条件でアルミニウムを反応浸透させ
た。その後、反応浸透部分について、実施例1と同様な
方法で熱間曲げ強度及び耐スポ−リング性の指標となる
サイクル数を測定した。その結果、反応浸透物の熱間曲
げ強度は21.7MPaであり、サイクル数は6回であった。
Aluminum formed into a shape of width 85 mm, thickness 20 mm, and length 110 mm under a pressure of 100 MPa was placed on the upper surface of the base material, and aluminum was reactively permeated under the same conditions as in Example 1. Then, with respect to the reaction permeated portion, the number of cycles, which is an index of hot bending strength and spooling resistance, was measured in the same manner as in Example 1. As a result, the hot bending strength of the reaction permeate was 21.7 MPa and the number of cycles was 6.

【0044】この比較例3では、前記実施例1〜6と比
較して、熱間曲げ強度が小さく、しかも耐スポ−リング
性の指標となるサイクル数も少なかった。これは、該比
較例3では、本発明で規定する「母材中のガラス量の範
囲(3%以下)」を超えた“3.9%”で、かつ、本発明で規
定する母材中の「開口気孔のうち気孔径が70μm以上の
割合=15%以上」の範囲外の“8.0%”であり、このよ
うに『母材中のガラス含有量が多かったこと』及び『母
材の開口気孔のうち70μm以上の割合が少なかったこ
と』が原因と考えられる。
In Comparative Example 3, as compared with Examples 1 to 6, the hot bending strength was small, and the number of cycles as an index of the anti-spooling property was small. This is "3.9%" in Comparative Example 3 which exceeds the "range of glass amount in the base material (3% or less)" specified in the present invention, and "in the base material specified in the present invention". The ratio of the open pores having a pore diameter of 70 μm or more = 15% or more was “8.0%”, and thus “the glass content in the base material was large” and “the open pores of the base material” The ratio of 70 μm or more was low ”.

【0045】ここで、前記実施例1〜6及び比較例1〜
3で使用した母材、反応浸透品の熱間曲げ強度(MPa)、
耐スポ−リング性の指標となるサイクル数(回)をまとめ
て表2、表3に示す。
Here, the above Examples 1 to 6 and Comparative Examples 1 to
Hot bending strength (MPa) of the base material and reactive osmosis product used in 3.
Tables 2 and 3 collectively show the number of cycles (times) as an index of the anti-spooling property.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【発明の効果】本発明は、以上詳細したとおり、アルミ
ナ系原料を用いて混練・成形した後焼成し、「ガラス含
有量が3%以下」「開口気孔のうち気孔径が70μm以上
を15%以上」有する母材を作製し、該母材にアルミニウ
ムを反応浸透させることを特徴とするものであり、これ
により、熱間強度が大きく、しかも耐スポ−リング性に
優れたアルミナ質耐火物が得られる効果が生じる。
As described in detail above, the present invention is carried out by kneading and molding using an alumina-based raw material, followed by firing, "glass content is 3% or less""open pores having a pore diameter of 70 μm or more of 15%. It is characterized in that a base material having "above" is produced, and aluminum is reacted and permeated into the base material, whereby an alumina refractory material having a large hot strength and an excellent spring resistance is obtained. The effect obtained is produced.

【0049】そして、本発明の方法により得られたアル
ミナ質耐火物は、優れた組織、強度、耐スポ−リング
性、耐摩耗性等が要求される部位、例えば、スライドプ
レ−ト、出銑口スリ−ブ等に好適な耐火物である。
The alumina refractory material obtained by the method of the present invention is a portion requiring excellent structure, strength, spooling resistance, wear resistance and the like, for example, a slide plate and pig iron. It is a refractory material suitable for mouth sleeves and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】母材中のガラス量と反応浸透物の熱間曲げ強度
(窒素雰囲気で1400℃)との関係を示す図。
Fig. 1 Glass content in base metal and hot bending strength of reaction permeate
The figure which shows the relationship with (1400 degreeC in nitrogen atmosphere).

