JPH08330300A - Insulation material, layer insulation film and formation of layer insulation film - Google Patents

Insulation material, layer insulation film and formation of layer insulation film

Info

Publication number
JPH08330300A
JPH08330300A JP13000995A JP13000995A JPH08330300A JP H08330300 A JPH08330300 A JP H08330300A JP 13000995 A JP13000995 A JP 13000995A JP 13000995 A JP13000995 A JP 13000995A JP H08330300 A JPH08330300 A JP H08330300A
Authority
JP
Japan
Prior art keywords
interlayer insulating
insulating film
film
gas
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13000995A
Other languages
Japanese (ja)
Inventor
Yoichi To
洋一 塘
Haruhiko Ajisawa
治彦 味沢
Masayoshi Sasaki
正義 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13000995A priority Critical patent/JPH08330300A/en
Publication of JPH08330300A publication Critical patent/JPH08330300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Glass Compositions (AREA)
  • Paints Or Removers (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: To provide an insulation material which can form an insulation film with low dielectric constant and high heat resistance, a layer insulation film consisting of an insulation material and a formation method thereof. CONSTITUTION: An insulation material is formed by dissolving a gas generation substance which generates gas through heating or light irradiation in an SOG film formation material and a layer insulation film consists of an insulation material. As for a formation method of a layer insulation film, a layer insulation film is formed on a substrate when a semiconductor element is manufactured. After an insulation material 2 is rotated and applied on a substrate l as shown in figures (a), (b), a film 3 on the substrate 1 is temporarily baked. Thereafter, the film 3 is heated as shown in a figure (c) or light 5 is emitted to irradiate the film 3 as shown in a figure (d), and then the film 3 is baked regularly. Thereby, a layer insulation film 8 is formed as shown in a figure (e).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁材料と該絶縁材料
からなる半導体素子の層間絶縁膜とその層間絶縁膜の形
成とに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material, an interlayer insulating film of a semiconductor element made of the insulating material, and formation of the interlayer insulating film.

【0002】[0002]

【従来の技術】近年、半導体製造の分野では、デバイス
の微細化に伴い、アルミニウム(Al)等からなる配線
間のILD(Inter Layer Dielectric ; 層間絶縁膜)の
誘電率が高いことによる配線間の容量増加や配線の信号
伝播遅延等が問題となっている。一般に用いられている
層間絶縁膜、例えばBPSG(ボロン−フォスフォシリ
ケートガラス)、NSG(ノンドープトシリケートガラ
ス)、P−TEOS(プラズマ−テトラエトキシシラ
ン)、O3 −TEOS(オゾン−テトラエトキシシラ
ン)、SOG(スピンオンガラス)等の絶縁膜は比誘電
率(ε)が通常4以上あり、上記問題を解決するには、
層間絶縁膜の誘電率を低くすることが有効である。
2. Description of the Related Art In recent years, in the field of semiconductor manufacturing, with the miniaturization of devices, there has been a high dielectric constant of ILD (Inter Layer Dielectric) between wirings made of aluminum (Al) or the like. There are problems such as increase in capacity and signal propagation delay in wiring. Generally used its dependent interlayer insulating film, for example, BPSG (boron - phosphosilicate glass), NSG (non-doped silicate glass), P-TEOS (Plasma - tetraethoxysilane), O 3 -TEOS (ozone - tetraethoxysilane) Insulating films such as SOG (spin-on glass) usually have a relative dielectric constant (ε) of 4 or more.
It is effective to lower the dielectric constant of the interlayer insulating film.

【0003】そこで最近では、層間絶縁膜の誘電率を低
くするために、フッ素原子を導入した酸化膜(SiOF
膜)で層間絶縁膜を形成することが提案されている。ま
た有機化合物材料は比較的、誘電率を低くすることが可
能であるため、ポリパラキシリレンの蒸着膜やポリイミ
ドにフッ素原子を導入した膜で層間絶縁膜を形成するこ
とも提案されている。
Therefore, recently, in order to lower the dielectric constant of the interlayer insulating film, an oxide film (SiOF) into which fluorine atoms are introduced is used.
It has been proposed to form an interlayer insulating film with a film. Further, since an organic compound material can have a relatively low dielectric constant, it has been proposed to form the interlayer insulating film by a vapor deposition film of polyparaxylylene or a film obtained by introducing fluorine atoms into polyimide.

【0004】[0004]

【発明が解決しようとする課題】ところが、前者のSi
OF膜で層間絶縁膜を形成する場合では、従来のものに
比べて層間絶縁膜の誘電率が低くなるものの比誘電率が
3.5程度までしか低くならず、したがって配線間の容
量低減や配線の信号伝播遅延の防止等が十分に図られて
いない。また後者の有機化合物材料で層間絶縁膜で層間
絶縁膜を形成する場合では、2〜3程度の比誘電率を達
成できるものの、有機化合物であることから耐熱性が低
く、例えばポリパラキシリレン等の膜で200〜300
℃程度、ポリイミド膜でもせいぜい500℃程度しが耐
えられないため、以降の半導体素子の製造プロセスに制
限を加えてしまうことになってしまう。よって誘電率が
低く、また耐熱性に優れた層間絶縁膜の開発が切望され
ている。
However, the former Si
In the case of forming the interlayer insulating film with the OF film, the dielectric constant of the interlayer insulating film is lower than that of the conventional one, but the relative dielectric constant is only about 3.5. The signal propagation delay is not sufficiently prevented. Further, in the case of forming the interlayer insulating film by the interlayer insulating film with the latter organic compound material, although a relative dielectric constant of about 2 to 3 can be achieved, since it is an organic compound, the heat resistance is low, for example, polyparaxylylene or the like. 200-300 with the film
Since a polyimide film cannot withstand a temperature of approximately 500 ° C. at most, a limit is imposed on the subsequent semiconductor element manufacturing process. Therefore, development of an interlayer insulating film having a low dielectric constant and excellent heat resistance has been earnestly desired.

【0005】[0005]

【課題を解決するための手段】本発明は、空気、窒素等
のガスの比誘電率がほぼ1と小さいことに着目してなさ
れたものであり、上記ガスを含む小孔を多数有する高耐
熱性の絶縁膜を形成でき、このこことにより該絶縁膜の
誘電率の低減を図ろうとするものである。すなわち、請
求項1記載の発明の絶縁材料は、スピンオンガラス(以
下、SOGと記す)膜形成材料中に、加熱または光照射
によってガスを発生するガス発生物質が溶解されてなる
ものである。
The present invention was made by paying attention to the fact that gases such as air and nitrogen have a small relative dielectric constant of about 1, and has a high heat resistance having a large number of small holes containing the above gases. A conductive insulating film can be formed, and this is intended to reduce the dielectric constant of the insulating film. That is, the insulating material of the first aspect of the present invention is a spin-on-glass (hereinafter referred to as SOG) film forming material in which a gas generating substance that generates gas by heating or light irradiation is dissolved.

【0006】上記SOG膜形成材料としては、有機SO
G膜の形成材料や無機SOG膜の形成材料のいずれをも
用いることができるが、形成されるSOG膜の膜質を考
慮した場合には、無機SOG膜形成材料を用いる方が望
ましく、比誘電率を考慮した場合には有機SOG膜形成
材料を用いる方が望ましい。いずれの場合にも低誘電率
のものが好適である。例えば無機SOG膜形成材料とし
てはFOX(アライドシグナル社製)、有機SOGとし
てはHSG(日立化成社製)等が挙げられる。これらの
ガス発生物質を添加する前の比誘電率は、焼成条件にも
よるが、前者が比誘電率ε=3.0〜3.8、後者が比
誘電率ε=2.5〜2.8である。
As the above SOG film forming material, organic SO
Both the material for forming the G film and the material for forming the inorganic SOG film can be used. However, when the film quality of the SOG film to be formed is taken into consideration, it is preferable to use the material for forming the inorganic SOG film and the relative dielectric constant. In consideration of the above, it is preferable to use the organic SOG film forming material. In any case, a low dielectric constant is suitable. For example, FOX (manufactured by Allied Signal Co.) is used as the inorganic SOG film forming material, and HSG (manufactured by Hitachi Chemical Co., Ltd.) is used as the organic SOG. The relative permittivity before adding these gas generating substances depends on the firing conditions, but the former is the relative permittivity ε = 3.0 to 3.8, and the latter is the relative permittivity ε = 2.5 to 2. 8

【0007】また上記ガス発生物質としては、加熱によ
ってガスを発生するものの場合、少なくとも100℃以
上の加熱で初めてガスを発生する物質が望ましい。これ
は、本発明の絶縁材料を用いて膜を形成する際に、膜が
十分乾燥していないうちにこの膜からガスが抜けてしま
うのを防止するためである。なお、光照射によりガスを
発生するものの場合においてはこの限りではない。
Further, as the above-mentioned gas generating substance, when a gas is generated by heating, it is desirable to use a substance which generates a gas only after heating at least 100 ° C. This is to prevent gas from escaping from the film when the film is formed using the insulating material of the present invention before the film is sufficiently dried. However, this is not the case when a gas is generated by light irradiation.

