JPH08330073A - Organic luminous element and manufacture thereof - Google Patents
Organic luminous element and manufacture thereofInfo
- Publication number
- JPH08330073A JPH08330073A JP7160402A JP16040295A JPH08330073A JP H08330073 A JPH08330073 A JP H08330073A JP 7160402 A JP7160402 A JP 7160402A JP 16040295 A JP16040295 A JP 16040295A JP H08330073 A JPH08330073 A JP H08330073A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- transporting material
- material layer
- emitting device
- side electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 239000000463 material Substances 0.000 claims abstract description 69
- 239000011368 organic material Substances 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 239000011521 glass Substances 0.000 claims abstract description 5
- 229910016943 AlZn Inorganic materials 0.000 claims abstract 3
- 239000007772 electrode material Substances 0.000 claims description 16
- 230000005525 hole transport Effects 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000010549 co-Evaporation Methods 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims 33
- 239000011241 protective layer Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 23
- 239000002184 metal Substances 0.000 abstract description 23
- 239000011777 magnesium Substances 0.000 abstract description 16
- 230000006866 deterioration Effects 0.000 abstract description 14
- 238000007740 vapor deposition Methods 0.000 abstract description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract description 4
- 150000001342 alkaline earth metals Chemical class 0.000 abstract description 4
- 229910052708 sodium Inorganic materials 0.000 abstract description 4
- 239000011734 sodium Substances 0.000 abstract description 4
- 229910002056 binary alloy Inorganic materials 0.000 abstract description 3
- 229910002058 ternary alloy Inorganic materials 0.000 abstract description 3
- 238000007654 immersion Methods 0.000 abstract description 2
- -1 magnesium Chemical class 0.000 abstract description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000005215 recombination Methods 0.000 description 7
- 230000006798 recombination Effects 0.000 description 7
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910019015 Mg-Ag Inorganic materials 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は有機材料を用いた発光素
子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using an organic material.
【0002】[0002]
【従来の技術】有機材料を用いた発光素子に関する研究
は既に過去20年以上前から発表されており、アントラ
センが発光材料として用いられている。このアントラセ
ンとは、アントラセンに電流を注入すると、電子とホ−
ルの再結合が生じ、この再結合によって発光させてい
る。2. Description of the Related Art Studies on light emitting devices using organic materials have been published for more than 20 years, and anthracene is used as a light emitting material. This anthracene means that when a current is injected into anthracene, electrons and ho
Recombination occurs, and this recombination causes light emission.
【0003】また従来の発光素子に比べてその優れた特
性をあげるならば、その製造方法の容易さで単純な蒸着
プロセスのみでデバイスが出来ること、さらに特性の優
れていることで、面発光の自己発光素子であり、かつ発
光輝度が高く均一性の高いことが特徴となっている。さ
らに高輝度光源でかつ、その発光効率が大きいことで電
力効率で数パ−セントにも達すること等があげられる。In addition, as to its excellent characteristics as compared with the conventional light emitting element, a device can be formed only by a simple vapor deposition process because of its easy manufacturing method, and further, the characteristics are excellent. It is a self-luminous element and is characterized by high emission brightness and high uniformity. Furthermore, it is a high-brightness light source and its luminous efficiency is large, so that it can reach several percent in power efficiency.
【0004】しかし、実用の観点から見るとその発光素
子の寿命は非常にに短く、実用レベルには達していなか
った。上記のように寿命の短さを生み出す素子の劣化原
因の一つに電子を注入するための電極の酸化が挙げられ
るが、この電極の酸化に依る原因が最も大きいと考えら
れる。素子に電流を注入する(特に有機材料に電子を注
入する)ためには仕事関数の小さい電極材料が必要とな
る。ここで、一般的に仕事関数の小さい材料として、ナ
トリウム、カリウム、リチウム、マグネシウム等のアル
カリ金属あるいはアルカリ土類金属があげられるが、こ
れらの金属材料はいずれも大気中では不安定な材料であ
り、従ってこの不安定性が素子の寿命に密接につながっ
ている。その中でも特に、マグネシウム−銀の合金が比
較的優れた素子特性を示すことが分かったが、この材料
でも素子寿命に関しては実用化のレベルには達していな
い。However, from a practical point of view, the life of the light emitting element is very short, and it has not reached a practical level. As described above, oxidation of the electrode for injecting electrons is one of the causes of the deterioration of the element that causes the short life, and it is considered that the cause is the greatest due to the oxidation of the electrode. An electrode material having a low work function is necessary for injecting a current into an element (in particular, injecting an electron into an organic material). Here, as a material having a small work function, an alkali metal such as sodium, potassium, lithium, or magnesium or an alkaline earth metal is generally mentioned. However, all of these metal materials are unstable in the atmosphere. Therefore, this instability is closely linked to the life of the device. Among them, it has been found that the magnesium-silver alloy exhibits relatively excellent element characteristics, but even with this material, the element life has not reached the level of practical use.
【0005】また、安定性を目指してその後さまざまな
金属が電極として検討されてきており、今までに発表さ
れた電極材料を列挙すると、Mg,Mg−Ag,In,
Mg−In.Ca,Al,等単体金属あるいはそれらの
合金が含まれている。これらの材料の選択の基準として
は、空気中で安定でかつ電圧上昇を招かずに、いかにし
て効率良く電流注入が出来るかに注意が払われてきた。
その後さらに改良された電極材料としてアルミニウム−
リチウムの合金が発表された。Various metals have been studied as electrodes for the purpose of stability, and the electrode materials that have been published so far are listed as Mg, Mg-Ag, In,
Mg-In. It contains simple metals such as Ca and Al, or alloys thereof. As a standard for selecting these materials, attention has been paid to how stable current can be injected in the air without causing voltage rise and efficient current injection.
