JPH08245284A - Production of dense aluminous refractory - Google Patents

Production of dense aluminous refractory

Info

Publication number
JPH08245284A
JPH08245284A JP7072263A JP7226395A JPH08245284A JP H08245284 A JPH08245284 A JP H08245284A JP 7072263 A JP7072263 A JP 7072263A JP 7226395 A JP7226395 A JP 7226395A JP H08245284 A JPH08245284 A JP H08245284A
Authority
JP
Japan
Prior art keywords
base material
aluminum
silica
refractory
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7072263A
Other languages
Japanese (ja)
Inventor
Takashi Yamamura
隆 山村
Ryosuke Nakamura
良介 中村
Shigeki Uchida
茂樹 内田
Koichiro Mori
孝一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP7072263A priority Critical patent/JPH08245284A/en
Publication of JPH08245284A publication Critical patent/JPH08245284A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To efficiently produce dense aluminous refractories in a short time. CONSTITUTION: Glass phase-contg. refractories obtd. using alumina-silica stock and having 0.1-5wt.% silica content, 15-30% apparent porosity and 0.1-7wt.% glass phase content are heated as base materials at 1,000-1,230 deg.C in an oxygen- contg. atmosphere while keeping aluminum in contact with the surfaces of the base materials to allow the aluminum to react and penetrate into the pores in the base materials. The resultant dense aluminous refractories have a superior structure, superior strength, corrosion and wear resistances.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、緻密なアルミナ質耐火
物の製造方法に関し、特に緻密なアルミナ質耐火物を短
時間で効率よく製造することができる該アルミナ質耐火
物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dense alumina refractory material, and more particularly to a method for producing a dense alumina refractory material in a short time and efficiently.

【0002】[0002]

【従来の技術】セラミックスを緻密化する方法として
は、従来より (1) 成形圧や焼成温度を高くしたり、成形にラバ−プレ
ス(CIP)を用いる方法 (2) HIPを用いて加圧焼成する方法 (3) 焼結促進剤を添加する方法 (4) セラミックス成形体に液体金属塩又はタ−ル等を含
浸し、加熱処理によって該成形体中の気孔を滅する方法 (5) セラミックスプレフォ−ム又は充填材の気孔に金属
を酸化させながら充填する方法(特公平3−75508号公
報、特開昭63−30376号公報、特開昭63−170256号公報
参照) (6) ムライト含有セラミックス中に、アルミニウムを酸
化させながら反応浸透させる方法(特開平6−135766号公
報参照) が知られている。
2. Description of the Related Art As a method for densifying ceramics, (1) a higher molding pressure or firing temperature or a method using a rubber press (CIP) for shaping (2) pressure firing using HIP Method (3) Method of adding sintering accelerator (4) Method of impregnating a ceramic molded body with a liquid metal salt or tar, and extinguishing pores in the molded body by heat treatment (5) Ceramic preform -A method of filling the pores of a metal or a filler while oxidizing the metal (see JP-B-3-75508, JP-A-63-30376, JP-A-63-170256) (6) Mullite-containing ceramics There is known a method in which aluminum is reacted and permeated while being oxidized (see JP-A-6-135766).

【0003】[0003]

【発明が解決しようとする課題】上記従来法のうち(1)
〜(4)の方法は、後に詳記する本発明とは全く異なる方
法であって、出発原料を微粉砕する必要があったり、大
型の装置を要するものである。
Among the above conventional methods (1)
The methods (4) to (4) are completely different from the method of the present invention, which will be described in detail later, and require the starting material to be finely pulverized or require a large apparatus.

【0004】従来法(5)の技術は、高度に緻密化でき、
高温使用も可能であるが、緻密体を製造する速度が極め
て遅く、長時間の加熱を要し、製造効率が悪いという欠
点があった。一方、従来法(6)の技術では、上記従来法
(5)と同様、緻密体の製造が可能であるが、製造の条件
によっては反応浸透性が大きく変化し、安定した製品が
得られ難いという欠点があった。
The conventional method (5) can be highly densified,
Although it can be used at high temperature, it has a drawback that the production rate of the dense body is extremely slow, heating for a long time is required, and the production efficiency is poor. On the other hand, in the conventional method (6), the conventional method
As in the case of (5), it is possible to manufacture a dense body, but there is a drawback in that the reaction permeability greatly changes depending on the manufacturing conditions and it is difficult to obtain a stable product.

【0005】このような緻密体を耐火物として使用する
場合、ある程度大型品とする必要があり、その製造効率
が問題となるが、上記従来法(5)で大型品を製造しよう
とすると、より一層長時間の加熱を必要とし、製造効率
が極端に悪く、また、従来法(6)によっても安定した大
型品が得られないという問題点を有している。
When such a dense body is used as a refractory, it is necessary to make it a large-sized product to some extent, and its production efficiency becomes a problem. However, if a large-sized product is produced by the above conventional method (5), There are problems that heating for a longer time is required, manufacturing efficiency is extremely poor, and a stable large-sized product cannot be obtained even by the conventional method (6).

【0006】本発明者等は、耐火物の気孔中にアルミニ
ウムを酸化させながら反応浸透させて緻密化する方法に
ついて研究を重ねた結果、従来法にみられなかった非常
に短時間でアルミナ−シリカ系耐火物を緻密化できる方
法を見いだし、本発明を完成したものである。
The inventors of the present invention have conducted extensive research on a method of oxidizing aluminum into the pores of a refractory while oxidizing and reacting the aluminum to densify it. As a result, the alumina-silica in a very short time, which was not found in the conventional method. The present invention has been completed by finding a method capable of densifying a refractory-based material.

【0007】即ち、本発明は、前記従来の欠点、問題点
を解消することを目的とし、特に強度、耐食性、耐摩耗
性などが要求される部材等の用途に適した緻密なアルミ
ナ質耐火物を短時間で効率よく製造することができる方
法を提供することを目的とする。また、本発明は、大型
品であっても、従来法に比し短時間で効率よく製造でき
る緻密なアルミナ質耐火物の製造方法を提供することを
目的とする。
That is, the present invention aims to solve the above-mentioned conventional drawbacks and problems, and in particular, a dense alumina refractory material suitable for applications such as members requiring strength, corrosion resistance and wear resistance. It is an object of the present invention to provide a method capable of efficiently producing lactic acid in a short time. It is another object of the present invention to provide a method for producing a dense alumina refractory material, which can efficiently produce a large product in a shorter time than the conventional method.

