JPH083280A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH083280A
JPH083280A JP13981794A JP13981794A JPH083280A JP H083280 A JPH083280 A JP H083280A JP 13981794 A JP13981794 A JP 13981794A JP 13981794 A JP13981794 A JP 13981794A JP H083280 A JPH083280 A JP H083280A
Authority
JP
Japan
Prior art keywords
dbu
parts
salt
weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13981794A
Other languages
Japanese (ja)
Other versions
JP3173755B2 (en
Inventor
Sumiya Miyake
澄也 三宅
Toshiro Takeda
敏郎 竹田
Hiromi Honda
博美 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP13981794A priority Critical patent/JP3173755B2/en
Publication of JPH083280A publication Critical patent/JPH083280A/en
Application granted granted Critical
Publication of JP3173755B2 publication Critical patent/JP3173755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain an epoxy resin/phenolic resin composition for use in sealing which has satisfactory storage stability at ordinary temp. by using a salt of a specific curing accelerator with a specific organic compound which salt begins to react with a phenolic novolak hardener at 70 deg.C or higher. CONSTITUTION:1,8-Diazabicyclo[5,4,0]-7-undecene (DBU) is reacted with an organic compound (A) forming an ion pair together with DBU to obtain a salt (B) which satisfies the following. When 70 pts.wt. phenolic novolak having a number-average mol.wt. of 500, a softening point of 95 deg.C, and a hydroxyl equivalent of 104 is mixed with the salt (B) in an amount of 30 pts.wt. in terms of DBU amount and this mixture is analyzed by differential scanning calorimetry at a heating rate of 10 deg.C/min, an exothermic reaction begins at 70 deg.C or higher. Preferred examples of the compound (A) include terephthalic acid, which heightens the temperature at which the reaction initiates. A blend of an epoxy resin with a phenolic resin in such a proportion as to result in an equivalent ratio of the epoxy groups to the phenolic hydroxyl groups of 0.5-2 is melt- kneaded together with 0.5-20 pts.wt. the salt (B) as a curing accelerator and 40-2,400 pts.wt. inorganic filler per 100 pts.wt. the blend to produce a resin composition for an electronic part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硬化性に優れ、かつ常
温における保存性のよい電子、電気部品用樹脂組成物に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition for electronic and electric parts which is excellent in curability and has good storage stability at room temperature.

【0002】[0002]

【従来の技術】近年、IC、LSIなどの半導体素子や
電気部品などの封止用材料として、特性やコストのバラ
ンスの点から、エポキシ樹脂組成物が一般的に用いられ
ている。
2. Description of the Related Art In recent years, epoxy resin compositions have been generally used as a sealing material for semiconductor elements such as ICs and LSIs and electric parts, from the viewpoint of characteristics and cost balance.

【0003】このようなエポキシ樹脂封止材において、
従来用いられている硬化促進剤は、2−メチルイミダゾ
ール、DBU、トリフェニルホスフィンなどが挙げられ
るが、これらの硬化促進剤を用いたエポキシ樹脂封止材
は常温における保存性が悪く、そのため、常温で保存す
ると流れ性の低下から、成形時に未充填不良が発生した
り、ICチップの金ワイヤーが断線し、導通不良が発生
するなどの問題点があった。このため現在は、エポキシ
樹脂封止材を冷蔵保存する必要があり、冷蔵保存、冷蔵
輸送に多大なコストがかかっているのが現状である。
In such an epoxy resin sealing material,
Conventionally used curing accelerators include 2-methylimidazole, DBU, triphenylphosphine, and the like, but epoxy resin encapsulants using these curing accelerators have poor storage stability at room temperature, and therefore, room temperature. When stored at 1, there was a problem that unfilled defects occurred during molding due to deterioration of flowability, and gold wires of IC chips were broken, leading to defective conduction. For this reason, at present, it is necessary to store the epoxy resin encapsulating material in a refrigerating state, and it is the current situation that a great deal of cost is required for refrigerating storing and refrigerating transportation.

【0004】また、特公昭62−1612号公報におい
ては、DBUと芳香族3価カルボン酸との反応物を硬化
促進剤として用いると封止材の保存性が向上するとの記
載があるが、この反応物は常温で固型の反応生成物とだ
け述べられており、硬化促進剤が樹脂中でどのような挙
動をとれば樹脂組成物の保存性が向上するかについての
言及はない。更に我々は特公昭62−1612号公報に
示されたDBUと芳香族3価カルボン酸との反応物(以
下、「反応物」と略す)について検討した結果、詳細を
後述する硬化剤であるフェノールノボラックと「反応
物」との混合物の示差走査熱量測定において、70℃未
満の低い温度で発熱が始まる現象をとらえた。我々はこ
の発熱開始温度と前記樹脂組成物の保存性の間に密接な
関係があることを見いだし、極めて保存性の良好な樹脂
組成物を提供できる技術を確立するに至った。以下にそ
の内容の詳細を述べる。
Further, Japanese Patent Publication No. 62-1612 describes that the use of a reaction product of DBU and an aromatic trivalent carboxylic acid as a curing accelerator improves the preservability of the encapsulant. The reaction product is described only as a solid reaction product at room temperature, and there is no mention of how the curing accelerator behaves in the resin to improve the storage stability of the resin composition. Furthermore, as a result of examination on a reaction product of DBU and an aromatic trivalent carboxylic acid (hereinafter, abbreviated as "reaction product") disclosed in Japanese Patent Publication No. 62-1612, a phenol, which is a curing agent which will be described in detail later, is obtained. In differential scanning calorimetry of the mixture of novolac and "reactant", the phenomenon of exotherm starting at low temperatures below 70 ° C was captured. We have found that there is a close relationship between this exothermic onset temperature and the storability of the resin composition, and have established a technique capable of providing a resin composition having extremely good storability. The details of the contents are described below.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的とすると
ころは、硬化性に優れ、かつ常温における保存性のよい
電子、電気部品用樹脂組成物を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a resin composition for electronic and electric parts, which has excellent curability and storage stability at room temperature.