After that, as a further improved electrode material, aluminum-
An alloy of lithium was announced.
【0006】しかしこの電極を用いることによっても駆
動電圧は下がったが、発光素子の寿命に関してはやや寿
命が長くなった程度でやはり実用化のレベルには至って
いない。However, even though the driving voltage was lowered by using this electrode, the life of the light emitting element was not so long as the life was slightly extended.
【0007】さらに発光素子の劣化原因の一つに、ホ−
ルと電子との結合による有機材料の分解があげられる。
これは発光メカニズムそのものに起因するものでありそ
の劣化の防止をどのようにするかは発光素子の実用化の
最も大きな課題としてあげられる。Further, one of the causes of deterioration of the light emitting device is
The decomposition of the organic material due to the bond between the electron and the electron.
This is due to the light emitting mechanism itself, and how to prevent the deterioration is the most important issue for practical use of the light emitting device.
【0008】有機材料は一般的に無機材料に比べて劣化
は大きいのが普通であり、そのまま同一条件で寿命を直
接比較するわけには行かない。その劣化機構を調べて適
切な使用方法を取ることによって劣化を少なくすること
が求められる。さらに有機材料はその材料の多様性から
研究の範囲が広くなり、特性あるいは機能の面では大幅
に広くなったが、発光寿命を改善するための努力は開発
が至っていないのが現状である。Generally, the deterioration of organic materials is larger than that of inorganic materials, and it is not possible to directly compare the lives under the same conditions. It is required to reduce the deterioration by investigating the deterioration mechanism and taking an appropriate usage method. Furthermore, although the range of research on organic materials has expanded due to the variety of materials, and the characteristics or functions have expanded significantly, the current situation is that efforts to improve the emission lifetime have not been developed.
【0009】[0009]
【発明が解決しようとする課題】図4は、従来の発光素
子の電極の酸化による電極劣化度合いを示したものであ
り、作成した電極のイオン化ポテンシャル(電子の出や
すさを表し、数値の小さいほうが電極として有効に作用
する)の変化を示す。FIG. 4 shows the degree of electrode deterioration due to the oxidation of the electrodes of a conventional light emitting element, and shows the ionization potential of the prepared electrode (representing the ease with which electrons are emitted and having a small numerical value). Which is more effective as an electrode).
【0010】図4において、(1)は最も標準的な電極
材料として用いられているMg電極の特性を示したもの
であり、電極の表面(空気に接する側)の電極の作製直
後のイオン化ポテンシャルの時間変化を示す。Mg金属
単体の電極の場合は、電極作製直後から劣化が始まり3
0分以内ですでにイオン化ポテンシャルは飽和に近づ
く。その結果、素子を動作させたとき、イオン化ポテン
シャルの増加とともに動作電圧が上昇して行くことがわ
かる。In FIG. 4, (1) shows the characteristics of the Mg electrode used as the most standard electrode material, and the ionization potential of the surface of the electrode (the side in contact with air) immediately after preparation of the electrode. Shows the change over time. In the case of an electrode containing only Mg metal, deterioration starts immediately after the electrode is manufactured.
The ionization potential approaches saturation already within 0 minutes. As a result, it can be seen that when the device is operated, the operating voltage rises as the ionization potential increases.
【0011】図4において、(2)は有機材料との界
面、金属電極と有機材料との境界面のイオン化ポテンシ
ャルの時間変化で、表面よりは時間遅れがあるがやはり
変化して行くことがわかる。なお、この測定は有機材料
と電極界面との境界面を電極を剥離した状態で測定して
いる(電極膜厚は1500Aでの測定値)。In FIG. 4, (2) is the time change of the ionization potential at the interface with the organic material and at the interface between the metal electrode and the organic material, and it can be seen that there is a time lag than the surface, but it also changes. . In addition, this measurement is performed with the electrode peeled off at the boundary surface between the organic material and the electrode interface (electrode film thickness is a measured value at 1500 A).
【0012】有機発光素子の寿命を決定する要因のなか
で特に電極の安定性は重要である。従来特性が良いとさ
れているMg−AgあるいはAl−Li金属を用いた電
極は時間の経過とともに大気中の水分あるいは酸素と反
応して素子の特性を劣化させる。Among the factors that determine the life of the organic light emitting device, the stability of the electrode is particularly important. An electrode using Mg-Ag or Al-Li metal, which has been considered to have good characteristics in the past, reacts with moisture or oxygen in the atmosphere over time to deteriorate the characteristics of the element.
【0013】そこで本発明は上記課題を解決することを
目的とし、特に酸化等により劣化の生じない寿命の長い
有機発光素子を提供することを目的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems, and particularly to provide an organic light emitting device having a long life which is not deteriorated by oxidation or the like.