【図2】母材の開口気孔のうち気孔径70μm以上の割合
と反応浸透物のサイクル数(割れに至るまでの回数、耐
スポ−リング性の指標)との関係を示す図。
FIG. 2 is a diagram showing the relationship between the ratio of the pore diameter of 70 μm or more of the open pores of the base material and the number of cycles of the reaction permeate (the number of cycles until cracking, an index of sponging resistance).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ系原料を用いて混練・成形した
後焼成し、ガラス含有量が3%以下で、開口気孔のうち
気孔径が70μm以上を15%以上有する母材を作製し、該
母材にアルミニウムを反応浸透させることを特徴とする
アルミナ質耐火物の製造方法。
1. A base material having a glass content of 3% or less and having pore diameters of 70 μm or more and 15% or more of open pores is prepared by kneading and molding using an alumina-based raw material, A method for producing an alumina refractory material, which comprises reacting and permeating aluminum into a material.
【請求項2】 前記アルミナ系原料が、ばん土けつ岩,
シリマナイト,ボ−キサイト,合成ムライト,電融アル
ミナ,焼結アルミナ,仮焼アルミナ等の各種のアルミナ
系原料、又は、該アルミナ系原料に他の成分(各種の酸
化物,炭化物,窒化物等)及び気孔形成剤を配合したも
のであることを特徴とする請求項1に記載のアルミナ質
耐火物の製造方法。
2. The alumina-based raw material is shale shale,
Various alumina-based raw materials such as sillimanite, bauxite, synthetic mullite, fused alumina, sintered alumina, calcined alumina, or other components (various oxides, carbides, nitrides, etc.) in the alumina-based raw material. The method for producing an alumina refractory material according to claim 1, further comprising: a pore-forming agent.
【請求項3】 前記母材中のガラス含有量を3%以下に
する手段として、アルミナ系原料のシリカ量及び焼成条
件の組合わせにより調製することを特徴とする請求項1
に記載のアルミナ質耐火物の製造方法。
3. As a means for reducing the glass content in the base material to 3% or less, it is prepared by a combination of the silica content of the alumina-based raw material and the firing conditions.
The method for producing an alumina refractory material according to 1.
JP15700995A 1995-05-31 1995-05-31 Production of alumina refractory Pending JPH08333183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15700995A JPH08333183A (en) 1995-05-31 1995-05-31 Production of alumina refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15700995A JPH08333183A (en) 1995-05-31 1995-05-31 Production of alumina refractory

Publications (1)

Publication Number Publication Date
JPH08333183A true JPH08333183A (en) 1996-12-17

Family

ID=15640191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15700995A Pending JPH08333183A (en) 1995-05-31 1995-05-31 Production of alumina refractory

Country Status (1)

Country Link
JP (1) JPH08333183A (en)

Similar Documents

Publication Publication Date Title
EP1666433B1 (en) SiC REFRACTORY COMPRISING SILICON NITRIDE BONDED THERETO
CN101302111A (en) Reactive liquid ceramics bonding agent
JPH07187845A (en) Ceramic porous body and its production
US2636828A (en) Silicon nitride-bonded refractory oxide bodies and method of making
JPS6050750B2 (en) Silicon nitride composite sintered body
JPH08333183A (en) Production of alumina refractory
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
KR100419778B1 (en) Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering
JP2006334976A (en) Method for producing fine ceramic using ultrasonic waves
JPH06157152A (en) Fiber reinforced composite gradient material and it production
JP2508511B2 (en) Alumina composite
JP5166223B2 (en) Method for joining members to be joined of silicon nitride ceramics
JPH05262557A (en) Production of ceramic sintered production
JPH10279360A (en) Silicon nitride structural parts and its production
JPH0337176A (en) Reacted sintered silicon carbide product and its preparation
JP2003081682A (en) Method of producing silicon-impregnated silicon carbide ceramic
JP2817908B2 (en) Method for producing silicon oxynitride-based ceramics having hot workability
JPH05148035A (en) Production of sintered silicon nitride
JPS63315580A (en) Porous silicon carbide ceramic
JPH0568428B2 (en)
JPH066502B2 (en) Alumina ceramic sintered body
JPH07309665A (en) Silicon nitride sintered compact having high breaking toughness by addition of different particles and its production
JPH08245284A (en) Production of dense aluminous refractory
JPS581073B2 (en) How to get started
JPH05238829A (en) Sintered silicone nitride ceramic