【0008】[0008]

【課題を解決するための手段】本発明は、アルミナ−シ
リカ系のガラス相含有耐火物を母材とし、この母材表面
にアルミニウムを接触させ、所定の条件下で加熱するこ
とを特徴とし、これにより前記した従来の欠点、問題点
を解消し、前記した目的とする緻密なアルミナ質耐火物
の製造方法を提供するものである。
The present invention is characterized in that an alumina-silica-based glass phase-containing refractory material is used as a base material, aluminum is brought into contact with the surface of the base material, and heating is performed under predetermined conditions. Accordingly, the above-mentioned conventional drawbacks and problems are solved, and a method for producing a dense alumina refractory material as described above is provided.

【0009】即ち、本発明は、「アルミナ−シリカ系原
料を用いて得られるシリカ含有量:0.1〜5重量%で見掛
気孔率:15〜30%のガラス相含有耐火物を母材とし、該
母材表面にアルミニウムを接触させた状態で酸素含有雰
囲気中1000〜1230℃で加熱し、前記母材の気孔中にアル
ミニウムを反応浸透させることを特徴とする緻密なアル
ミナ質耐火物の製造方法。」(請求項1)を要旨とする。
That is, according to the present invention, "a silica-containing refractory material having a silica content of 0.1 to 5% by weight and an apparent porosity of 15 to 30% obtained by using an alumina-silica-based material is used as a base material, A method for producing a dense alumina refractory material, which comprises heating aluminum in an oxygen-containing atmosphere at 1000 to 1230 ° C. in a state where aluminum is brought into contact with the surface of the base material, and allowing the aluminum to react and permeate into the pores of the base material. . "(Claim 1).

【0010】また、本発明は、 ・前記ガラス相含有耐火物からなる母材が、アルミナ−
シリカ系原料を焼成して得られた耐火物であること(請
求項2)、 ・前記ガラス相含有耐火物からなる母材中のガラス相含
有量が、母材の重量に対し0.1〜7重量%であること(請
求項3)、 を本発明の好ましい実施態様とするものである。
In the present invention, the base material composed of the glass phase-containing refractory material is alumina-
It is a refractory obtained by firing a silica-based raw material (claim 2), and the glass phase content in the base material made of the glass phase-containing refractory is 0.1 to 7 weight relative to the weight of the base material. % (Claim 3) is a preferred embodiment of the present invention.

【0011】以下、本発明に係る緻密なアルミナ質耐火
物の製造方法について詳細に説明すると、本発明におけ
る“アルミニウムの反応浸透”とは、母材中の気孔にア
ルミニウムが浸透すると同時に、そのアルミニウムの一
部が雰囲気中の酸素や母材中のシリカ系物質と反応して
アルミニウム酸化物を形成することを意味し、これによ
り母材は、アルミニウム及びアルミニウム酸化物によっ
て気孔が埋められ緻密化するものである。このようにア
ルミニウムの浸透に伴いアルミニウム酸化物が随時形成
されるので、本明細書で便宜上“アルミニウムの反応浸
透”という表現を用いることとする。
The method for producing a dense alumina refractory material according to the present invention will be described in detail below. The "reactive infiltration of aluminum" in the present invention means that aluminum penetrates into the pores of the base material and the aluminum Part of the aluminum reacts with oxygen in the atmosphere and the silica-based material in the base material to form aluminum oxide, which causes the base material to be densified by filling pores with aluminum and aluminum oxide. It is a thing. As described above, since aluminum oxide is formed at any time along with the permeation of aluminum, the expression “reactive permeation of aluminum” will be used for convenience in this specification.

【0012】本発明に用いるアルミナ−シリカ系原料と
しては、アルミナ及び/又はシリカを含む原料であれば
任意に使用することができ、本発明で特に限定するもの
ではない。これを例示すると、珪石、珪砂、陶石、ろう
石、粘土、シャモット、ばん土けつ岩、シリマナイト、
ボ−キサイト、合成ムライト、電融アルミナ、焼結アル
ミナ、仮焼アルミナなどが挙げられる。また、その他の
原料として、各酸化物,炭化物,窒化物を、焼結促進材
や強度付与などの目的で、母材重量に対し10%以下含有
していてもよく、これも本発明に包含されるものであ
る。
Any raw material containing alumina and / or silica may be used as the alumina-silica-based raw material used in the present invention, and is not particularly limited in the present invention. Examples of this are silica stones, silica sand, porcelain stones, wax stones, clay, chamotte, shale shale, sillimanite,
Examples include bauxite, synthetic mullite, fused alumina, sintered alumina, and calcined alumina. Further, as other raw materials, each oxide, carbide, or nitride may be contained in an amount of 10% or less with respect to the weight of the base material for the purpose of providing a sintering accelerator or strength, and this is also included in the present invention. It is what is done.

【0013】本発明は、上記のようなアルミナ−シリカ
系原料(又はこの原料に上記したその他の原料を配合し
たもの)を用いて製造されたガラス相含有耐火物を母材
とするものであるが、この母材中のシリカ(ガラス成分
+結晶質)の割合は、0.1〜5重量%にすべきである。そ
の理由は、シリカ量が0.1重量%未満であると、後述
するガラス相の量が少なくなり過ぎるため、反応誘発剤
としての機能が十分発揮されず、反応浸透が殆ど生じな
いからである。
The present invention uses, as a base material, a glass phase-containing refractory material produced by using the above-described alumina-silica-based raw material (or a mixture of this raw material with the other raw material described above). However, the proportion of silica (glass component + crystalline) in this matrix should be 0.1-5% by weight. The reason is that when the amount of silica is less than 0.1% by weight, the amount of the glass phase described below becomes too small, so that the function as a reaction inducer is not sufficiently exerted and reaction permeation hardly occurs.

【0014】一方、シリカ量が5重量%を越えると、
母材の単位面積当たりの反応生成物量が多くなり過ぎ、
アルミニウムの反応浸透通路が小さくなって浸透速度が
低下し、反応浸透時間が長くなるので好ましくない。ま
た、シリカとアルミニウムの反応によりシリカが還元
され、金属シリコンが析出することになるが、シリカ量
が多いと、析出する金属シリコン量も多くなり、高温で
使用する場合に耐食性が低下する等の問題が生じる。
On the other hand, when the amount of silica exceeds 5% by weight,
The amount of reaction products per unit area of the base material becomes too large,
This is not preferable because the reaction permeation passage of aluminum becomes small and the permeation rate decreases, and the reaction permeation time becomes long. Further, silica is reduced by the reaction of silica and aluminum, and metallic silicon is deposited. However, if the amount of silica is large, the amount of metallic silicon that is deposited is also large, and corrosion resistance decreases when used at high temperatures. The problem arises.

【0015】さらに、母材中のシリカ量が多いと、母
材側面等への余分な生成が多くなり、この余分に生成し
た部分を反応浸透させた後に取り除く工程(加工工程)を
必要とし、製造効率を低下させる等の問題が生じる。
Further, when the amount of silica in the base material is large, excessive formation on the side surface of the base material and the like increases, and a step (processing step) for removing the excessively generated portion after reaction permeation is required, Problems such as a decrease in manufacturing efficiency occur.