【0014】また有機発光素子の寿命を決定する要因の
なかで特に電流を光に変換するための直接変換部分の発
光材料およびその構造がが重要になる。具体的には電子
の励起部となりホ−ルと電子の再結合部分となる部分の
劣化を防止することは特に重要である。有機材料で構成
される励起部は一般には単分子間あるいは数十分子間の
距離でありその再結合部の劣化を防止することが有機発
光素子の実用化の鍵となる。Further, among the factors that determine the life of the organic light emitting device, the light emitting material and its structure of the direct conversion portion for converting current into light are particularly important. Specifically, it is particularly important to prevent the deterioration of the part that becomes the excitation part of electrons and the part where the holes and electrons are recombined. The excitation part composed of an organic material is generally a distance between single molecules or tens of tens of molecules, and preventing deterioration of the recombination part is a key to practical use of the organic light emitting device.
【0015】[0015]
【課題を解決するための手段】本発明は有機発光素子の
劣化に最も大きな影響を与えている電極を、改善するも
ので、電極の劣化の原因を電極材料面から取り除く。そ
のための手段として、電極材料を材料表面で複合化して
2種類以上の金属を用いて合金化するかあるいは層状化
して重ねて、それぞれの金属材料の特徴を生かして用い
る。SUMMARY OF THE INVENTION The present invention is to improve the electrode that has the greatest influence on the deterioration of the organic light emitting device, and removes the cause of the deterioration of the electrode from the surface of the electrode material. As a means for this, the electrode material is compounded on the surface of the material and alloyed with two or more kinds of metals, or layered and layered, and the characteristics of the respective metal materials are used.
【0016】その際の電極材料の選定の根拠として、一
つは仕事関数の小さい電極材料を、さらにもう一つは大
気中の水分、酸素を電流注入界面に達しないように侵入
を阻止する機能を持たせるものである。As a basis for selecting the electrode material in that case, one is an electrode material having a small work function, and the other is a function of preventing invasion of moisture and oxygen in the atmosphere so as not to reach the current injection interface. Is to have.
【0017】もう一つの方法として、素子の構成方法を
従来の形から変えて、金属電極部分が表面に出ない構造
とするものである。As another method, the structure of the element is changed from the conventional one so that the metal electrode portion is not exposed on the surface.
【0018】また本発明は有機発光素子の劣化に最も大
きな影響を与えている、ホ−ルと電子との再結合部とな
る領域において結合領域の幅をもたせて数分子から数百
分子に広げることによって、発光素子の寿命をのばすこ
とを可能としたものである。In the present invention, the width of the bonding region is widened from a few molecules to a few hundred molecules in the region which becomes the recombination part of the holes and electrons, which has the greatest influence on the deterioration of the organic light emitting device. This makes it possible to extend the life of the light emitting element.
【0019】さらに電極と有機材料との結合力はファン
デルワ−ルス力で結びついているだけで弱いのが一般的
であり、一方通常の金属間の結合は相互拡散等でファン
デルワ−ルス力に比べて非常に大きい。そこでその結合
力を補うために相互の組成を混合させることによって補
う。Further, the bonding force between the electrode and the organic material is generally weak because it is connected only by the Van der Waals force, whereas the ordinary bonding between metals is more than the Van der Waals force due to mutual diffusion. Very big. Therefore, in order to supplement the binding force, the mutual compositions are mixed to compensate.
【0020】[0020]
【作用】有機発光素子の電極に二元合金あるいは三元合
金を用いることにより、従来は電極の剥離等で発光素子
としての信頼性に欠けるため実用化に至っていなかった
ものの寿命を長くすることができる。By using a binary alloy or a ternary alloy for the electrodes of the organic light emitting element, the life of the organic light emitting element, which has not been put into practical use due to lack of reliability as a light emitting element due to peeling of the electrode or the like, has been conventionally extended. You can
【0021】[0021]
【実施例】以下、本発明の実施例における発光素子につ
いて図面を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Light emitting devices according to embodiments of the present invention will be described below with reference to the drawings.
【0022】(実施例1)図1は、本発明第1の実施例
における有機発光素子の構造断面図を示したものであ
る。図1において、ガラス基板11上に酸化インジウム
酸化スズいわゆるITO電極12を陽極側電極として設
け、その上に有機材料ホ−ル輸送材料13、電子輸送材
料14を蒸着法あるいは侵漬法あるいはスピンコ−ト法
でそれぞれ設け、さらにその上に電極15を電極として
設ける。電極の材料としては、二元合金または三元合金
を用いており、本実施例では特に好ましい材料としてA
lZn合金またはMgAlZn合金を用いている。ま
た、AlとMgを用いた場合、AlとMgの総量のう
ち、Al成分が20%〜50%であることが望ましい。(Embodiment 1) FIG. 1 is a structural sectional view of an organic light emitting device according to a first embodiment of the present invention. In FIG. 1, indium oxide tin oxide, a so-called ITO electrode 12, is provided as an anode electrode on a glass substrate 11, and an organic material hole transport material 13 and an electron transport material 14 are deposited thereon by a vapor deposition method, a dipping method or a spin coat method. Method, and the electrode 15 is further provided thereon as an electrode. A binary alloy or a ternary alloy is used as the material of the electrode. In this embodiment, A is a particularly preferable material.
1Zn alloy or MgAlZn alloy is used. When Al and Mg are used, the Al component is preferably 20% to 50% of the total amount of Al and Mg.
【0023】また、電極の作成方法は蒸着あるいはスパ
ッタリング法での作製が最も容易であり本実施例におい
ても蒸着法を用いて作成した。The electrode is most easily prepared by vapor deposition or sputtering, and the vapor deposition method is also used in this embodiment.