【0008】請求項2記載の発明において、上記ガス発
生物質としては、5−ナフトキノンジアドスルホン酸エ
ステル類、4−ナフトキノンジアジドスルホン酸エステ
ル類、キノンジアジド類、ジアゾニウム塩、アジド化合
物、マレイン酸誘導体、アセト酢酸誘導体、ジアゾメル
ドラム酸誘導体、t−ブトキシ炭酸エステル誘導体、ポ
リブテンスルホン誘導体のうちの少なくとも1種が使用
される。
In the invention of claim 2, as the gas generating substance, 5-naphthoquinone diad sulfonates, 4-naphthoquinone diazide sulfonates, quinone diazides, diazonium salts, azide compounds, maleic acid derivatives, At least one of an acetoacetic acid derivative, a diazomeldrum acid derivative, a t-butoxycarbonic acid ester derivative, and a polybutene sulfone derivative is used.

【0009】5−ナフトキノンジアドスルホン酸エステ
ル類としては、例えば5−ナフトキノンジアジドスルホ
ン酸フェノールエステルが、また4−ナフトキノンジア
ジドスルホン酸エステル類としては、例えば4−ナフト
キノンジアジドスルホン酸フェノールエステルがそれぞ
れ挙げられる。またキノンジアジド類としては、例えば
o−キノンジアジドスルホン酸フェノールエステルが、
またジアゾニウム塩としては、例えば3−メトキシ−4
−ジオクチルアミノベンゼンジアゾニウムのスルホン酸
塩がそれぞれ挙げられる。またアジド化合物としては、
例えば2,6−ジ(4’−アジドベンザル)−4−メチ
ルシクロヘキサン、3,3’−ジアジドジフェニルスル
ホン、3,3’−ジメトキシ−4,4’−ジアジドジフ
ェニル等が挙げられ、マレイン酸誘導体としては例えば
マレイン酸が挙げられる。さらにアセト酢酸誘導体とし
ては例えばアセト酢酸が、ジアゾメルドラム酸誘導体と
しては例えばジアゾメルドラム酸がそれぞれ挙げられ
る。またt−ブトキシ炭酸エステル誘導体としてはビス
フェノール−Aのt−ブトキシ炭酸エステル等が、ポリ
ブテンスルホン誘導体としてはポリブテンスルホン酸等
がそれぞれ挙げられる。
Examples of 5-naphthoquinone diadsulphonic acid esters include 5-naphthoquinone diazide sulfonic acid phenol ester, and examples of 4-naphthoquinone diazide sulphonic acid esters include 4-naphthoquinone diazide sulfonic acid phenol ester. To be Examples of quinonediazides include o-quinonediazidesulfonic acid phenol ester,
Examples of diazonium salts include 3-methoxy-4
-Dioctylaminobenzenediazonium sulfonates, respectively. As the azide compound,
For example, 2,6-di (4′-azidobenzal) -4-methylcyclohexane, 3,3′-diazidodiphenylsulfone, 3,3′-dimethoxy-4,4′-diazidodiphenyl, etc. may be mentioned, and maleic acid. Examples of the derivative include maleic acid. Further, the acetoacetic acid derivative includes, for example, acetoacetic acid, and the diazomeldrum acid derivative includes, for example, diazomeldrum acid. Examples of the t-butoxycarbonic acid ester derivative include t-butoxycarbonic acid ester of bisphenol-A, and examples of the polybutenesulfone derivative include polybutenesulfonic acid.

【0010】これらのガス発生物質において、マレイン
酸誘導体およびアセト酢酸誘導体は光照射によってガス
を発生する物質であり、このガスとして二酸化炭素ガス
を発生する。またこの他の物質は加熱によってガスを発
生する物質であり、例えば5−ナフトキノンジアドスル
ホン酸エステル類、4−ナフトキノンジアジドスルホン
酸エステル類、キノンジアジド類、ジアゾニウム塩、ア
ジド化合物は加熱により窒素ガスを発生し、またジアゾ
メルドラム酸誘導体は加熱により窒素、一酸化炭素およ
びアセトンのガスを発生する。さらにt−ブトキシ炭酸
エステル誘導体は加熱により二酸化炭素およびイソブテ
ンのガスを発生し、ポリブテンスルホン誘導体は加熱に
より二酸化イオウおよび2ーブテンのガスを発生する。
Among these gas generating substances, the maleic acid derivative and the acetoacetic acid derivative are substances which generate gas upon irradiation with light, and generate carbon dioxide gas as this gas. Further, the other substances are substances which generate gas upon heating, and for example, 5-naphthoquinone diad sulfonic acid esters, 4-naphthoquinone diazide sulfonic acid esters, quinone diazides, diazonium salts and azide compounds generate nitrogen gas by heating. In addition, the diazomeldrum acid derivative generates nitrogen, carbon monoxide, and acetone gases by heating. Further, the t-butoxycarbonic acid ester derivative generates gas of carbon dioxide and isobutene by heating, and the polybutene sulfone derivative generates gas of sulfur dioxide and 2-butene by heating.

【0011】なお、t−ブトキシ炭酸エステル誘導体
は、光照射によっても加熱の際と同様のガスを発生する
が、この場合にはジフェニルヨードニウムトリフラート
やトリフェニルスルホニウムトリフラート等の光酸発生
剤を、SOG膜形成材料に添加しておくことが必要であ
る。上記ガス発生物質は、一種だけでもよく、またガス
を発生させる手段、すなわち加熱または光照射の手段が
同じであれば二種以上用いてもよい。
The t-butoxycarbonic acid ester derivative also generates a gas similar to that upon heating by light irradiation, but in this case, a photoacid generator such as diphenyliodonium triflate or triphenylsulfonium triflate is used as the SOG. It is necessary to add it to the film forming material. The above-mentioned gas generating substance may be only one kind, or two or more kinds may be used as long as the means for generating gas, that is, the means for heating or light irradiation is the same.

【0012】また本発明の絶縁材料においてガス発生物
質は、SOG膜形成材料中に均一に溶解していることが
必要である。これは次のような理由による。例えば絶縁
材料として、SOG膜形成材料中に中空のビーズ等を混
入させてなるものを用いて回転塗布により基体上に絶縁
膜を形成した場合、ビーズの中空内の空気の存在によっ
て絶縁膜の誘電率の低減を図れるが、回転塗布の際、ビ
ーズが絶縁材料の基体の外周縁に向けての移動を阻害
し、この結果、放射状に著しく膜厚が不均一な領域、す
なわちストリエーションが発生してしまう。よってこの
ことを防止するために、ガス発生物質はSOG膜形成材
料中に均一に溶解していることが必要であり、前述のご
とく塗膜後の加熱および光照射により初めてガスを発生
するものであることが望ましいのである。
Further, in the insulating material of the present invention, the gas generating substance needs to be uniformly dissolved in the SOG film forming material. This is for the following reasons. For example, when an insulating film formed by mixing hollow beads in an SOG film forming material is used to form an insulating film on a substrate by spin coating, the presence of air in the hollow of the beads causes the insulating film to become dielectric. However, during spin coating, the beads impede the movement of the insulating material toward the outer peripheral edge of the substrate, resulting in a region where the film thickness is significantly uneven radially, that is, striation. Will end up. Therefore, in order to prevent this, it is necessary that the gas generating substance is uniformly dissolved in the SOG film forming material, and as described above, gas is generated only by heating after coating and light irradiation. It is desirable to have one.