【0016】上記の理由を図1に基づいて更に説明す
る。なお、図1は、母材にアルミニウムを反応浸透させ
るその前後の試料の各切断面を模式的に示す図であっ
て、(A)は反応浸透前の試料、(B)は反応浸透後の試料
を示す図である。図1(A)に示す母材2中にシリカ成分
が多い場合、この母材2を本発明にしたがって酸素含有
雰囲気中で1000〜1230℃で加熱し、アルミニウム1を反
応浸透させると、(B)に示すように、緻密化した耐火物
3の側面等に余分に生成した部分4が多くなる。この部
分4を後に取り除く加工工程を必要とし、製造効率を低
下させることになる。
The above reason will be further described with reference to FIG. FIG. 1 is a diagram schematically showing each cut surface of the sample before and after the reaction and permeation of aluminum into the base material. (A) is the sample before the reaction and the (B) is the sample after the reaction and the permeation. It is a figure which shows a sample. When the base material 2 shown in FIG. 1 (A) contains a large amount of silica component, the base material 2 is heated at 1000 to 1230 ° C. in an oxygen-containing atmosphere according to the present invention to react and permeate aluminum 1 (B). As shown in (), the number of extra portions 4 formed on the side surface of the densified refractory material 3 increases. A processing step for removing this portion 4 later is required, which lowers the manufacturing efficiency.

【0017】以上のように本発明において、ガラス相含
有耐火物からなる母材中のシリカ成分の量は、上記の
理由からその下限を0.1重量%、上記〜の理由から
その上限を5重量%とするものである。
As described above, in the present invention, the lower limit of the amount of the silica component in the matrix made of the glass phase-containing refractory is 0.1% by weight, and the upper limit thereof is 5% by weight. It is what

【0018】次に、ガラス相含有耐火物からなる母材の
製造法について説明すると、本発明では、この母材中に
ガラス相がほぼ均一に分布していなければならない。即
ち、ガラス相含有耐火物からなる母材の製造条件“アル
ミナ−シリカ系原料の粒度や配合、該母材製造時の焼成
温度や焼成時間”としては、得られた母材中にガラス相
が均一に存在するように、上記各製造条件を組み合わせ
て製造することが必要である。
Next, a method of manufacturing a base material made of a glass phase-containing refractory will be described. In the present invention, the glass phase must be distributed almost uniformly in the base material. That is, the manufacturing conditions of the base material composed of a glass phase-containing refractory "alumina-silica-based raw material particle size and composition, firing temperature and firing time during the production of the base material", the glass phase in the obtained base material It is necessary to combine the above manufacturing conditions so as to uniformly exist.

【0019】この理由は、母材中にガラス相が存在しな
いと、例えば母材中に結晶質のムライトやクリストバラ
イトのような形でシリカ成分が含有していても、この結
晶質シリカ成分のみでは、アルミニウムの反応浸透が殆
ど生ぜず、この母材が緻密化され難いからである。
The reason for this is that if the glass phase does not exist in the base material, even if the base material contains a silica component in the form of crystalline mullite or cristobalite, the crystalline silica component alone is sufficient. This is because the reaction permeation of aluminum hardly occurs and the base material is difficult to be densified.

【0020】アルミニウムとの反応浸透に対して、結晶
質シリカよりも活性であるガラス相が母材中に0.1重量
%以上存在すると、このガラス相が反応誘発剤としての
役割を果たし、アルミニウムは、結晶質のシリカ系物質
や雰囲気中の酸素とも連続的に反応し、短時間で母材を
緻密化することが可能となる。母材中のガラス相が0.1
重量%未満では、上記した反応誘発剤としての作用をす
るガラス相が少なく、アルミニウムの浸透が不均一にな
り、緻密化される部分が少なかったり、不均一になるの
で好ましくない。
When a glass phase, which is more active than crystalline silica with respect to reaction permeation with aluminum, is present in the base material in an amount of 0.1% by weight or more, the glass phase serves as a reaction inducer, and aluminum is The base material can be densified in a short time by continuously reacting with the crystalline silica-based material and oxygen in the atmosphere. The glass phase in the base material is 0.1
If it is less than 10% by weight, the amount of the glass phase acting as the above-mentioned reaction inducer is small, the permeation of aluminum becomes non-uniform, and the densified portion is small or non-uniform, which is not preferable.

【0021】一方、ガラス相が7重量%を越えると、母
材とアルミニウムとの接触部近傍での反応浸透は非常に
速いけれども、以降の連続的な浸透がかえって遅くな
り、耐火物のようにある程度の大きさの製品を得るには
長時間を要することになるので好ましくない。従って、
本発明において、ガラス相の量としては、母材の重量に
対し0.1〜7重量%の範囲が好ましい。
On the other hand, when the glass phase exceeds 7% by weight, the reaction permeation in the vicinity of the contact portion between the base metal and aluminum is very fast, but the subsequent continuous permeation is rather slow, and it becomes like a refractory. It takes a long time to obtain a product of a certain size, which is not preferable. Therefore,
In the present invention, the amount of the glass phase is preferably in the range of 0.1 to 7% by weight based on the weight of the base material.

【0022】本発明において、使用するアルミナ−シリ
カ系原料の粒度としては、採用する成形法に適した粒度
構成に調製したものを任意に使用することができる。母
材製造のための成形法としては、本発明で特に限定され
るものではなく、例えば金型プレス成形、ラバ−プレス
(等方静水圧プレス)、押出し成形、鋳込み成形、スリッ
プキャスト、射出成形などの方法を任意に用いることが
できる。
In the present invention, as the particle size of the alumina-silica based raw material to be used, one prepared to have a particle size constitution suitable for the molding method adopted can be arbitrarily used. The molding method for producing the base material is not particularly limited in the present invention, and examples thereof include die press molding and rubber press.
(Isotropic hydrostatic press), extrusion molding, cast molding, slip casting, injection molding and the like can be arbitrarily used.

【0023】本発明に用いる母材としては、特に限定す
るものではないが、アルミナ−シリカ系原料の成形体を
焼成して使用するのが望ましい。即ち、アルミニウムを
反応浸透させる時の温度(1000℃〜1230℃:後記参照)で
ガラス化し、溶融拡散するような低融点のガラスや粘土
などを原料として使用する場合には、焼成しなくても反
応浸透は可能であるけれども、この場合でも焼成した方
が反応浸透がより均一に進み、得られる緻密体の強度が
大きく、しかも反応浸透時に亀裂が入り難くなるので好
ましい。なお、この焼成温度や焼成時間は、用いる原料
に応じ任意であるが、通常800〜1800℃で1時間〜数時
間焼成することが好ましい。
The base material used in the present invention is not particularly limited, but it is preferable to use a molded body of an alumina-silica-based raw material after firing. That is, when a glass or clay having a low melting point that vitrifies at a temperature at which aluminum is reacted and permeated (1000 ° C to 1230 ° C: see later) and melts and diffuses is used as a raw material, it does not need to be fired. Although reaction permeation is possible, even in this case, firing is preferable because reaction permeation proceeds more uniformly, the strength of the obtained dense body is high, and cracks are less likely to occur during reaction permeation. The firing temperature and firing time are arbitrary depending on the raw material used, but it is usually preferable to perform firing at 800 to 1800 ° C. for 1 hour to several hours.