【0024】さらに、有機材料に電流を注入するための
仕事関数の小さい金属として、アルカリ金属、例えばナ
トリウム、カリウム、リチウム、さらにアルカリ土類金
属としてマグネシウム、アルミニウム、カルシウム等を
用いる。Further, as a metal having a small work function for injecting a current into the organic material, an alkali metal such as sodium, potassium, lithium, or an alkaline earth metal such as magnesium, aluminum or calcium is used.
【0025】次に、本実施例の発光素子の特性を図2を
参照しながら説明する。図2において、(1)は電極材
料の空気と接する表面のイオン化ポテンシャル(仕事関
数、電子の出しやすさを示し、数値の小さい方が電極と
して有効に作用する)の時間変化であり、(2)は有機
材料と電極との境界面の値の時間変化を示したものであ
る。図2から明らかなように、本実施例の電極材料は空
気に接する表面はやはり酸化によってイオン化ポテシャ
ルの増加を招くが、本実施例による電極組成は内部への
酸化を防止して境界面のイオン化ポテンシャルの増加は
無い。Next, the characteristics of the light emitting device of this embodiment will be described with reference to FIG. In FIG. 2, (1) is a time change of the ionization potential (work function, electron emission easiness, a smaller numerical value effectively acts as an electrode) on the surface of the electrode material in contact with air, and (2) ) Indicates the change with time of the value of the boundary surface between the organic material and the electrode. As is clear from FIG. 2, in the electrode material of this example, the surface in contact with air also causes an increase in ionization potential due to oxidation, but the electrode composition according to this example prevents internal oxidation and ionizes the boundary surface. There is no increase in potential.
【0026】特にイオン化ポテンシャルの小さい材料に
付加する他の金属の選択基準として作成膜の組成が緻密
で内部の保護効果(電極内部への酸化を防止する)が大
きい材料として、金、白金パラヂウムが有効である。さ
らにこの金属が有効に機能を発揮するための最低膜厚が
存在し、0、2ミクロンが効果を発揮するための最低膜
厚で、それ以下の膜厚では電極材料への拡散あるいは大
気中の酸素水分が透過するために効果が薄れる。Particularly, as a selection criterion of other metals added to the material having a small ionization potential, gold and platinum palladium are used as materials having a dense composition of the formed film and having a large internal protection effect (preventing oxidation inside the electrode). It is valid. Furthermore, there is a minimum film thickness for this metal to exert its function effectively, and 0 to 2 microns is the minimum film thickness for exerting the effect. If the film thickness is less than that, diffusion to the electrode material or in the atmosphere The effect diminishes because oxygen and water penetrate.
【0027】さらに金、白金、パラヂウム等の貴金属以
外にもアルミニウム、、鉄、ステンレス、銅等の一般的
な金属も膜厚を厚く取ることによって同等の機能を持つ
ことを確認した。なお、その際膜厚を厚く取ることは膨
張係数有等の不一致を招くために電極の剥離の問題が生
じることに注意しなければならない。Further, it was confirmed that, in addition to noble metals such as gold, platinum and palladium, general metals such as aluminum, iron, stainless steel and copper have equivalent functions by increasing the film thickness. At this time, it should be noted that the use of a large film thickness causes a mismatch of expansion coefficients and the like, which causes a problem of electrode separation.
【0028】また、図3に示す発光素子構成も寿命の長
期化に有効である。図3において、31は熱伝導が良く
さらに空気中の酸素水分を遮断する機能を有する材料で
構成される。そのような機能を持つ材料として、アルミ
ニウム、鉄、銅、ステンレス、等の基板材料を用いその
うえにイオン化ポテンシャルの小さい電極材料32を設
ける。さらに有機材料ホ−ル輸送材料33、電子輸送材
料34、透明電極35を構成し、素子保護膜36を設け
る。The structure of the light emitting device shown in FIG. 3 is also effective for extending the life. In FIG. 3, reference numeral 31 is made of a material having good heat conduction and having a function of blocking oxygen moisture in the air. As a material having such a function, a substrate material such as aluminum, iron, copper, and stainless is used, and the electrode material 32 having a small ionization potential is provided on the substrate material. Further, an organic material hole transport material 33, an electron transport material 34, a transparent electrode 35 are constituted, and an element protective film 36 is provided.
【0029】図3において、基板を金属にしたが、金属
以外のプラスチック、セラミック等もガスの透過性の低
い材料を用いるならば使用可能である。In FIG. 3, the substrate is made of metal, but plastics other than metal, ceramics and the like can be used if a material having low gas permeability is used.
【0030】具体的には、電極15としてMgを500
オングストロ−ム以上用いて、Mg電極の上に酸素、水
分を通さない材料として金Au,白金Pt、パラヂウム
Pdを1000オングストロ−ム以上設ける。Specifically, the electrode 15 is made of Mg of 500.
Using at least angstroms, gold Au, platinum Pt, and palladium Pd are provided at 1000 angstroms or more on the Mg electrode as materials impermeable to oxygen and moisture.
【0031】これらの電極は蒸着あるいはスッパッタリ
ングのいずれの方法によって作成しても良い最初にマグ
ネシウムMgを設けてその上に金、白金、あるいはパラ
ヂウムの金属を設ける代わりにMgと他の金属は同時に
作成しても良い。These electrodes may be made by either vapor deposition or sputtering. Instead of first depositing magnesium Mg and then depositing a metal of gold, platinum, or palladium, Mg and other metals are removed. You may create them at the same time.