【0013】なお、通常、SOG膜形成材料はアルコー
ル等の溶剤を含んでいるものであるが、ガス発生物質の
材料によっては、ガス発生物質をSOG膜形成材料に溶
解させる際にさらに他の溶剤を加える必要がある。例え
ばナフトキノンジアジドスルホン酸エステル類は、SO
G膜形成材料に溶解させる際、メチルイソブチルケトン
や酢酸イソアミル等の溶剤を加える必要があるものであ
る。ここでガス発生物質は、SOG膜形成材料の固形物
に対して5〜30重量%の範囲の量を用いるのが好適と
される。この範囲に限定したのは、5重量%未満である
とガス発生による効果が薄く、30重量%を越えるとガ
ス発生物質がSOG膜形成材料中に溶解せずに析出する
おそれがあるためである。
Although the SOG film forming material usually contains a solvent such as alcohol, depending on the material of the gas generating substance, another solvent is used when the gas generating substance is dissolved in the SOG film forming material. Need to be added. For example, naphthoquinone diazide sulfonates are SO
When dissolved in the G film forming material, it is necessary to add a solvent such as methyl isobutyl ketone or isoamyl acetate. Here, the gas generating substance is preferably used in an amount in the range of 5 to 30% by weight based on the solid matter of the SOG film forming material. The reason for limiting the content to this range is that if it is less than 5% by weight, the effect of gas generation is small, and if it exceeds 30% by weight, the gas generating substance may precipitate without being dissolved in the SOG film forming material. .

【0014】請求項3記載の発明の層間絶縁膜は、半導
体素子に形成される層間絶縁膜であって、上記絶縁材料
からなる膜であり、また請求項4記載の発明の層間絶縁
膜の形成方法は、半導体素子を形成するに際し、基体上
に上記絶縁材料からなる層間絶縁膜を形成する方法であ
る。
The interlayer insulating film of the invention described in claim 3 is an interlayer insulating film formed on a semiconductor element, which is a film made of the above-mentioned insulating material, and the interlayer insulating film of the invention described in claim 4 is formed. The method is a method of forming an interlayer insulating film made of the above-mentioned insulating material on a substrate when forming a semiconductor element.

【0015】すなわち、図1(a)に示すように、上記
絶縁材料2を基体1上に滴下するとともに基体1を回転
させ、図1(b)および図2(a)に示すように、上記
絶縁材料2を基体1上に塗布して塗膜3を形成する。そ
の後、基体1上の塗膜3を仮焼成し、その後図1(c)
に示すごとく塗膜3を加熱して塗膜3中に含まれている
ガス発生物質からガスを発生させる。または図1(d)
に示すごとく塗膜3に光5を照射して塗膜3中に含まれ
ているガス発生物質からガスを発生させる。なおこの工
程により、図2(b)にも示すように塗膜3中に前記ガ
スを含む気泡6が多数発生する。そしてこの塗膜3を本
焼成し、塗膜3を固める。この結果、気泡6からなる小
孔7を多数有する多孔質の層間絶縁膜8が形成される。
That is, as shown in FIG. 1 (a), the insulating material 2 is dropped on the substrate 1 and the substrate 1 is rotated, and as shown in FIGS. 1 (b) and 2 (a), The insulating material 2 is applied on the substrate 1 to form the coating film 3. After that, the coating film 3 on the substrate 1 is pre-baked, and then, as shown in FIG.
As shown in (3), the coating film 3 is heated to generate gas from the gas generating substance contained in the coating film 3. Or Figure 1 (d)
As shown in (3), the coating film 3 is irradiated with light 5 to generate gas from the gas generating substance contained in the coating film 3. By this step, as shown in FIG. 2B, a large number of bubbles 6 containing the gas are generated in the coating film 3. Then, the coating film 3 is baked to harden the coating film 3. As a result, a porous interlayer insulating film 8 having a large number of small holes 7 made of bubbles 6 is formed.

【0016】上記基体1としては、シリコン(Si)等
からなる基板や基板上に絶縁膜を介してAlの配線層等
が形成されてなるもの等が挙げられる。また上記方法に
おいて仮焼成は、該仮焼成によって塗膜の表面のみを固
め、次工程で発生させるガスが塗膜3から出ていくのを
防止するための処理であり、したがってホットプレート
で基体全体を加熱することなく行う。例えば仮焼成の方
法としては、水冷プレート上に基体を配置して基体上の
塗膜に温風を吹きつける方法、または赤外線ランプを用
いて塗膜の表面から塗膜を加熱する方法等が用いられ
る。一方、本焼成は、通常行われている塗膜形成後の熱
処理、すなわち塗膜中の溶媒を除去しかつ最終的にSO
G膜を形成するための処理である。
Examples of the base 1 include a substrate made of silicon (Si) or the like, and an Al wiring layer formed on the substrate via an insulating film. In the above method, the calcination is a treatment for hardening only the surface of the coating film by the calcination and preventing the gas generated in the next step from flowing out of the coating film 3. Without heating. For example, as a calcination method, a method of placing a substrate on a water-cooled plate and blowing hot air onto the coating film on the substrate, or a method of heating the coating film from the surface of the coating film using an infrared lamp is used. To be On the other hand, the main calcination is a heat treatment that is usually performed after the coating film is formed, that is, the solvent in the coating film is removed and finally SO
This is a process for forming a G film.

【0017】上記方法では、ガス発生物質からガスを発
生させた際、そのガスが塗膜3中に吸収されないよう
に、回転塗布の工程の前に予め絶縁材料中に窒素等の気
体を含ませておいたり、または仮焼成の前に上記ガスを
通過させない膜を塗膜3上に形成しておくことが望まし
い。前記絶縁材料に気体を含ませる方法としては、絶縁
材料に気体をバブリングさせる方法、絶縁材料に加圧に
よって気体を含ませる方法等が挙げられる。この場合、
絶縁材料に基体を飽和させておけば、ガス発生物質から
のガスの塗膜3への吸収を効果的に防止することができ
る。またガス発生物質からのガスを通過させない膜とし
ては、例えばポリビニルアルコールからなる膜等が挙げ
られ、その形成方法としては塗膜3上に回転塗布によっ
て形成する方法が挙げられる。
In the above method, when the gas is generated from the gas generating substance, the insulating material is made to contain a gas such as nitrogen in advance before the spin coating process so that the gas is not absorbed in the coating film 3. It is desirable to form a film that does not allow the above-mentioned gas to pass through on the coating film 3 before the pre-baking or pre-baking. Examples of the method of including gas in the insulating material include a method of bubbling gas into the insulating material and a method of adding gas to the insulating material by pressurization. in this case,
By saturating the base material with the insulating material, it is possible to effectively prevent the absorption of gas from the gas generating substance into the coating film 3. As a film that does not allow the gas from the gas generating substance to pass therethrough, there may be mentioned, for example, a film made of polyvinyl alcohol, and a method of forming the film may be a method of forming it on the coating film 3 by spin coating.

【0018】請求項5記載の発明は、半導体素子の製造
に際して、基体上に第1層間絶縁膜と第2層間絶縁膜と
をこの順に積層してなる層間絶縁膜を形成する方法であ
って、基体上に上記第1層間絶縁膜を形成し、続いて化
学的気相成長法(CVD法)によって第1層間絶縁膜上
に上記第2層間絶縁膜を形成し、層間絶縁膜を得る。こ
のとき上記第2層間絶縁膜は、第1層間絶縁膜上に形成
されることにより多孔質化する材料からなるものであ
る。
According to a fifth aspect of the present invention, in manufacturing a semiconductor element, there is provided a method of forming an interlayer insulating film on a substrate by laminating a first interlayer insulating film and a second interlayer insulating film in this order, The first interlayer insulating film is formed on the substrate, and then the second interlayer insulating film is formed on the first interlayer insulating film by a chemical vapor deposition method (CVD method) to obtain an interlayer insulating film. At this time, the second interlayer insulating film is made of a material that is made porous by being formed on the first interlayer insulating film.