【0024】また、本発明に用いる母材としては、前記
したように、この母材中にガラス相がほぼ均一に分布す
るように調製する必要があるが、これ以外に母材の見掛
気孔率が15〜30%になるように調製することが必要であ
る。その理由は、母材の見掛気孔率は、アルミニウムの
反応浸透の速度に大きな影響を与えるからである。
As described above, the base material used in the present invention needs to be prepared so that the glass phase is substantially evenly distributed in the base material. It is necessary to adjust the rate to be 15 to 30%. The reason is that the apparent porosity of the base material has a great influence on the reaction permeation rate of aluminum.

【0025】これを図2に基づいて説明する。なお、図
2は、切断面において、元の母材の面積に対する緻密化
した部分の割合(面積率)と母材の見掛気孔率の関係を示
したグラフである。具体的には、耐火物母材として、焼
結アルミナにボ−ルクレ−を1wt%,3wt%,5wt%混合
し、後記表1の粒度配合〜に調製し、各配合物を60
MPa又は120MPaの圧力で金型成形し、1500℃又は1760℃
で3時間焼成したものを使用した。そして、後記実施例
1と同様な条件で反応浸透させた。この場合の切断面に
おける緻密化した部分の面積率に及ぼす母材の見掛気孔
率の影響を示したグラフである。
This will be described with reference to FIG. Note that FIG. 2 is a graph showing the relationship between the ratio of the densified portion (area ratio) to the area of the original base material and the apparent porosity of the base material in the cut surface. Specifically, as a refractory base material, 1% by weight, 3% by weight, and 5% by weight of ball clay was mixed with sintered alumina, and the mixture was prepared to have a particle size ratio of Table 1 below.
Molded at pressure of MPa or 120MPa, 1500 ℃ or 1760 ℃
It was used after being fired for 3 hours. Then, the reaction was permeated under the same conditions as in Example 1 described later. 6 is a graph showing the influence of the apparent porosity of the base material on the area ratio of the densified portion in the cut surface in this case.

【0026】図2に示すように、母材の見掛気孔率が15
%未満では、この母材中へのアルミニウムの反応浸透速
度が急激に低下する。一方、30%を越えると、この反応
浸透により得られた母材が十分に緻密化しないことがあ
るので好ましくない。
As shown in FIG. 2, the apparent porosity of the base metal is 15
If it is less than%, the reaction permeation rate of aluminum into the base material is rapidly reduced. On the other hand, if it exceeds 30%, the base material obtained by this reaction permeation may not be sufficiently densified, which is not preferable.

【0027】本発明は、上記したガラス相含有耐火物か
らなる母材を用い、この母材中にアルミニウムを反応浸
透させて緻密化することを特徴とする。以下、この緻密
化手段について説明する。
The present invention is characterized in that a base material made of the above-mentioned glass phase-containing refractory material is used, and aluminum is reactively permeated into the base material to be densified. The densification means will be described below.

【0028】本発明において、まず、アルミニウムを母
材表面の一部に接触させる必要があり、この接触面から
順次アルミニウムの反応浸透が進行する。このアルミニ
ウムとしては、アルミニウム粉末、板状体、塊状体など
任意の形状で使用することができ、このようなアルミニ
ウムを耐火物母材に接触するように静置する。
In the present invention, first, it is necessary to bring aluminum into contact with part of the surface of the base material, and the reaction permeation of aluminum proceeds sequentially from this contact surface. This aluminum can be used in any shape such as aluminum powder, a plate-shaped body, and a lump-shaped body, and such aluminum is left to stand so as to come into contact with the refractory base material.

【0029】母材中にアルミニウムを反応浸透させると
きの加熱条件としては、酸素含有雰囲気で1000〜1230℃
で加熱する必要がある。この理由を図3に基づいて説明
する。なお、図3は、反応浸透時の加熱温度と浸透厚み
との関係を示すグラフである。即ち、電融アルミナ原料
にボ−ルクレ−を1wt%混合し、後記表1の粒度配合
に調製し、後記実施例1と同様な方法で母材を作製し、
この母材上部に“100MPaで幅100mm、厚み25mm、長さ160
mmの形状に成形したアルミニウム成形体”を載せ、酸素
雰囲気中所定温度で3時間加熱して反応浸透させた場合
の反応浸透温度と浸透厚みとの関係を示した図である。
The heating conditions for the reaction and permeation of aluminum into the base material are 1000 to 1230 ° C. in an oxygen-containing atmosphere.
Need to heat in. The reason for this will be described with reference to FIG. Note that FIG. 3 is a graph showing the relationship between the heating temperature and the permeation thickness during reaction permeation. That is, 1 wt% of ball clay was mixed with the fused alumina raw material to prepare the particle size composition shown in Table 1 below, and a base material was prepared in the same manner as in Example 1 below.
At the top of this base material, at 100 MPa, width 100 mm, thickness 25 mm, length 160
FIG. 3 is a diagram showing a relationship between a reaction permeation temperature and a permeation thickness when an aluminum molded body having a shape of mm ”is placed and heated in an oxygen atmosphere at a predetermined temperature for 3 hours for reactive permeation.

【0030】図3に示すように、1000〜1230℃、特に11
00℃〜1200℃における温度範囲では、アルミニウムの反
応浸透による浸透厚み(mm)が大きい範囲であることが
理解できる。1000℃未満では、浸透厚み(mm)が小さ
く、1230℃を越える場合も同様である。このように図3
から、本発明では、反応浸透時の加熱温度としては、10
00〜1230℃が好ましく、より好ましくは1100〜1200℃で
ある。
As shown in FIG. 3, 1000 to 1230 ° C., especially 11
It can be understood that in the temperature range from 00 ° C to 1200 ° C, the permeation thickness (mm) due to the reaction permeation of aluminum is large. If it is less than 1000 ° C, the permeation thickness (mm) is small, and if it exceeds 1230 ° C, it is the same. Thus, FIG.
Therefore, in the present invention, the heating temperature during reaction osmosis is 10
The temperature is preferably 00 to 1230 ° C, more preferably 1100 to 1200 ° C.