【0032】(実施例2)図5に本発明第2の実施例に
おける有機発光素子の構成断面図を示す。ガラス基板1
1上に酸化インジウム酸化スズのいわゆるITO電極1
2を設け、その上に有機材料ホ−ル輸送材料13、電子
輸送材料14を蒸着法あるいは侵漬法あるいはスピンコ
−ト法で作製して、そのうえに電極15を設ける。電極
の作成方法は蒸着あるいはスパッタリング法での作成が
最も容易であり本発明でも蒸着法を用いて作成した。(Embodiment 2) FIG. 5 is a sectional view showing the structure of an organic light emitting device according to a second embodiment of the present invention. Glass substrate 1
1 so-called ITO electrode of indium oxide tin oxide on 1
2, an organic material hole transporting material 13 and an electron transporting material 14 are formed thereon by a vapor deposition method, an immersion method or a spin coat method, and an electrode 15 is provided thereon. The electrode is most easily prepared by vapor deposition or sputtering, and the vapor deposition method is also used in the present invention.
【0033】有機材料に電流を注入するための電極とし
て仕事関数の小さい金属を用いて具体的には、アルカリ
金属、例えばナトリウム、カリウム、リチウム、さらに
アルカリ土類金属としてマグネシウム、アルミニウ
ム、、カルシウム等を用いる。さらにその合金を用い
る。A metal having a small work function is used as an electrode for injecting a current into an organic material. Specifically, alkali metals such as sodium, potassium and lithium, and alkaline earth metals such as magnesium, aluminum and calcium are used. To use. Furthermore, the alloy is used.
【0034】図5の構造において発光部は、有機ホ−ル
輸送材料をITO基板上に蒸着し、さらにその上に電子
輸送材料を蒸着して、その境界面でPN接合面を形成し
発光させる。ホ−ル輸送材料と電子輸送材料の一部を互
いに混合させて幅をもった構造を取り、図5に示す本実
施例の構成では混合層は電子輸送層とホ−ル輸送層との
混合比をそれぞれ50%ずつ取る。In the structure shown in FIG. 5, in the light emitting portion, an organic hole transporting material is vapor-deposited on an ITO substrate, and an electron transporting material is further vapor-deposited thereon to form a PN junction surface at the boundary surface to emit light. . A part of the hole transport material and the electron transport material are mixed with each other to have a wide structure, and in the constitution of this embodiment shown in FIG. 5, the mixed layer is a mixture of the electron transport layer and the hole transport layer. Take 50% each ratio.
【0035】ここで混合領域の作製方法はいわゆる共蒸
着法で作製する。共蒸着層の厚みは特性に大きな影響を
与え、厚すぎれば層全体に電子あるいはホ−ルを供給で
きなくなり効率は低下する。逆に薄すぎる場合にはその
混合層を設けた効果は低く従来の発光素子と同一で変わ
らない。Here, the mixed region is formed by a so-called co-evaporation method. The thickness of the co-deposited layer has a great influence on the characteristics, and if it is too thick, it becomes impossible to supply electrons or holes to the entire layer, and the efficiency decreases. On the other hand, if it is too thin, the effect of providing the mixed layer is low and is the same as the conventional light emitting device.
【0036】図5の素子構造において共蒸着層の厚みを
50オングストロ−ムから1000オングストロ−ムと
変えてその特性を調べた結果、50オングストロ−ムか
ら250オングストロ−ムの範囲が最も有効であった。
また電子輸送層及びホール輸送層そのものは100オン
グストロ−ムから400オングストロ−ムが望ましい。In the device structure of FIG. 5, the thickness of the co-deposition layer was changed from 50 Å to 1000 Å, and the characteristics were examined. As a result, the range of 50 Å to 250 Å was the most effective. It was
The electron transport layer and the hole transport layer themselves are preferably 100 angstroms to 400 angstroms.
【0037】混合層の厚みは発光素子特性にとって重要
な設計要素となる。通常の半導体と対比するならば有機
発光素子の従来の構造はPN接合面においてステップ状
の接合面を形成するものである。電子とホ−ルの結合は
無機材料の半導体素子においては、電子の拡散領域が広
いため特にステップ状の接合面で問題は無かった。一方
有機発光素子の接合面はホ−ルと電子の再結合領域にお
いてそれの拡散長が小さいため、通常数分子程度の領域
しかないため、その結合領域の分子の劣化が大きい。The thickness of the mixed layer is an important design factor for the characteristics of the light emitting device. In contrast to a normal semiconductor, the conventional structure of the organic light emitting device is to form a step-shaped junction surface at the PN junction surface. In the semiconductor element made of an inorganic material, the bond between the electron and the hole has no problem particularly in the step-like bonding surface because the electron diffusion region is wide. On the other hand, the junction surface of the organic light emitting device has a small diffusion length in the recombination region of the hole and the electron, and therefore usually has only a few molecules, so that the molecules in the coupling region are largely deteriorated.
【0038】無機半導体素子の傾斜型の不純物ド−ピン
グに対応した構造を、有機発光素子に取ることによって
発光領域の拡大が可能となる。有機発光素子において空
乏層の厚みは通常数300オングストロ−ム程度であ
り、その中で50オングストロ−ム程度の再結合領域が
存在する。今再結合領域を空乏層全体に平均的にとるな
らば、単純計算で6倍の寿命が期待出来る。By providing the organic light emitting element with a structure corresponding to the tilted impurity doping of the inorganic semiconductor element, the light emitting region can be expanded. In the organic light emitting device, the thickness of the depletion layer is usually about several 300 angstroms, and a recombination region of about 50 angstroms exists therein. Now, if the recombination region is averaged over the entire depletion layer, the life can be expected to be 6 times as long as a simple calculation.