【0019】上記基体としては、Si等からなる基板や
基板上に絶縁膜を介してAlの配線層等が形成されてな
るもの等が挙げられる。また上記第1層間絶縁膜は、こ
の上層に形成する第2層間絶縁膜が第1層間絶縁膜に対
して下地依存性を示し、このことにより第2層間絶縁膜
を多孔質化させる膜からなる。このような第1層間絶縁
膜としては、フッ素原子を導入したプラズマ酸化膜(P
−SiOF膜)、テトラエトキシシラン(TEOS)−
酸素(O 2 )系ガスを用いたプラズマ酸化膜(P−TE
OS膜)や、シラン(SiH4 )−O2 −ホスフィン
(PH3 )系ガスにより形成したフォスホシリケートガ
ラス膜(PSG膜)等が挙げられる。
As the substrate, a substrate made of Si or the like,
A wiring layer of Al, etc. should not be formed on the substrate through an insulating film.
The thing etc. are mentioned. Further, the first interlayer insulating film is
The second interlayer insulating film formed on the upper layer is opposed to the first interlayer insulating film.
And shows a dependency on the underlying layer, which results in the second interlayer insulating film.
It is made of a film that makes the porous. Such first interlayer insulation
As the film, a plasma oxide film (P
-SiOF film), tetraethoxysilane (TEOS)-
Oxygen (O 2) -Based gas plasma oxide film (P-TE
OS film) or silane (SiHFour) -O2-Phosphine
(PH3) Phosphosilicate gas formed by a system gas
Examples include a lath film (PSG film).

【0020】またこの第1層間絶縁膜上に形成されるこ
とにより多孔質化する第2層間絶縁膜の材料としては、
オゾン(O3 )−TEOS系ガスを用いた常圧のCVD
法によって形成されるシリコン酸化膜(NSG膜)等が
挙げられる。
The material of the second interlayer insulating film which is made porous on the first interlayer insulating film is as follows:
Normal pressure CVD using ozone (O 3 ) -TEOS gas
Examples thereof include a silicon oxide film (NSG film) formed by the method.

【0021】上記方法において、例えば図3(a)に示
すように、シリコンからなる基板11上に絶縁膜12を
介してAl配線層13が形成されてなる基体10上に、
Al配線層13間の溝13aを埋め込みかつAl配線層
13を覆う状態で層間絶縁膜を形成する場合には、まず
図3(b)に示すように、基体10上にAl配線層13
を覆う状態で上記第1層間絶縁膜14を形成する。この
とき、Al配線層13間に気泡(小孔)を生じない程度
に薄く第1層間絶縁膜14を形成する。次いでCVD法
によって、Al配線層13間の溝13aに沿って形成さ
れた第1層間絶縁膜14の凹部14a内を埋め込むよう
にして、第1層間絶縁膜14上に第2層間絶縁膜15を
形成する。こうして形成された第2層間絶縁膜15は、
第1層間絶縁膜14に対する下地依存性により図3
(c)に示すごとく小孔16を多数有する、すなわち多
孔質化した膜となる。以上の工程によって、第1層間絶
縁膜14と第2層間絶縁膜15とからなる層間絶縁膜1
7が形成される。
In the above method, for example, as shown in FIG. 3A, a substrate 10 made of silicon, on which an Al wiring layer 13 is formed with an insulating film 12 interposed,
When the interlayer insulating film is formed in a state of filling the groove 13a between the Al wiring layers 13 and covering the Al wiring layer 13, first, as shown in FIG. 3B, the Al wiring layer 13 is formed on the substrate 10.
The first interlayer insulating film 14 is formed so as to cover the above. At this time, the first interlayer insulating film 14 is formed so thin that bubbles (small holes) are not generated between the Al wiring layers 13. Then, the second interlayer insulating film 15 is formed on the first interlayer insulating film 14 by the CVD method so as to fill the recess 14a of the first interlayer insulating film 14 formed along the groove 13a between the Al wiring layers 13. Form. The second interlayer insulating film 15 thus formed is
Due to the underlayer dependence on the first interlayer insulating film 14, FIG.
As shown in (c), the film has a large number of small holes 16, that is, a porous film. Through the above steps, the interlayer insulating film 1 including the first interlayer insulating film 14 and the second interlayer insulating film 15 is formed.
7 is formed.

【0022】[0022]

【作用】請求項1記載の発明の絶縁材料では、耐熱性の
高いSOG膜形成材料中にガス発生物質が溶解されてな
ることから、この絶縁材料を加熱または光照射すると、
ガス発生物質から比誘電率がほぼ1と小さいガスが発生
し、該ガスを含む気泡が多数形成される。そしてこの状
態で絶縁材料を固めると、前記気泡からなる、すなわち
上記ガスを含む小孔を多数有する絶縁物が形成される。
よってこの発明の絶縁材料は、高耐熱性を有ししかも加
熱または光照射により低誘電率化した絶縁物を形成する
ことが可能な材料となる。
In the insulating material according to the first aspect of the present invention, since the gas generating substance is dissolved in the SOG film forming material having high heat resistance, when the insulating material is heated or irradiated with light,
A gas having a small relative dielectric constant of about 1 is generated from the gas generating substance, and a large number of bubbles containing the gas are formed. Then, when the insulating material is solidified in this state, an insulator made of the bubbles, that is, having a large number of small holes containing the gas is formed.
Therefore, the insulating material of the present invention is a material having high heat resistance and capable of forming an insulating material having a low dielectric constant by heating or light irradiation.

【0023】請求項3記載の発明の層間絶縁膜は、上記
絶縁材料からなることから、比誘電率がほぼ1と小さい
ガスを含む小孔を多数有する膜となるので、高耐熱性を
有しかつ低誘電率の絶縁膜となる。よってこの層間絶縁
膜を用いれば、半導体素子における配線間の容量の低減
を図れ、また配線の信号伝播遅延等が防止されるととも
に、層間絶縁膜の形成以降の半導体素子の製造プロセス
に制限が加わらない。
Since the interlayer insulating film according to the third aspect of the present invention is made of the above-mentioned insulating material, it is a film having a large number of small holes containing a gas having a small relative dielectric constant of about 1, and thus has high heat resistance. And it becomes an insulating film having a low dielectric constant. Therefore, by using this interlayer insulating film, it is possible to reduce the capacitance between the wirings in the semiconductor element, prevent the signal propagation delay of the wirings, etc., and limit the manufacturing process of the semiconductor element after the formation of the interlayer insulating film. Absent.

【0024】請求項4記載の発明の層間絶縁膜の形成方
法では、本焼成の前に、上記絶縁材料からなる塗膜を加
熱または光照射することにより塗膜中のガス発生物質か
らガスを発生させるため、該ガスを含む気泡が多数発生
した塗膜が得られる。また塗膜の加熱または光照射の前
に塗膜を仮焼成して塗膜の表面を固めるため、上記気泡
が塗膜から出ることが防止される。よってこの塗膜を本
焼成して固めることにより、上記気泡からなる小孔を多
数有する、すなわち誘電率が低くしかも高耐熱性の層間
絶縁膜が形成される。
In the method for forming an interlayer insulating film according to a fourth aspect of the present invention, a gas is generated from a gas generating substance in the coating film by heating or irradiating the coating film made of the insulating material before the main firing. Therefore, a coating film in which a large number of bubbles containing the gas are generated is obtained. Further, since the coating film is pre-baked to solidify the surface of the coating film before heating or light irradiation of the coating film, it is possible to prevent the bubbles from coming out of the coating film. Therefore, by baking and solidifying this coating film, an interlayer insulating film having a large number of small holes made of the above-mentioned bubbles, that is, having a low dielectric constant and high heat resistance is formed.

【0025】請求項5記載の発明の層間絶縁膜の形成方
法では、第1層間絶縁膜上に形成されることにより多孔
質化する材料からなる第2層間絶縁膜を、第1層間絶縁
膜上に形成することから、第1層間絶縁膜と多孔質化し
た第2層間絶縁膜とからなる層間絶縁膜が形成される。
よって、多孔質化により誘電率の低減した層間絶縁膜が
得られる。
In the method for forming an interlayer insulating film according to the fifth aspect of the present invention, the second interlayer insulating film made of a material which is made porous on the first interlayer insulating film is formed on the first interlayer insulating film. As a result, the interlayer insulating film including the first interlayer insulating film and the porous second interlayer insulating film is formed.
Therefore, an interlayer insulating film having a reduced dielectric constant due to being porous can be obtained.