【0031】一方、加熱時の雰囲気については、酸素を
含有しない雰囲気(例えばアルゴン雰囲気)中で加熱する
と、緻密化するためのアルミニウム酸化物が生成され
ず、緻密な耐火物が得られない。雰囲気中の酸素含有率
が高いほど、アルミニウム酸化物の生成量が多く、反応
浸透量が多くなるので、本発明では、できるだけ酸素含
有率が高い雰囲気、例えば50%以上が好ましく、より好
ましくは80%以上である。
On the other hand, as for the atmosphere during heating, when heating in an atmosphere containing no oxygen (for example, an argon atmosphere), aluminum oxide for densification is not generated, and a dense refractory cannot be obtained. The higher the oxygen content in the atmosphere, the larger the amount of aluminum oxide produced and the larger the amount of reaction permeation. Therefore, in the present invention, the oxygen content in the atmosphere is as high as possible, for example, 50% or more is preferable, and 80 is more preferable. % Or more.

【0032】[0032]

【実施例】次に、本発明の実施例、比較例及び従来例を
挙げ、本発明をより詳細に説明するが、本発明は、以下
の実施例にのみ限定されるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples of the present invention, comparative examples and conventional examples, but the present invention is not limited to the following examples.

【0033】ここで、以下の実施例1〜5及び比較例1
〜6で使用した母材製造用配合物の粒度について、まと
めて表1に示す。
Here, the following Examples 1 to 5 and Comparative Example 1
Table 1 shows the particle sizes of the base material-forming compounds used in Examples 1 to 6 together.

【0034】[0034]

【表1】 [Table 1]

【0035】(実施例1)焼結アルミナ原料にボ−ルク
レ−(粒度:0.3mm以下)を“0.5wt%”“1wt%”“3wt
%”添加し、それぞれ上記表1の粒度配合に調製し
た。この各配合物を60MPaで幅100mm、厚み50mm、長さ16
0mmの形状に金型成形した後、1760℃で3時間焼成して耐
火れんが母材とした。
Example 1 Sintered alumina raw material was added with ball clay (particle size: 0.3 mm or less) in "0.5 wt%", "1 wt%" and "3 wt."
% "Was added to prepare the particle size composition shown in Table 1 above. Each composition was prepared at 60 MPa with a width of 100 mm, a thickness of 50 mm and a length of 16 mm.
After molding into a shape of 0 mm, it was fired at 1760 ° C for 3 hours to obtain a refractory brick base material.

【0036】各母材中のシリカ量は、ボ−ルクレ−の添
加量「0.5wt%」「1wt%」「3wt%」に応じてそれぞれ
「0.3wt%」「0.6wt%」「1.7wt%」であった。また、
各母材中のガラス量については、各母材を酸処理して重
量変化より求めた結果、同じくボ−ルクレ−の添加量に
応じてそれぞれ「0.2wt%」「0.4wt%」「1.3wt%」で
あり、一方、各母材の見掛気孔率は、同じくボ−ルクレ
−の添加量に応じてそれぞれ「21.0%」「20.4%」「1
9.5%」であった。
The amount of silica in each base material is "0.3 wt%""0.6wt%""1.7wt%" according to the addition amount of ball clay "0.5 wt%""1wt%""3wt%"."Met. Also,
Regarding the amount of glass in each base material, as a result of obtaining the weight change by subjecting each base material to acid treatment, "0.2 wt%", "0.4 wt%", and "1.3 wt%" were also obtained according to the addition amount of the ball clay. %, On the other hand, the apparent porosity of each base material is also “21.0%”, “20.4%”, “1” depending on the addition amount of the ball clay.
9.5% ”.

【0037】得られた各母材に“100MPaで幅100mm、厚
み25mm、長さ160mmの形状に成形したアルミニウム粉末
成形体”を載せ、酸素雰囲気中1150℃で3時間加熱し、
その後冷却した。冷却後長さ方向に二分し、切断面から
反応浸透により緻密化した部分の厚み(mm)及び緻密化し
た耐火物の見掛気孔率(%)を測定した。その結果、“緻
密化した部分の厚み(mm)”及び“見掛気孔率(%)は、ボ
−ルクレ−0.5wt%添加のもので「42mm、1.9%」、ボ−
ルクレ−1wt%添加のもので「47mm、1.5%」、ボ−ルク
レ−3wt%添加のもので「39mm、0.9%」であった。
On each of the obtained base materials, "aluminum powder compact molded at a width of 100 mm, a thickness of 25 mm and a length of 160 mm at 100 MPa" was placed, and heated in an oxygen atmosphere at 1150 ° C. for 3 hours,
It was then cooled. After cooling, it was bisected in the lengthwise direction, and the thickness (mm) of the portion densified by reaction permeation from the cut surface and the apparent porosity (%) of the densified refractory were measured. As a result, the "densified part thickness (mm)" and "apparent porosity (%)" are those of the addition of 0.5% by weight of ball clay "42 mm, 1.9%",
"47 mm, 1.5%" was obtained by adding 1 wt% of Lucre, and "39 mm, 0.9%" was obtained by adding 3 wt% of Bole.

【0038】(実施例2)電融アルミナ原料にクリスト
バライトを5wt%添加し、前記表1の粒度配合に調製
した。これを実施例1と同様の方法で母材を製造した。
母材中のシリカ量は5.0wt%、ガラス量は1.0wt%、見掛
気孔率は17.2%であった。この母材に実施例1と同一条
件で反応浸透させた結果、緻密化した部分の厚みは31mm
であり、見掛気孔率は0.7%であった。
(Example 2) 5 wt% of cristobalite was added to the raw material of fused alumina to prepare the particle size composition shown in Table 1 above. A base material was manufactured by the same method as in Example 1.
The amount of silica in the base material was 5.0 wt%, the amount of glass was 1.0 wt%, and the apparent porosity was 17.2%. As a result of reacting and permeating this base material under the same conditions as in Example 1, the thickness of the densified portion was 31 mm.
And the apparent porosity was 0.7%.

【0039】(実施例3)焼結アルミナ:30wt%、予め
焼成された白ボ−キサイト:70wt%を混合し、表1の粒
度配合に調製した。配合全体のシリカ量は4.2wt%で
ある。これを100MPaで幅85mm、厚み35mm、長さ110mmの
形状に成形した後、1630℃で3時間焼成して耐火物母材
とした。この母材のガラス量は1.4wt%であり、見掛気
孔率は17.5%であった。
(Example 3) Sintered alumina: 30 wt% and pre-fired white bauxite: 70 wt% were mixed to prepare the particle size composition shown in Table 1. The silica content of the entire formulation is 4.2 wt%. This was molded into a shape having a width of 85 mm, a thickness of 35 mm, and a length of 110 mm at 100 MPa, and then fired at 1630 ° C. for 3 hours to obtain a refractory base material. The glass amount of this base material was 1.4 wt% and the apparent porosity was 17.5%.