【0039】本発明の有効性を示すために図6に混合層
を設けた場合の発光効率と混合層の厚みとの関係を示
す。図6は全体の有機材料の厚みを1000オングスト
ロ−ムに取ってその中の混合層の厚みを示す。実験結果
は混合層の厚みを全体が1000オングストロ−ムに取
った場合に250オングストロ−ム迄は一定の効率を示
すことが判った。これは従来の発光領域50オングスト
ロ−ムの5倍の厚みに相当する。To show the effectiveness of the present invention, FIG. 6 shows the relationship between the luminous efficiency and the thickness of the mixed layer when the mixed layer is provided. FIG. 6 shows the thickness of the mixed layer in the organic material having a thickness of 1000 angstroms. Experimental results show that when the thickness of the mixed layer is 1000 angstroms as a whole, it shows a constant efficiency up to 250 angstroms. This corresponds to a thickness of 5 times that of the conventional light emitting region of 50 Å.
【0040】また有機材料と金属材料との界面は通常い
わゆるファンデルワ−ルス結合力で結びついている。一
般にこの力は小さいため、金属ははがれやすい。膨張係
数の違いなどで応力がかかった場合には金属電極が剥離
する。そこで金属電極を強固に有機材料に付着するため
に、両方の材料が互いに混合した領域を作ることによっ
て付着力を増大させることが可能となるので望ましい。
また、有機材料と電極材料を共蒸着することによって混
合膜の作製が可能となる。さらに、ITO透明電極と有
機材料にも同一のことが実現して基板への付着力も増大
させることが可能となる。The interface between the organic material and the metal material is usually connected by the so-called Van der Waals coupling force. Since this force is generally small, the metal easily peels off. When stress is applied due to a difference in expansion coefficient, the metal electrode peels off. Therefore, in order to firmly attach the metal electrode to the organic material, it is possible to increase the adhesive force by forming a region in which both materials are mixed with each other, which is desirable.
Also, a mixed film can be prepared by co-evaporating an organic material and an electrode material. Furthermore, the same effect can be realized for the ITO transparent electrode and the organic material, and the adhesion to the substrate can be increased.
【0041】[0041]
【発明の効果】本発明の電極構成によって従来の電極構
成では、素子寿命が最も低い場合は数分程度で最も長い
場合でも300時間程度であったものが、2000時間
以上に増加させることが可能となった。According to the electrode structure of the present invention, in the conventional electrode structure, when the element life is the shortest, it is several minutes and the longest is 300 hours, but it can be increased to 2000 hours or more. Became.
【0042】また本発明の発光素子構造をとることによ
って、発光領域を単一の平面から三次元へと拡大させる
ことが可能となったため、従来寿命特性の短いことが実
用化の課題となっていたが、本発明の構造を取ることに
よって発光領域の発光密度を下げることによって5倍以
上の素子寿命特性を実現することが可能となった。有機
発光素子の応用範囲は非常に広く単純な平面の光源から
始まり、平面型の自己発光フルカラ−ディスプレ−迄の
広い応用範囲が期待できる。Further, by adopting the light emitting device structure of the present invention, it becomes possible to expand the light emitting region from a single plane to three dimensions. Therefore, it has been a problem in practical use that the life characteristic is short. However, by adopting the structure of the present invention, it is possible to realize a device life characteristic of 5 times or more by lowering the light emission density of the light emitting region. The application range of the organic light emitting device is very wide and can be expected from a simple flat light source to a flat self-luminous full-color display.
【図1】本発明第1の実施例における発光素子の構成断
面図FIG. 1 is a sectional view showing the structure of a light emitting device according to a first embodiment of the present invention.
【図2】本発明第1の実施例における発光素子の特性を
示す図FIG. 2 is a diagram showing characteristics of the light emitting element in the first embodiment of the present invention.
【図3】本発明第1の実施例における発光素子の構成断
面図FIG. 3 is a sectional view showing a structure of a light emitting device according to a first embodiment of the present invention.
【図4】従来の発光素子の特性を示す図FIG. 4 is a diagram showing characteristics of a conventional light emitting element.
【図5】本発明第2の実施例における発光素子の構成断
面図FIG. 5 is a sectional view showing a structure of a light emitting device according to a second embodiment of the present invention.
【図6】本発明第2の実施例における発光素子の発光効
率と混合層の厚みとの関係を示す図FIG. 6 is a diagram showing the relationship between the luminous efficiency of the light emitting device and the thickness of the mixed layer in the second embodiment of the present invention.
11 ガラス基板 12 ITO透明電極 13 ホ−ル輸送材料 14 電子輸送材料 15 金属電極 16 混合層 31 素子基板 32 電極材料 33 ホ−ル輸送材料 34 電子輸送材料 35 透明電極 36 素子保護膜 11 glass substrate 12 ITO transparent electrode 13 hole transporting material 14 electron transporting material 15 metal electrode 16 mixed layer 31 element substrate 32 electrode material 33 hole transporting material 34 electron transporting material 35 transparent electrode 36 element protective film
Claims (12)
極と、前記陽極側電極上に形成された有機材料からなる
ホール輸送材料層及び電子輸送材料層と、前記ホール輸
送材料層または電子輸送材料層上に形成された陰極側電
極とを有する有機発光素子であって、前記有機発光素子
に電流を注入する前記陰極側電極にAlZn合金または
MgAlZn合金を用いたことを特徴とする有機発光素
子。1. A substrate, an anode-side electrode formed on the substrate, a hole-transporting material layer and an electron-transporting material layer formed of an organic material on the anode-side electrode, the hole-transporting material layer, or An organic light emitting device having a cathode side electrode formed on an electron transporting material layer, characterized in that an AlZn alloy or a MgAlZn alloy is used for the cathode side electrode for injecting current into the organic light emitting device. Light emitting element.