【0026】[0026]

【実施例】以下、本発明の実施例を説明する。 (実施例1)予め、有機SOG膜形成材料(HSG:日
立化成社製)の固形物に、この固形物に対して5wt%
の3,3’ジメトキシ−4,4’ジアドジフェニルから
なるガス発生物質を添加し、これらを溶解してろ過し、
絶縁材料を調整した。そしてこの絶縁材料を基板に回転
塗布して塗膜を形成した後、赤外線ランプを用い、15
0℃にて、1分間程度塗膜を仮焼成した。次にウエハス
テッパ(NSR−1505G3B:ニコン社製)を使用
し、500Wの光源を用いて波長が436nmの光を、
0.4秒、すなわち全体で200mJ/cm2 の光を塗
膜に照射し、塗膜中に窒素ガスを含む気泡を発生させ
た。この後、約250℃で10分程度本焼成し、基板上
に上記気泡からなる小孔を多数有する層間絶縁膜を形成
した。
Embodiments of the present invention will be described below. (Example 1) An organic SOG film forming material (HSG: manufactured by Hitachi Chemical Co., Ltd.) was previously added to a solid material in an amount of 5 wt% based on the solid material.
3,3'dimethoxy-4,4'diaddiphenyl gas generator was added, these were dissolved and filtered,
The insulating material was adjusted. Then, this insulating material is spin-coated on the substrate to form a coating film, and then an infrared lamp is used.
The coating film was pre-baked at 0 ° C. for about 1 minute. Next, a wafer stepper (NSR-1505G3B: manufactured by Nikon Corporation) was used, and a light having a wavelength of 436 nm was emitted using a 500 W light source.
The coating film was irradiated with light for 0.4 seconds, that is, 200 mJ / cm 2 in total, to generate bubbles containing nitrogen gas in the coating film. After that, main baking was performed at about 250 ° C. for about 10 minutes to form an interlayer insulating film having a large number of small holes made of the bubbles on the substrate.

【0027】上記ガス発生物質を溶解させていない他は
上記と同様の絶縁材料を用いて層間絶縁膜を形成した場
合、この層間絶縁膜の比誘電率は2.7であったのに対
し、上記の操作により得られた層間絶縁膜の比誘電率は
2.5であった。この結果から、高耐熱性を有するSO
G膜からなりかつ誘電率が低い層間絶縁膜が得られるこ
とが確認された。
When the interlayer insulating film was formed by using the same insulating material as that described above except that the gas generating substance was not dissolved, the relative dielectric constant of the interlayer insulating film was 2.7. The relative dielectric constant of the interlayer insulating film obtained by the above operation was 2.5. From this result, SO having high heat resistance
It was confirmed that an interlayer insulating film made of a G film and having a low dielectric constant was obtained.

【0028】(実施例2)実施例1のガス発生物質を
2,6−ジ(4’−アジドベンザル)−4−メチルシク
ロヘキサンに替えた以外は実施例1と同様の操作にて、
窒素ガスを含む小孔を多数有する多孔質の層間絶縁膜を
形成した。上記の操作により得られた層間絶縁膜の比誘
電率は2.6であった。したがって、この実施例によっ
ても高耐熱性を有するSOG膜からなりかつ誘電率が低
い層間絶縁膜が得られることが確認された。
(Example 2) The same operation as in Example 1 was repeated except that the gas generating substance in Example 1 was changed to 2,6-di (4'-azidobenzal) -4-methylcyclohexane.
A porous interlayer insulating film having a large number of small holes containing nitrogen gas was formed. The relative dielectric constant of the interlayer insulating film obtained by the above operation was 2.6. Therefore, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant was obtained also in this example.

【0029】(実施例3)実施例1のガス発生物質を
3,3’−ジアジドジフェニルスルホンに替えた以外は
実施例1と同様の操作にて、窒素ガスを含む小孔を多数
有する多孔質の層間絶縁膜を形成した。上記の操作によ
り得られた層間絶縁膜の比誘電率は2.6であった。し
たがって、この実施例によっても高耐熱性を有するSO
G膜からなりかつ誘電率が低い層間絶縁膜が得られるこ
とが確認された。
(Example 3) The same operation as in Example 1 except that the gas generating substance in Example 1 was changed to 3,3'-diazidodiphenylsulfone, and the pores having many small holes containing nitrogen gas were obtained. A high quality interlayer insulating film was formed. The relative dielectric constant of the interlayer insulating film obtained by the above operation was 2.6. Therefore, SO having high heat resistance is also obtained in this example.
It was confirmed that an interlayer insulating film made of a G film and having a low dielectric constant was obtained.

【0030】(実施例4)実施例1のガス発生物質を5
−ナフトキノンジアジドスルホン酸フェノールエステル
に替え、また実施例1における光照射の条件を、500
Wの光源を用い、波長が436nmの光を1.2秒、す
なわち全体で600mJ/cm2 の光を塗膜に照射する
とした以外は実施例1と同様の操作を行い、窒素ガスを
含む小孔を多数有する多孔質の層間絶縁膜を形成した。
上記の操作により得られた層間絶縁膜の比誘電率を測定
したところ、2.6であった。したがって、高耐熱性を
有するSOG膜からなりかつ誘電率が低い層間絶縁膜が
得られることが確認された。
(Example 4) The gas generating substance of Example 1 was changed to 5
-In place of naphthoquinone diazide sulfonic acid phenol ester, the light irradiation conditions in Example 1 were changed to 500
Using a W light source, light having a wavelength of 436 nm was irradiated for 1.2 seconds, that is, 600 mJ / cm 2 of light was applied to the coating film in the same manner as in Example 1, except that a small amount of nitrogen gas was contained. A porous interlayer insulating film having a large number of holes was formed.
The relative dielectric constant of the interlayer insulating film obtained by the above operation was measured and found to be 2.6. Therefore, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant can be obtained.

【0031】(実施例5)実施例4のガス発生物質を4
−ナフトキノンジアジドスルホン酸フェノールエステル
に替えた以外は実施例4と同様の操作を行って、窒素ガ
スを含む小孔を多数有する多孔質の層間絶縁膜を形成し
た。上記の操作により得られた層間絶縁膜の比誘電率を
測定したところ、2.5であった。よって、高耐熱性を
有するSOG膜からなりかつ誘電率が低い層間絶縁膜が
得られることが確認された。
(Example 5) The gas generating substance of Example 4 was changed to 4
-A porous interlayer insulating film having a large number of small holes containing nitrogen gas was formed by performing the same operation as in Example 4 except that naphthoquinone diazide sulfonic acid phenol ester was used. The relative dielectric constant of the interlayer insulating film obtained by the above operation was measured and found to be 2.5. Therefore, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant can be obtained.

【0032】(実施例6)実施例4のガス発生物質をo
−キノンジアジドスルホン酸フェノールエステルに替え
た以外は実施例4と同様の操作を行って、窒素ガスを含
む小孔を多数有する多孔質の層間絶縁膜を形成した。上
記の操作により得られた層間絶縁膜の比誘電率は2.6
であった。したがってこの実施例によっても、高耐熱性
を有するSOG膜からなりかつ誘電率が低い層間絶縁膜
が得られることが確認された。
(Example 6) The gas generating substance of Example 4 was
-A porous interlayer insulating film having a large number of small holes containing nitrogen gas was formed by performing the same operation as in Example 4, except that the phenol ester of quinonediazide sulfonic acid was used. The relative dielectric constant of the interlayer insulating film obtained by the above operation is 2.6.
Met. Therefore, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant was obtained also in this example.

【0033】(実施例7)実施例1の絶縁材料を、無機
SOG膜形成材料(FOX:アライドシグナル社製)の
固形物に、この固形物に対して10wt%の3−メトキ
シ−4−ジオクチルアミノベンゼンジアゾニウムのスル
ホン酸塩からなるガス発生物質を添加し、これらを溶解
してろ過することによって調整した絶縁材料に替え、ま
た実施例1における光照射の条件を、500Wの光源を
用い、波長が436nmの光を0.6秒照射し、300
mJ/cm2 の露光エネルギーを塗膜に与えるとした以
外は実施例1と同様の操作を行い、窒素ガスを含む小孔
を多数有する多孔質の層間絶縁膜を形成した。
Example 7 The insulating material of Example 1 was used as a solid of an inorganic SOG film forming material (FOX: manufactured by Allied Signal Co., Ltd.), and 10 wt% of 3-methoxy-4-dioctyl was added to the solid. A gas generating substance consisting of a sulfonic acid salt of aminobenzenediazonium was added, and the insulating material prepared by dissolving and filtering these was replaced with an insulating material, and the conditions of light irradiation in Example 1 were changed by using a light source of 500 W and a wavelength of Irradiates 436 nm light for 0.6 seconds,
The same operation as in Example 1 was carried out except that the exposure energy of mJ / cm 2 was applied to the coating film to form a porous interlayer insulating film having a large number of small holes containing nitrogen gas.