【0040】上記母材の上に“100MPaで幅85mm、厚み20
mm、長さ110mmの形状に成形したアルミニウム粉末成形
体”を載せ、酸素60%、窒素40%の混合ガス中1200℃で
3時間加熱した。その結果、母材の上部24mmが緻密化
し、その見掛気孔率は0.8%であった。また、耐火物母
材の曲げ強度は30MPaであるが、緻密化した耐火物は170
MPaであった。
On the above base material, "100 MPa, width 85 mm, thickness 20
mm powder, aluminum powder compact molded into a length of 110 mm "is placed at 1200 ° C in a mixed gas of 60% oxygen and 40% nitrogen.
Heated for 3 hours. As a result, the upper 24 mm of the base material was densified and its apparent porosity was 0.8%. The bending strength of the refractory base material is 30 MPa, but
It was MPa.

【0041】(実施例4)アルミナボ−ルにパイレック
スガラスを5wt%添加し、表1のに示す粒度とした配
合物を作成し、100MPaの圧力で幅100mm、厚み45mm、長
さ160mmの形状に成形した後、1200℃で3時間焼成して耐
火物母材とした。この母材中のシリカ量は4wt%、ガラ
ス量は1.6wt%、見掛気孔率は27.5%であった。前記母
材の上に“幅100mm、厚み20mm、長さ160mmの形状に成形
したアルミニウム粉末成形体”を載せ、酸素雰囲気中11
00℃で3時間加熱した。その結果、上部30mmが緻密化し
た耐火物に変化し、その部分の見掛気孔率は1.0%であ
った。
(Example 4) Pyrex glass was added to an alumina ball in an amount of 5% by weight to prepare a composition having a particle size shown in Table 1, which was formed into a shape having a width of 100 mm, a thickness of 45 mm and a length of 160 mm at a pressure of 100 MPa. After molding, it was fired at 1200 ° C for 3 hours to obtain a refractory base material. The amount of silica in this matrix was 4 wt%, the amount of glass was 1.6 wt%, and the apparent porosity was 27.5%. Place "aluminum powder compact molded into a shape with a width of 100 mm, a thickness of 20 mm and a length of 160 mm" on the base material and place it in an oxygen atmosphere.
Heated at 00 ° C. for 3 hours. As a result, the upper 30 mm was changed to a densified refractory, and the apparent porosity of that part was 1.0%.

【0042】(実施例5)焼結アルミナ80wt%と仮焼ア
ルミナ20wt%を混合し、表1の粒度配合に調製した。
これに珪酸ソ−ダガラス5wt%、水8wt%添加し、流動性
のある混練物とした。この混練物を内径120mm、高さ50m
mの円筒状の鋳型に鋳込み、成形した。
(Example 5) 80 wt% of sintered alumina and 20 wt% of calcined alumina were mixed to prepare the particle size composition shown in Table 1.
5 wt% of soda silicate glass and 8 wt% of water were added to this to obtain a fluidized kneaded product. This kneaded product has an inner diameter of 120 mm and a height of 50 m.
It was cast by molding in a m-shaped cylindrical mold.

【0043】この成形体を110℃で乾燥した後1500℃で3
時間焼成して母材とした。この母材中のシリカ量は1.5w
t%、ガラス量は0.6wt%、見掛気孔率は18.2%であっ
た。この母材を“直径120mm、高さ20mmの円筒状に成形
したアルミニウム”の上に載せ、酸素雰囲気中1150℃で
3時間加熱した。その結果、アルミニウムとの接触面よ
り35mmが緻密化した耐火物に変化し、その部分の見掛気
孔率は1.2%であった。
This molded body was dried at 110 ° C. and then at 1500 ° C. for 3 minutes.
It was fired for a period of time to obtain a base material. The amount of silica in this matrix is 1.5w
t%, the amount of glass was 0.6 wt%, and the apparent porosity was 18.2%. This base material is placed on "aluminum formed into a cylindrical shape with a diameter of 120 mm and a height of 20 mm", and at 1150 ° C in an oxygen atmosphere.
Heated for 3 hours. As a result, 35 mm from the contact surface with aluminum changed to a densified refractory, and the apparent porosity of that part was 1.2%.

【0044】(比較例1)焼結アルミナにクリストバラ
イトを15wt%、ボ−ルクレ−を1wt%混合し、表1の粒
度配合に調製し、実施例1と同様な方法で母材を作成
した。母材中のシリカ量は20.6wt%、ガラス量は5.5wt
%、見掛気孔率は16.2%であった。この母材に実施例1
と同一条件で反応浸透させた結果、母材の上部10mmが緻
密化されていた。
(Comparative Example 1) 15 wt% of cristobalite and 1 wt% of ball clay were mixed with sintered alumina to prepare the particle size composition shown in Table 1, and a base material was prepared in the same manner as in Example 1. The amount of silica in the base material is 20.6wt%, the amount of glass is 5.5wt
%, The apparent porosity was 16.2%. Example 1 for this base material
As a result of reacting and permeating under the same conditions as above, the top 10 mm of the base material was densified.

【0045】この比較例1では、実施例1と比較して、
緻密化した部分は1/4程度であり、図1に示すような母
材側面等への余分な生成量が多く、製造効率が悪かっ
た。この原因は、比較例1では、母材中のシリカ量が過
剰(20.6wt%)であったためと考えられる。
In this Comparative Example 1, as compared with Example 1,
The densified portion was about 1/4, and there was a large amount of extra generation on the side surface of the base material as shown in FIG. 1, resulting in poor production efficiency. It is considered that this is because in Comparative Example 1, the amount of silica in the base material was excessive (20.6 wt%).

【0046】(比較例2)焼結アルミナにボ−ルクレ−
を5wt%混合し、表1の粒度配合に調製した。配合全
体のシリカ量は2.8wt%である。これを実施例1と同様
な形状に120MPaの圧力でCIP成形し、1760℃で約6時間焼
成して母材とした。この母材のガラス量は2.0wt%であ
り、見掛気孔率は11.7%であった。
(Comparative Example 2) A ball clay was added to sintered alumina.
Was mixed in an amount of 5 wt% to prepare the particle size composition shown in Table 1. The silica content of the entire formulation is 2.8 wt%. This was CIP-molded into a shape similar to that of Example 1 at a pressure of 120 MPa and fired at 1760 ° C. for about 6 hours to obtain a base material. The glass amount of this base material was 2.0 wt% and the apparent porosity was 11.7%.