極と、前記陽極側電極上に形成された有機材料からなる
ホール輸送材料層及び電子輸送材料層と、前記ホール輸
送材料層または電子輸送材料層上に形成された陰極側電
極とを有する有機発光素子であって、前記有機発光素子
に電流を注入する前記陰極側電極にAlにMg、Zn及
びLiを添加した合金を用い、さらに前記AlとMgの
総量のうちAlの量を20%〜50%とすることを特徴
とする有機発光素子。2. A substrate, an anode-side electrode formed on the substrate, a hole-transporting material layer and an electron-transporting material layer formed of an organic material on the anode-side electrode, the hole-transporting material layer, or An organic light emitting device having a cathode side electrode formed on an electron transporting material layer, wherein an alloy in which Mg, Zn and Li are added to Al is used for the cathode side electrode for injecting current to the organic light emitting device, Furthermore, the organic light emitting element is characterized in that the amount of Al is 20% to 50% of the total amount of Al and Mg.
からなる層を設けたことを特徴とする請求項1または2
記載の有機発光素子。3. Au, Pt or Pd is formed on the cathode side electrode.
3. A layer made of is provided.
The organic light-emitting device described.
加したことを特徴とする請求項1または2記載の有機発
光素子。4. The organic light emitting device according to claim 1, wherein Au, Pt or Pd is added in the cathode side electrode.
0.2ミクロン以上であることを特徴とする請求項3記
載の有機発光素子。5. The organic light emitting device according to claim 3, wherein the thickness of the layer made of Au, Pt or Pd is 0.2 μm or more.
特徴とする請求項1または2記載の有機発光素子。6. The organic light emitting device according to claim 1, further comprising a protective layer covering the cathode side electrode.
ス、ガラス、セラミックプラスチックであり、その上部
にイオン化ポテンシャルの小さい材料層を形成したこと
を特徴とする請求項1または2記載の有機発光素子。7. The organic light emitting device according to claim 1, wherein the substrate is aluminum, copper, iron, stainless steel, glass, or ceramic plastic, and a material layer having a small ionization potential is formed on the substrate.
極と、前記陽極側電極上に形成された有機材料からなる
ホール輸送材料層及び電子輸送材料層と、前記ホール輸
送材料層または電子輸送材料層上に形成された陰極側電
極とを有する有機発光素子であって、前記ホール輸送材
料層と前記電子輸送材料層の間に前記ホール輸送材料と
前記電子輸送材料の混合層を形成したことを特徴とする
有機発光素子。8. A substrate, an anode-side electrode formed on the substrate, a hole-transporting material layer and an electron-transporting material layer formed of an organic material on the anode-side electrode, the hole-transporting material layer, or An organic light emitting device having a cathode-side electrode formed on an electron transporting material layer, wherein a mixed layer of the hole transporting material and the electron transporting material is formed between the hole transporting material layer and the electron transporting material layer. An organic light emitting device characterized by the above.
みが100オングストロ−ム〜400オングストロ−ム
であり、ホール輸送材料と電子輸送材料の混合層の厚み
が50オングストロ−ム〜500オングストロ−ムであ
ることを特徴とする請求項8記載の有機発光素子。9. The hole transport material layer and the electron transport material layer have a thickness of 100 Å to 400 Å, and the mixed layer of the hole transport material and the electron transport material has a thickness of 50 Å to 500 Å. The organic light-emitting device according to claim 8, wherein the organic light-emitting device is a film.
の間に前記陰極側電極材料と前記電子輸送材料の混合層
を形成したことを特徴とする請求項8記載の有機発光素
子。10. The organic light-emitting device according to claim 8, wherein a mixed layer of the cathode-side electrode material and the electron-transporting material is formed at least between the cathode-side electrode and the electron-transporting material layer.
層の間に前記陽極側電極材料とホ−ル輸送材料の混合層
を形成したことを特徴とする請求項8記載の有機発光素
子。11. The organic light emitting device according to claim 8, wherein a mixed layer of the anode side electrode material and the hole transport material is formed at least between the anode side electrode and the hole transport material layer.