【0034】上記ガス発生物質を溶解させていない他は
上記と同様の絶縁材料を用いて層間絶縁膜を形成した場
合、この層間絶縁膜の比誘電率は3.7であったのに対
し、上記の操作により得られた層間絶縁膜の比誘電率は
2.7であった。この結果、高耐熱性を有するSOG膜
からなりかつ誘電率が低い層間絶縁膜が得られることが
確認された。
When an interlayer insulating film was formed using the same insulating material as that described above except that the gas generating substance was not dissolved, the relative dielectric constant of this interlayer insulating film was 3.7. The relative dielectric constant of the interlayer insulating film obtained by the above operation was 2.7. As a result, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant can be obtained.

【0035】(実施例8)実施例7のガス発生物質をマ
レイン酸に替え、かつ光照射に替えて塗膜を約200℃
で5分程度加熱した以外は実施例7と同様の操作を行
い、二酸化炭素ガスを含む小孔を多数有する多孔質の層
間絶縁膜を形成した。上記の操作により得られた層間絶
縁膜の比誘電率は3.0であった。この結果、この実施
例によっても高耐熱性を有するSOG膜からなりかつ誘
電率が低い層間絶縁膜が得られることが確認された。
(Example 8) The gas generating substance of Example 7 was changed to maleic acid and light irradiation was changed to a coating film of about 200 ° C.
The same operation as in Example 7 was performed except that the heating was performed for about 5 minutes to form a porous interlayer insulating film having a large number of small holes containing carbon dioxide gas. The relative dielectric constant of the interlayer insulating film obtained by the above operation was 3.0. As a result, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant was obtained also in this example.

【0036】(実施例9)実施例8のガス発生物質をア
セト酢酸に替えた以外は実施例7と同様の操作にて、二
酸化炭素ガスを含む小孔を多数有する多孔質の層間絶縁
膜を形成した。上記の操作により得られた層間絶縁膜の
比誘電率は2.9であった。したがって、この実施例に
よっても高耐熱性を有するSOG膜からなりかつ誘電率
が低い層間絶縁膜が得られることが確認された。
(Embodiment 9) A porous interlayer insulating film having a large number of small holes containing carbon dioxide gas was prepared in the same manner as in Embodiment 7, except that the gas generating substance in Embodiment 8 was changed to acetoacetic acid. Formed. The relative dielectric constant of the interlayer insulating film obtained by the above operation was 2.9. Therefore, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant was obtained also in this example.

【0037】(実施例10)実施例1のガス発生物質を
ジアゾメルドラム酸に替え、また実施例1における光照
射の条件を、エキシマレーザーステッパ(NSR−15
05EX:ニコン社製)を用い、波長が248nmのK
rFエキシマレーザー光を、露光エネルギーとして30
0mJ/cm2 塗膜に照射するとした以外は実施例1と
同様の操作を行い、窒素ガス、一酸化炭素ガスおよびア
セトンガスを含む小孔を多数有する多孔質の層間絶縁膜
を形成した。上記の操作により得られた層間絶縁膜の比
誘電率を測定したところ、2.6であった。したがっ
て、高耐熱性を有するSOG膜からなりかつ誘電率が低
い層間絶縁膜が得られることが確認された。
(Example 10) The gas generating substance in Example 1 was changed to diazomeldrum acid, and the light irradiation conditions in Example 1 were changed to those of the excimer laser stepper (NSR-15).
05EX: manufactured by Nikon Corporation, and has a wavelength of 248 nm K
The exposure energy of rF excimer laser light is 30
The same operation as in Example 1 was performed except that the coating film was irradiated with 0 mJ / cm 2 to form a porous interlayer insulating film having many small holes containing nitrogen gas, carbon monoxide gas and acetone gas. The relative dielectric constant of the interlayer insulating film obtained by the above operation was measured and found to be 2.6. Therefore, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant can be obtained.

【0038】(実施例11)実施例10の絶縁材料を、
無機SOG膜形成材料(FOX:アライドシグナル社
製)の固形物に、この固形物に対して15wt%のビス
フェノールのt−ブトキシ炭酸エステルからなるガス発
生物質と、ジフェニルヨードニウムトリフラートまたは
トリフェニルスルホニウムトリフラートからなる光酸発
生剤を添加し、これらを溶解してろ過することによって
調整した絶縁材料に替えた以外は、実施例10と同様の
操作を行い、二酸化炭素ガス、イソブテンガスを含む小
孔を多数有する多孔質の層間絶縁膜を形成した。上記の
操作により得られた層間絶縁膜の比誘電率を測定したと
ころ、3.2であった。したがって、高耐熱性を有する
SOG膜からなりかつ誘電率が低い層間絶縁膜が得られ
ることが確認された。
(Embodiment 11) The insulating material of Embodiment 10 is
From a solid substance of an inorganic SOG film forming material (FOX: manufactured by Allied Signal Co.), a gas generating substance consisting of 15 wt% of t-butoxycarbonic acid ester of bisphenol, and diphenyliodonium triflate or triphenylsulfonium triflate. The same operation as in Example 10 was carried out except that the photo-acid generator was added and the insulating material was dissolved and filtered to replace the insulating material, and a large number of small holes containing carbon dioxide gas and isobutene gas were obtained. A porous interlayer insulating film having the above was formed. The relative dielectric constant of the interlayer insulating film obtained by the above operation was measured and found to be 3.2. Therefore, it was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant can be obtained.

【0039】(実施例12)実施例11と同様の絶縁材
料からなる塗膜に光照射せず、該塗膜を約100℃で5
分間程度加熱した以外は実施例11と同様の操作を行っ
た。こうして得られた層間絶縁膜においても、実施例1
1と同様の効果が得られた。
(Example 12) A coating film made of the same insulating material as in Example 11 was not irradiated with light, and the coating film was heated at about 100 ° C for 5 hours.
The same operation as in Example 11 was performed except that heating was performed for about a minute. Also in the interlayer insulating film thus obtained, Example 1
The same effect as that of No. 1 was obtained.

【0040】(実施例13)実施例7の絶縁材料を、無
機SOG膜形成材料(FOX:アライドシグナル社製)
の固形物に、この固形物に対して5wt%のポリブテン
スルホン酸からなるガス発生物質に替え、かつ塗膜への
光照射の条件を重水素ランプを用い、全体で20mJ/
cm2 となるように塗膜に照射するとした以外は実施例
7と同様の操作を行い、二酸化イオウガスおよび2−ブ
テンガスを含む小孔を多数有する多孔質の層間絶縁膜を
形成した。上記の操作により得られた層間絶縁膜の比誘
電率を測定したところ、3.2であった。したがって、
この実施例によっても高耐熱性を有するSOG膜からな
りかつ誘電率が低い層間絶縁膜が得られることが確認さ
れた。
(Example 13) The insulating material of Example 7 was used as an inorganic SOG film forming material (FOX: manufactured by Allied Signal Co., Ltd.).
The solid substance was replaced with a gas generating substance consisting of 5 wt% of polybutenesulfonic acid with respect to the solid substance, and the condition of light irradiation to the coating film was 20 mJ / total by using a deuterium lamp.
The same operation as in Example 7 was performed, except that the coating film was irradiated so that the thickness became cm 2 , to form a porous interlayer insulating film having many small holes containing sulfur dioxide gas and 2-butene gas. The relative dielectric constant of the interlayer insulating film obtained by the above operation was measured and found to be 3.2. Therefore,
It was confirmed that an interlayer insulating film made of an SOG film having high heat resistance and having a low dielectric constant was obtained also in this example.