【0047】この母材上部に“幅100mm、厚み25mm、長
さ160mmの形状のアルミニウム成形体”を載せ、実施例
1と同様な条件で反応浸透させた。その結果、緻密化し
た部分の厚みは8mmであり、実施例1の場合の1/4以下
であった。生成量の低下は、母材の見掛気孔率が低かっ
たことが原因と考えられる。
An "aluminum compact having a width of 100 mm, a thickness of 25 mm and a length of 160 mm" was placed on the upper part of the base material and reacted and permeated under the same conditions as in Example 1. As a result, the thickness of the densified portion was 8 mm, which was 1/4 or less of that in Example 1. The decrease in the production amount is considered to be due to the low apparent porosity of the base material.

【0048】(比較例3)電融アルミナにクリストバラ
イトを5wt%混合し、表1の粒度配合に調製した。配
合全体のシリカ量は5wt%である。これを60MPaの圧力
で、幅100mm、厚み50mm、長さ160mmに成形した不焼成の
ものを母材とした。
(Comparative Example 3) 5% by weight of cristobalite was mixed with fused alumina to prepare the particle size composition shown in Table 1. The total amount of silica in the blend is 5 wt%. A base material was an unfired material that was molded into a width of 100 mm, a thickness of 50 mm, and a length of 160 mm at a pressure of 60 MPa.

【0049】この母材上部に“100MPaで幅100mm、厚み2
5mm、長さ160mmの形状に成形したアルミニウム成形体”
を載せ、実施例1と同様な条件で反応浸透させた。その
結果、不焼成母材であって、この母材中にガラス相が形
成されていなかったため、反応浸透は殆ど起こらず、緻
密化されなかった。
At the top of this base material, at 100 MPa, width 100 mm, thickness 2
Aluminum molded body with a shape of 5 mm and length of 160 mm "
Was placed, and reaction permeation was carried out under the same conditions as in Example 1. As a result, since it was an unfired base material and a glass phase was not formed in this base material, reaction permeation hardly occurred and it was not densified.

【0050】(比較例4)表1のに示す粒度を有する
焼結アルミナ原料を用い、60MPaの圧力で幅100mm、厚み
50mm、長さ160mmに成形し、1300℃で3時間焼成したもの
を母材とした。この母材中のシリカ量は0.03wt%であ
り、見掛気孔率は32.2%であった。
(Comparative Example 4) Using a sintered alumina raw material having a grain size shown in Table 1, a pressure of 60 MPa, a width of 100 mm and a thickness of
The base material was formed into 50 mm and a length of 160 mm and fired at 1300 ° C. for 3 hours. The amount of silica in this base material was 0.03 wt% and the apparent porosity was 32.2%.

【0051】この母材にアルミニウムを反応浸透させた
結果、4mmしか浸透層が生ぜず、しかも不均一な浸透で
あった。これは、母材中のシリカ量が少な過ぎること及
び母材の見掛気孔率が大きすぎることが原因と考えられ
る。
As a result of reacting and permeating aluminum into the base material, a permeation layer was formed only in 4 mm, and the permeation was uneven. It is considered that this is because the amount of silica in the base material is too small and the apparent porosity of the base material is too large.

【0052】(比較例5)焼結アルミナ原料にボ−ルク
レ−を1wt%混合し、表1の粒度配合に調製し、実施
例1と同様な方法で母材を作成した。母材中のシリカ量
は0.6wt%、ガラス量は0.4wt%、見掛気孔率は20.4%で
あった。
(Comparative Example 5) 1 wt% of ball clay was mixed with a sintered alumina raw material to prepare a mixture having a particle size shown in Table 1, and a base material was prepared in the same manner as in Example 1. The amount of silica in the base material was 0.6 wt%, the amount of glass was 0.4 wt%, and the apparent porosity was 20.4%.

【0053】この母材の上部に“100MPaで幅100mm、厚
み25mm、長さ160mmの形状に成形したアルミニウム成形
体”を載せ、酸素雰囲気中800℃及び1250℃でそれぞれ3
時間加熱した。反応浸透により緻密化した部分は、800
℃のもので厚み:2mm、1250℃のもので厚み:11mmであ
り、実施例1に比べ緻密化した部分が少なかった。これ
は、反応浸透させる温度が適切でなかったことによる。
On top of this base material, put an "aluminum molded body having a width of 100 mm, a thickness of 25 mm, and a length of 160 mm at 100 MPa" and place it in an oxygen atmosphere at 800 ° C. and 1250 ° C. for 3 times, respectively.
Heated for hours. The part densified by reaction osmosis is 800
The thickness was 2 mm at a temperature of 1 ° C. and 11 mm at a temperature of 1250 ° C., and there were few densified portions as compared with Example 1. This is because the reaction permeation temperature was not appropriate.

【0054】(比較例6)電融アルミナ原料にボ−ルク
レ−を1wt%混合し、表1の粒度配合に調製し、実施
例1と同様な方法で母材を作成した。母材中のシリカ量
は0.6wt%、ガラス量は0.4wt%、見掛気孔率は20.8%で
あった。
(Comparative Example 6) 1 wt% of ball clay was mixed with a fused alumina raw material to prepare a particle size composition shown in Table 1, and a base material was prepared in the same manner as in Example 1. The amount of silica in the base material was 0.6 wt%, the amount of glass was 0.4 wt%, and the apparent porosity was 20.8%.

【0055】この母材上部に“100MPaで幅100mm、厚み2
5mm、長さ160mmの形状に成形したアルミニウム成形体”
を載せ、アルゴン雰囲気中1150℃で3時間加熱した。そ
の結果、殆ど反応浸透せず、緻密化しなかった。雰囲気
がアルゴンであったため、アルミニウム酸化物が形成さ
れなかったことによる。
At the top of this base material, at 100 MPa, width 100 mm, thickness 2
Aluminum molded body with a shape of 5 mm and length of 160 mm "
And was heated in an argon atmosphere at 1150 ° C. for 3 hours. As a result, almost no reaction permeation occurred and no densification occurred. This is because aluminum oxide was not formed because the atmosphere was argon.

【0056】(比較例7−従来例)前記従来法(5)に掲
示した特開昭63−30376号公報、特開昭63−170256号公
報及び特開平3−75508号公報に記載の方法において、ア
ルミニウムの酸化を用いて緻密化させる場合、最低18時
間の保持時間を要する。例えば、特開昭63−30376号公
報に記載の実施例1では、厚さ4.8mmのプレフォ−ムを
緻密化させるのに1000℃で66時間、同公報に記載の実施
例3では、厚さ44mmのプレフォ−ムを緻密化させるのに
1000℃で144時間保持しており、製造に長時間を要して
いることが明らかである。
(Comparative Example 7-Conventional Example) In the method described in JP-A-63-30376, JP-A-63-170256 and JP-A-3-75508, which are disclosed in the above-mentioned conventional method (5). When densifying by using aluminum oxidation, a minimum holding time of 18 hours is required. For example, in Example 1 described in JP-A-63-30376, it is 66 hours at 1000 ° C. to densify a preform having a thickness of 4.8 mm, and in Example 3 described therein, the thickness is For densifying a 44mm preform
It is held at 1000 ° C for 144 hours, and it is clear that it takes a long time to manufacture.