電極と、前記陽極側電極上に形成された有機材料からな
るホール輸送材料層及び電子輸送材料層と、前記ホール
輸送材料層または電子輸送材料層上に形成された陰極側
電極とを有し、前記ホール輸送材料層と前記電子輸送材
料層の間に前記ホール輸送材料と前記電子輸送材料の混
合層を形成した有機発光素子の製造方法であって、前記
混合層を共蒸着法により形成したことを特徴とする有機
発光素子の製造方法。12. A substrate, an anode-side electrode formed on the substrate, a hole-transporting material layer and an electron-transporting material layer formed of an organic material on the anode-side electrode, the hole-transporting material layer, or An organic light emitting device having a cathode side electrode formed on an electron transporting material layer, wherein a mixed layer of the hole transporting material and the electron transporting material is formed between the hole transporting material layer and the electron transporting material layer. A method of manufacturing an organic light emitting device, wherein the mixed layer is formed by a co-evaporation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7160402A JPH08330073A (en) | 1995-03-27 | 1995-06-27 | Organic luminous element and manufacture thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-67727 | 1995-03-27 | ||
JP6772795 | 1995-03-27 | ||
JP7160402A JPH08330073A (en) | 1995-03-27 | 1995-06-27 | Organic luminous element and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08330073A true JPH08330073A (en) | 1996-12-13 |
Family
ID=26408947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7160402A Pending JPH08330073A (en) | 1995-03-27 | 1995-06-27 | Organic luminous element and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08330073A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000133453A (en) * | 1998-10-22 | 2000-05-12 | Idemitsu Kosan Co Ltd | Organic electroluminescent element and its manufacture |
JP2000164359A (en) * | 1998-11-25 | 2000-06-16 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
KR20020068963A (en) * | 2001-02-22 | 2002-08-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Organic light emitting device and display device using the same |
KR100813817B1 (en) * | 2001-02-08 | 2008-03-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light emitting device |
KR100857729B1 (en) * | 2001-02-01 | 2008-09-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Organic light emitting element and display device using the element |
US7488986B2 (en) | 2001-10-26 | 2009-02-10 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
JP2009147048A (en) * | 2007-12-13 | 2009-07-02 | Rohm Co Ltd | Organic el element |
US7572522B2 (en) | 2000-12-28 | 2009-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Luminescent device |
US7592193B2 (en) | 2001-10-30 | 2009-09-22 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
KR100921288B1 (en) * | 2006-12-04 | 2009-10-09 | 아사히 가세이 가부시키가이샤 | Method for producing electronic device and coating solution suitable for the production method |
-
1995
- 1995-06-27 JP JP7160402A patent/JPH08330073A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000133453A (en) * | 1998-10-22 | 2000-05-12 | Idemitsu Kosan Co Ltd | Organic electroluminescent element and its manufacture |
JP2000164359A (en) * | 1998-11-25 | 2000-06-16 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
US7572522B2 (en) | 2000-12-28 | 2009-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Luminescent device |
US9608224B2 (en) | 2001-02-01 | 2017-03-28 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting element and display device using the element |
US7858977B2 (en) | 2001-02-01 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting element and display device using the element |
US8174007B2 (en) | 2001-02-01 | 2012-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting element and display device using the element |
US9219241B2 (en) | 2001-02-01 | 2015-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting element and display device using the element |
KR100857729B1 (en) * | 2001-02-01 | 2008-09-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Organic light emitting element and display device using the element |
US7459722B2 (en) | 2001-02-01 | 2008-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting element and display device using the element |
KR100813817B1 (en) * | 2001-02-08 | 2008-03-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light emitting device |
US7456425B2 (en) | 2001-02-08 | 2008-11-25 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US8513648B2 (en) | 2001-02-08 | 2013-08-20 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US7399991B2 (en) | 2001-02-22 | 2008-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting device and display device using the same |
US7663149B2 (en) | 2001-02-22 | 2010-02-16 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting device and display device using the same |
KR20020068963A (en) * | 2001-02-22 | 2002-08-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Organic light emitting device and display device using the same |
US7488986B2 (en) | 2001-10-26 | 2009-02-10 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US7592193B2 (en) | 2001-10-30 | 2009-09-22 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
KR100921288B1 (en) * | 2006-12-04 | 2009-10-09 | 아사히 가세이 가부시키가이샤 | Method for producing electronic device and coating solution suitable for the production method |
JP2009147048A (en) * | 2007-12-13 | 2009-07-02 | Rohm Co Ltd | Organic el element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100776872B1 (en) | Low-voltage organic light-emitting device | |
KR100606634B1 (en) | Electroluminescent devices with low work funciotn anode | |
CN100411199C (en) | Top-emitting nitride-based light emitting device and method of manufacturing the same | |
US7696682B2 (en) | Organic light emitting device using Mg—Ag thin film and manufacturing method thereof | |
JPH1074586A (en) | Two layer electron injection electrode used in electroluminescence device | |
KR20060136232A (en) | Formation method of the unique cathode electrodes utilizing Mg-Ag single thin films in organic light-emitting devices | |
JPH06290873A (en) | Organic thin film type light emitting element | |
Ganzorig et al. | A lithium carboxylate ultrathin film on an aluminum cathode for enhanced electron injection in organic electroluminescent devices | |
JPH08330073A (en) | Organic luminous element and manufacture thereof | |
JPH11345687A (en) | Luminescent element | |
JP3242992B2 (en) | Organic electroluminescence device | |
JPH08185982A (en) | Organic electroluminescent element | |
JPH03141588A (en) | Electroluminescent device | |
JPS60165771A (en) | Light emitting element | |
WO2005125284A1 (en) | Organic el element | |
JPH10340787A (en) | Organic electroluminescent element and its manufacture | |
US11672145B2 (en) | Organic electronic component with electron injection layer | |
JP3932605B2 (en) | Organic electroluminescence device | |
JPH11260563A (en) | Organic el element | |
JPH1092583A (en) | Electroluminescent element and manufacture thereof | |
JPH06240243A (en) | Organic electroluminescent element | |
JPH09245968A (en) | Organic light emitting element and manufacture thereof | |
JPH11162653A (en) | Electroluminescent element | |
JP4343676B2 (en) | Organic light emitting device | |
JP2003086365A (en) | Organic el element and its manufacturing method |