【0041】(実施例14)まず、予め、図3(a)に
示すようなSiの基板11上に絶縁膜12を介してAl
配線層13が形成されている基体10を用意した。次い
で平行平板型の電極を備えたCVD装置を用い、下記の
条件にて基体10上にプラズマ酸化膜からなる第1層間
絶縁膜14を形成した(図3(b)参照)。 CVD条件; 成膜ガス :TEOSガス、O2 ガス TEOSガス流量:20sccm O2 ガス流量 :600sccm 基板温度 :400℃ 反応圧力 :113×10Pa 高周波電力 :700W
(Embodiment 14) First, Al is previously formed on a Si substrate 11 as shown in FIG. 3A with an insulating film 12 interposed therebetween.
A substrate 10 having a wiring layer 13 formed thereon was prepared. Then, a first interlayer insulating film 14 made of a plasma oxide film was formed on the substrate 10 under the following conditions by using a CVD apparatus equipped with parallel plate type electrodes (see FIG. 3B). CVD conditions; Film forming gas: TEOS gas, O 2 gas TEOS gas flow rate: 20 sccm O 2 gas flow rate: 600 sccm Substrate temperature: 400 ° C. Reaction pressure: 113 × 10 Pa High frequency power: 700 W

【0042】次に、第1層間膜14上に、常圧のCVD
法により、下記の条件で常圧O3 −TEOS酸化膜(N
SG膜)からなる多孔質の第2層間絶縁膜15を形成
し、層間絶縁膜17を得た(図3(c))。 CVD条件; 成膜ガス :TEOSガス、O2 ガス、O3 ガス TEOSガス流量:10sccm O2 ガス/O3 ガス流量:5.7SLM O3 ガス濃度 :150mg/l 基板温度 :380℃
Next, CVD is performed on the first interlayer film 14 at atmospheric pressure.
Method, under the following conditions under normal pressure O 3 -TEOS oxide film (N
A porous second interlayer insulating film 15 made of a SG film) was formed to obtain an interlayer insulating film 17 (FIG. 3C). CVD conditions; Film forming gas: TEOS gas, O 2 gas, O 3 gas TEOS gas flow rate: 10 sccm O 2 gas / O 3 gas flow rate: 5.7 SLM O 3 gas concentration: 150 mg / l Substrate temperature: 380 ° C.

【0043】この操作により得られた層間絶縁膜17の
比誘電率を測定したところ、3.5であった。なお、比
較例として多孔質化していないO3 −TEOS酸化膜
(NSG膜)の比誘電率を測定したところ4.5であっ
た。したがって、この実施例によっても高耐熱性のシリ
コン酸化膜からなり、かつ低誘電率の層間絶縁膜が得ら
れることが確認された。
When the relative dielectric constant of the interlayer insulating film 17 obtained by this operation was measured, it was 3.5. As a comparative example, the relative dielectric constant of the non-porous O 3 -TEOS oxide film (NSG film) was measured and found to be 4.5. Therefore, it was confirmed that an interlayer insulating film made of a highly heat-resistant silicon oxide film and having a low dielectric constant was obtained also in this example.

【0044】[0044]

【発明の効果】以上説明したように請求項1記載の絶縁
材料は、耐熱性の高いSOG膜形成材料中にガス発生物
質が溶解されてなり、この絶縁材料を加熱または光照射
すると、ガス発生物質からのガスを含む気泡が多数形成
され、さらに絶縁材料を固めると、前記気泡からなる小
孔を多数有する絶縁物が形成されるので、高耐熱性を有
ししかも加熱または光照射により低誘電率化した絶縁物
を形成することが可能な材料となる。
As described above, in the insulating material according to the first aspect, the gas generating substance is dissolved in the SOG film forming material having high heat resistance, and when this insulating material is heated or irradiated with light, gas is generated. A large number of bubbles containing gas from the substance are formed, and when the insulating material is further hardened, an insulator having a large number of small holes made of the bubbles is formed, so that it has high heat resistance and low dielectric constant by heating or light irradiation. It becomes a material capable of forming a graded insulator.

【0045】請求項3記載の発明の層間絶縁膜は、上記
絶縁材料からなることから、比誘電率がほぼ1と小さい
ガスを含む小孔を多数有する膜となるので、高耐熱性を
有しかつ低誘電率の絶縁膜となる。よってこの層間絶縁
膜を用いれば、層間絶縁膜以降、製造プロセスに制限を
加えることなく半導体素子を形成することができるとと
もに、半導体素子における配線間の容量の低減を図るこ
とができ、また配線の信号伝播を高速化することができ
る。
Since the interlayer insulating film according to the third aspect of the present invention is made of the above insulating material, it is a film having a large number of small holes containing a gas having a small relative dielectric constant of approximately 1, and thus has high heat resistance. And it becomes an insulating film having a low dielectric constant. Therefore, by using this interlayer insulating film, it is possible to form a semiconductor element after the interlayer insulating film without restricting the manufacturing process, and it is possible to reduce the capacitance between wirings in the semiconductor element and The signal propagation can be speeded up.

【0046】請求項4記載の発明の層間絶縁膜の形成方
法では、上記絶縁材料からなる塗膜を加熱または光照射
することにより塗膜中のガス発生物質からのガスを含む
気泡が多数発生した塗膜を得ることができ、また塗膜の
加熱または光照射の前に塗膜を仮焼成して塗膜の表面を
固めるため、上記気泡からなる小孔を多数有する多孔質
の層間絶縁膜を形成することができる。よって、耐熱性
が高く低誘電率の層間絶縁膜を形成できるので、この方
法を用いれば配線間の容量が低減し、また配線の信号伝
播が高速化した半導体素子を製造することが可能とな
る。
In the method for forming an interlayer insulating film according to the fourth aspect of the present invention, a large number of bubbles containing gas from the gas generating substance in the coating film are generated by heating or irradiating the coating film made of the insulating material. Since a coating film can be obtained and the coating film is calcined before heating or light irradiation of the coating film to solidify the surface of the coating film, a porous interlayer insulating film having a large number of small pores composed of the above bubbles is formed. Can be formed. Therefore, since an interlayer insulating film having high heat resistance and a low dielectric constant can be formed, it is possible to manufacture a semiconductor element in which the capacitance between wirings is reduced and the signal propagation of wirings is accelerated by using this method. .

【0047】請求項5記載の発明の層間絶縁膜の形成方
法では、第1層間絶縁膜と多孔質化した第2層間絶縁膜
とからなる層間絶縁膜が形成されるので、多孔質化によ
り誘電率の低減した層間絶縁膜が得られる。よって、こ
の方法を用いれば配線間の容量が低減し、また配線の信
号伝播が高速化した半導体素子を製造することができ
る。
In the method for forming an interlayer insulating film according to the fifth aspect of the present invention, since the interlayer insulating film including the first interlayer insulating film and the porous second interlayer insulating film is formed, the porous insulating film is formed. An interlayer insulating film having a reduced rate is obtained. Therefore, by using this method, it is possible to manufacture a semiconductor element in which the capacitance between wirings is reduced and the signal propagation of the wirings is accelerated.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(e)は請求項4記載の発明を工程順
に説明するための側断面図である。
1A to 1E are side sectional views for explaining the invention according to claim 4 in the order of steps.

【図2】(a)、(b)は加熱または光照射による塗膜
の変化を説明するための側断面図である。
2 (a) and 2 (b) are side sectional views for explaining changes in a coating film due to heating or light irradiation.

【図3】(a)〜(c)は請求項5記載の発明を工程順
に説明するための要部側断面図である。
3 (a) to 3 (c) are side cross-sectional views of a main part for explaining the invention according to claim 5 in the order of steps.

【符号の説明】[Explanation of symbols]

1、10 基体 2 絶縁材料 3 塗膜 5 光 8 層間絶縁膜 14 第1層間絶縁膜 15 第2層間絶縁膜 16 小孔 17 層間絶縁膜 1, 10 Substrate 2 Insulating material 3 Coating film 5 Light 8 Interlayer insulating film 14 First interlayer insulating film 15 Second interlayer insulating film 16 Small hole 17 Interlayer insulating film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/768 C09D 1/00 PCJ // C09D 1/00 PCJ 5/25 PQY 5/25 PQY H01L 21/90 Q ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01L 21/768 C09D 1/00 PCJ // C09D 1/00 PCJ 5/25 PQY 5/25 PQY H01L 21/90 Q