【0057】ここで、前記実施例1〜5、比較例1〜6
で使用した母材及び緻密化した耐火物の緻密化部分厚(m
m)、見掛気孔率(%)をまとめて表2、表3に示す。
Here, the above Examples 1 to 5 and Comparative Examples 1 to 6
The thickness of the densified part of the base material and the densified refractory used in
m) and apparent porosity (%) are summarized in Tables 2 and 3.

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】[0060]

【発明の効果】本発明は、以上詳記したとおり、アルミ
ナ−シリカ系原料を用いて製造されたシリカ含有量が0.
1〜5%で、見掛気孔率が15〜30%のガラス相含有耐火物
を母材とし、アルミニウムを該母材表面に接触させた状
態で、酸素含有雰囲気中1000〜1230℃で加熱することを
特徴とするものであり、これによって、短時間で効率よ
く、緻密なアルミナ質耐火物が得られる効果が生じる。
そして、本発明により製造した緻密なアルミナ質耐火物
は、優れた組織、強度、耐食性、耐摩耗性等が要求され
る部位、例えばスライドプレ−ト、出銑鋼スリ−ブ等に
好適である。
As described in detail above, the present invention has a silica content of 0.
A glass phase-containing refractory having an apparent porosity of 15 to 30% at 1 to 5% is used as a base material, and aluminum is brought into contact with the surface of the base material, and heated at 1000 to 1230 ° C. in an oxygen-containing atmosphere. This is advantageous in that a dense alumina refractory can be obtained efficiently in a short time.
Further, the dense alumina refractory produced by the present invention is suitable for a portion requiring excellent structure, strength, corrosion resistance, wear resistance, etc., such as a slide plate, a pig-iron steel sleeve and the like. .

【図面の簡単な説明】[Brief description of drawings]

【図1】母材にアルミニウムを反応浸透させるその前後
の試料の各切断面を模式的に示す図であって、(A)は反
応浸透前の試料、(B)は反応浸透後の試料を示す図。
FIG. 1 is a diagram schematically showing each cut surface of a sample before and after the reaction and permeation of aluminum into a base material, where (A) is a sample before the reaction and permeation, and (B) is a sample after the reaction and permeation. FIG.

【図2】切断面において、元の母材の面積に対する緻密
化した部分の割合(面積率)と母材の見掛気孔率の関係を
示す図。
FIG. 2 is a diagram showing a relationship between a ratio (area ratio) of a densified portion to an area of an original base material and an apparent porosity of the base material in a cut surface.

【図3】アルミニウムの反応浸透時における加熱温度と
浸透厚みとの関係を示す図。
FIG. 3 is a diagram showing a relationship between a heating temperature and a permeation thickness during reactive permeation of aluminum.

【符号の説明】[Explanation of symbols]

1 アルミニウム 2 母材 3 緻密化した耐火物 4 余分に生成した部分 1 Aluminum 2 Base material 3 Densified refractory 4 Extra parts

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ−シリカ系原料を用いて得られ
るシリカ含有量:0.1〜5重量%で見掛気孔率:15〜30%
のガラス相含有耐火物を母材とし、該母材表面にアルミ
ニウムを接触させた状態で酸素含有雰囲気中1000〜1230
℃で加熱し、前記母材の気孔中にアルミニウムを反応浸
透させることを特徴とする緻密なアルミナ質耐火物の製
造方法。
1. A silica content obtained by using an alumina-silica raw material: 0.1 to 5% by weight, and an apparent porosity: 15 to 30%.
1000 to 1230 in an oxygen-containing atmosphere with the glass phase-containing refractory as a base material and aluminum in contact with the surface of the base material.
A method for producing a dense alumina refractory material, which comprises heating at 0 ° C. to allow aluminum to react and permeate into the pores of the base material.
【請求項2】 前記ガラス相含有耐火物からなる母材
が、アルミナ−シリカ系原料を焼成して得られた耐火物
であることを特徴とする請求項1記載の緻密なアルミナ
質耐火物の製造方法。
2. The dense alumina refractory according to claim 1, wherein the base material made of the glass phase-containing refractory is a refractory obtained by firing an alumina-silica-based raw material. Production method.
【請求項3】 前記ガラス相含有耐火物からなる母材中
のガラス相含有量が、母材の重量に対し0.1〜7重量%で
あることを特徴とする請求項1又は2記載の緻密なアル
ミナ質耐火物の製造方法。
3. The dense glass according to claim 1, wherein the glass phase content of the base material made of the glass phase-containing refractory is 0.1 to 7% by weight based on the weight of the base material. Alumina refractory manufacturing method.
JP7072263A 1995-03-06 1995-03-06 Production of dense aluminous refractory Pending JPH08245284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7072263A JPH08245284A (en) 1995-03-06 1995-03-06 Production of dense aluminous refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7072263A JPH08245284A (en) 1995-03-06 1995-03-06 Production of dense aluminous refractory

Publications (1)

Publication Number Publication Date
JPH08245284A true JPH08245284A (en) 1996-09-24

Family

ID=13484235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7072263A Pending JPH08245284A (en) 1995-03-06 1995-03-06 Production of dense aluminous refractory

Country Status (1)

Country Link
JP (1) JPH08245284A (en)

Similar Documents

Publication Publication Date Title
US5275987A (en) Inverse shape replication method of making ceramic composite articles and articles obtained thereby
US4690790A (en) Silicon nitride/silicon carbide composition and articles thereof
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
JP3311755B2 (en) Reaction-bonded silicon carbide refractory products
JP2528372B2 (en) Method for producing dense cordierite sintered body
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JPH10265259A (en) Fused silica-based refractory and its production
JPH08245284A (en) Production of dense aluminous refractory
JPS6132378B2 (en)
JPS6335593B2 (en)
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP4796689B2 (en) Alkaline refractory ceramic hollow
JPS6241191B2 (en)
JP2508511B2 (en) Alumina composite
JPS60145950A (en) Alumina tube and manufacture of composition
JPH0224789B2 (en)
JP2696735B2 (en) Manufacturing method of silicon nitride sintered body
JPH08268785A (en) Production of dense aluminous refractory
JPH01263233A (en) Production of beta type silicon nitride whisker-reinforced metallic composite material
JPH01246178A (en) Production of refractory for molten steel
JP2608772B2 (en) β-type silicon nitride whisker composite material and method for producing the same
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH0692735A (en) Oxidation resistant si-sic sintered compact
JPH03215375A (en) Production of porous silicon carbide having low density
JPS6344713B2 (en)