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 スピンオンガラス膜形成材料中に、加熱
または光照射によってガスを発生するガス発生物質が溶
解されてなることを特徴とする絶縁材料。
1. An insulating material comprising a spin-on glass film forming material, and a gas generating substance which generates a gas by heating or irradiation with light is dissolved in the material.
【請求項2】 前記ガス発生物質は、5−ナフトキノン
ジアドスルホン酸エステル類、4−ナフトキノンジアジ
ドスルホン酸エステル類、キノンジアジド類、ジアゾニ
ウム塩、アジド化合物、マレイン酸誘導体、アセト酢酸
誘導体、ジアゾメルドラム酸誘導体、t−ブトキシ炭酸
エステル誘導体、ポリブテンスルホン誘導体のうちの少
なくとも1種からなることを特徴とする請求項1記載の
絶縁材料。
2. The gas generating substance is 5-naphthoquinone diad sulfonic acid ester, 4-naphthoquinone diazide sulfonic acid ester, quinone diazide, diazonium salt, azide compound, maleic acid derivative, acetoacetic acid derivative, diazomel drum. The insulating material according to claim 1, comprising at least one of an acid derivative, a t-butoxy carbonate derivative, and a polybutene sulfone derivative.
【請求項3】 半導体素子に形成される層間絶縁膜であ
って、 請求項1または請求項2記載の絶縁材料で形成されてい
ることを特徴とする層間絶縁膜。
3. An interlayer insulating film formed on a semiconductor element, wherein the interlayer insulating film is formed of the insulating material according to claim 1.
【請求項4】 半導体素子の製造に際して、基体上に層
間絶縁膜を形成する方法であって、 スピンオンガラス膜形成材料中に加熱または光照射によ
ってガスを発生するガス発生物質が溶解されてなる絶縁
材料を、前記基体上に回転塗布する工程と、 前記基体上の塗膜を仮焼成し、その後該塗膜を加熱しま
たは光照射し、次いで前記塗膜を本焼成することにより
層間絶縁膜を形成する工程とを有していることを特徴と
する層間絶縁膜の形成方法。
4. A method for forming an interlayer insulating film on a substrate in the production of a semiconductor device, comprising a spin-on-glass film-forming material in which a gas-generating substance that generates gas by heating or light irradiation is dissolved. A step of spin-coating the material on the substrate, and calcination of the coating film on the substrate, then heating or light irradiation of the coating film, and then main-baking the coating film to form an interlayer insulating film. And a step of forming the interlayer insulating film.
【請求項5】 半導体素子の製造に際して、基体上に第
1層間絶縁膜と第2層間絶縁膜とをこの順に積層してな
る層間絶縁膜を形成する方法であって、 前記基体上に前記第1層間絶縁膜を形成する工程と、 化学的気相成長法によって、前記第1層間絶縁膜上に前
記第2層間絶縁膜を形成し、層間絶縁膜を得る工程とを
有してなり、 前記第2層間絶縁膜は、前記第1層間絶縁膜上に形成さ
れることにより多孔質化する材料からなることを特徴と
する層間絶縁膜の形成方法。
5. A method of forming an interlayer insulating film, which comprises laminating a first interlayer insulating film and a second interlayer insulating film in this order on a base during the manufacture of a semiconductor device, the method comprising: A first interlayer insulating film, and a step of forming the second interlayer insulating film on the first interlayer insulating film by a chemical vapor deposition method to obtain an interlayer insulating film. The method for forming an interlayer insulating film, wherein the second interlayer insulating film is made of a material that is made porous by being formed on the first interlayer insulating film.
JP13000995A 1995-05-29 1995-05-29 Insulation material, layer insulation film and formation of layer insulation film Pending JPH08330300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13000995A JPH08330300A (en) 1995-05-29 1995-05-29 Insulation material, layer insulation film and formation of layer insulation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13000995A JPH08330300A (en) 1995-05-29 1995-05-29 Insulation material, layer insulation film and formation of layer insulation film

Publications (1)

Publication Number Publication Date
JPH08330300A true JPH08330300A (en) 1996-12-13

Family

ID=15023898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13000995A Pending JPH08330300A (en) 1995-05-29 1995-05-29 Insulation material, layer insulation film and formation of layer insulation film

Country Status (1)

Country Link
JP (1) JPH08330300A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052136A1 (en) * 1998-04-01 1999-10-14 Asahi Kasei Kogyo Kabushiki Kaisha Method of manufacturing interconnection structural body
JP2000269204A (en) * 1999-01-13 2000-09-29 Hitachi Chem Co Ltd Semiconductor device
US6194029B1 (en) 1998-02-12 2001-02-27 Matsushita Electric Industrial Co., Ltd. Method of forming porous film and material for porous film
US6451436B1 (en) 1998-09-25 2002-09-17 Catalysts & Chemicals Industries Co., Ltd. Coating liquid for forming a silica-containing film with a low-dielectric constant and substrate coated with such a film
US6639015B1 (en) 1998-09-01 2003-10-28 Catalysts & Chemicals Industries Co., Ltd. Coating liquid for forming a silica-containing film with a low-dielectric constant
JP2010262980A (en) * 2009-04-30 2010-11-18 Jsr Corp Curable composition for nanoimprint lithography, and nanoimprint method
JP2011101063A (en) * 2011-02-22 2011-05-19 Panasonic Corp Method for manufacturing circuit board
WO2013088686A1 (en) * 2011-12-14 2013-06-20 三井化学株式会社 Adhesive resin composition, laminate body, and self-peeling method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194029B1 (en) 1998-02-12 2001-02-27 Matsushita Electric Industrial Co., Ltd. Method of forming porous film and material for porous film
US6319854B1 (en) 1998-02-12 2001-11-20 Matsushita Electric Industrial Co., Ltd. Method of forming porous film and material for porous film
US6479374B1 (en) 1998-04-01 2002-11-12 Asahi Kasei Kabushiki Kaisha Method of manufacturing interconnection structural body
JP4521992B2 (en) * 1998-04-01 2010-08-11 旭化成株式会社 Manufacturing method of wiring structure
WO1999052136A1 (en) * 1998-04-01 1999-10-14 Asahi Kasei Kogyo Kabushiki Kaisha Method of manufacturing interconnection structural body
US6639015B1 (en) 1998-09-01 2003-10-28 Catalysts & Chemicals Industries Co., Ltd. Coating liquid for forming a silica-containing film with a low-dielectric constant
US6451436B1 (en) 1998-09-25 2002-09-17 Catalysts & Chemicals Industries Co., Ltd. Coating liquid for forming a silica-containing film with a low-dielectric constant and substrate coated with such a film
JP2000269204A (en) * 1999-01-13 2000-09-29 Hitachi Chem Co Ltd Semiconductor device
JP2010262980A (en) * 2009-04-30 2010-11-18 Jsr Corp Curable composition for nanoimprint lithography, and nanoimprint method
JP2011101063A (en) * 2011-02-22 2011-05-19 Panasonic Corp Method for manufacturing circuit board
WO2013088686A1 (en) * 2011-12-14 2013-06-20 三井化学株式会社 Adhesive resin composition, laminate body, and self-peeling method
JPWO2013088686A1 (en) * 2011-12-14 2015-04-27 三井化学東セロ株式会社 Adhesive resin composition, laminate and self-peeling method
US9611410B2 (en) 2011-12-14 2017-04-04 Mitsui Chemicals Tohcello, Inc. Adhesive resin composition, laminate, and self-stripping method

Similar Documents

Publication Publication Date Title
US5976618A (en) Process for forming silicon dioxide film
US5185296A (en) Method for forming a dielectric thin film or its pattern of high accuracy on a substrate
US6080526A (en) Integration of low-k polymers into interlevel dielectrics using controlled electron-beam radiation
EP2396703B1 (en) A hardmask process for forming a reverse tone image using polysilazane
JP2951504B2 (en) Silylated flattening resist, flattening method, and integrated circuit device manufacturing method
EP1308476B1 (en) Insulation film forming material, insulation film, method for forming the insulation film, and semiconductor device
US5750403A (en) Method of forming multi-layer wiring utilizing hydrogen silsesquioxane resin
JPH08330300A (en) Insulation material, layer insulation film and formation of layer insulation film
US7830012B2 (en) Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device
US6426127B1 (en) Electron beam modification of perhydrosilazane spin-on glass
US6074962A (en) Method for the formation of silica-based coating film
US5821162A (en) Method of forming multi-layer wiring utilizing SOG
JP2001284209A (en) Method of forming multilayered resist pattern and method of manufacturing semiconductor device
JPH11186526A (en) Semiconductor device for planarizing and its manufacture
JP5470687B2 (en) Silicon compound, ultraviolet absorber, multilayer wiring device manufacturing method, and multilayer wiring device
JPH09241518A (en) Resin composition and method for forming multilayer interconnection
JP2849286B2 (en) Method for manufacturing semiconductor device
JPH10335324A (en) Semiconductor device and manufacture thereof
Kataoka et al. Processing of Polyimides and Related Topics
JPH1174260A (en) Semiconductor device and its manufacture
JP3453370B2 (en) Method of forming fine pattern, method of manufacturing semiconductor device, and semiconductor device
JPH11317402A (en) Manufacture of semiconductor device
JPH034551A (en) Manufacture of semiconductor device
JPH0594022A (en) Multilayered resist structure and its manufacture
JP2004277499A (en) Composition for film having low permittivity, film having low permittivity and its manufacturing method, and semiconductor device