【0006】[0006]

【課題を解決するための手段】本発明は、1分子内にエ
ポキシ基を2個以上有するエポキシ樹脂(A)と1分子
内にフェノール性水酸基を2個以上有するフェノール樹
脂(B)において、エポキシ基のフェノール性水酸基に
対する当量比が0.5以上2以下であり、更に硬化促進
剤として、1,8−ジアザビシクロ[5,4,0]−7−
ウンデセン(以下DBUと略す)とこのDBUにプロト
ンを少なくとも1個与えてDBUとイオン対を形成する
有機化合物(C)とからなる塩(D)であって、しかも
この塩(D)は数平均分子量500、軟化点95℃、水
酸基当量104のフェノールノボラック70重量部に対
し、DBUが30重量部の割合になるように、このフェ
ノールノボラックと塩(D)を混合し、10℃/分の昇
温速度で示差走査熱量測定を実施したときの発熱開始温
度が70℃以上となる塩として定義されるものであり、
この塩(D)を、(A)+(B)100重量部に対し、
0.5重量部以上20重量部以下含有し、更に無機充填
剤(E)が(A)+(B)100重量部に対し、40重
量部以上2400重量部以下含有されてなる樹脂組成物
である。
The present invention provides an epoxy resin (A) having two or more epoxy groups in one molecule and a phenol resin (B) having two or more phenolic hydroxyl groups in one molecule. The equivalent ratio of the group to the phenolic hydroxyl group is 0.5 or more and 2 or less, and further, as a curing accelerator, 1,8-diazabicyclo [5,4,0] -7-
A salt (D) comprising undecene (hereinafter abbreviated as DBU) and an organic compound (C) that forms an ion pair with DBU by giving at least one proton to this DBU, and this salt (D) is a number average This phenol novolac and salt (D) were mixed so that the ratio of DBU was 30 parts by weight with respect to 70 parts by weight of phenol novolac having a molecular weight of 500, a softening point of 95 ° C. and a hydroxyl group equivalent of 104, and the temperature was raised at 10 ° C./min. It is defined as a salt having an exothermic start temperature of 70 ° C. or higher when performing differential scanning calorimetry at a temperature rate,
This salt (D) was added to 100 parts by weight of (A) + (B).
A resin composition containing 0.5 parts by weight or more and 20 parts by weight or less and further containing 40 parts by weight or more and 2400 parts by weight or less of inorganic filler (E) with respect to 100 parts by weight of (A) + (B). is there.

【0007】ここで上記エポキシ樹脂(A)の具体例と
してはオルソクレゾールノボラックエポキシ、フェノー
ルノボラックエポキシ、ビスフェノールA型エポキシ、
ビフェニル型エポキシなどが挙げられるが、特にこれら
に限定されるものではない。更にフェノール樹脂(B)
としては、フェノールノボラック、クレゾールノボラッ
クなどが例示できる。この(A)、(B)において、エ
ポキシ基のフェノール性水酸基に対する当量比は0.5
以上2以下が好ましく、この範囲外ではガラス転移温度
の低下、硬化性の低下などの問題が発生する。
Specific examples of the epoxy resin (A) include orthocresol novolac epoxy, phenol novolac epoxy, bisphenol A type epoxy,
Examples thereof include biphenyl type epoxy, but are not limited thereto. Further phenol resin (B)
Examples thereof include phenol novolac and cresol novolac. In these (A) and (B), the equivalent ratio of the epoxy group to the phenolic hydroxyl group is 0.5.
It is preferably 2 or more, and outside this range, problems such as lower glass transition temperature and lower curability occur.

【0008】硬化促進剤であるDBUと有機化合物
(C)との塩(D)は、DBUに対してプロトンを供与
する有機化合物(C)が少なくとも1個のプロトンを与
えてイオン対を形成するものであるが、更にこのDBU
と有機化合物(C)との塩(D)について詳細に説明す
ることとする。
In the salt (D) of DBU which is a curing accelerator and the organic compound (C), the organic compound (C) which donates a proton to DBU forms at least one proton to form an ion pair. This is a DBU
The salt (D) of the compound and the organic compound (C) will be described in detail.

【0009】一般に硬化剤としてフェノール樹脂を用い
るエポキシ樹脂成形材料、特にエポキシ樹脂封止材にお
いてはその材料の試作工程において熱ロールや押出し機
などを用いて加熱溶融させながら混練する工程を経るが
(これは特公昭62−1612号公報においてもその実
施例に記載がある)、その加熱混練時の材料の温度は6
0℃以上、好ましくは70℃以上にすることが材料中の
各成分を均一に混合、混練する上で必要であるとされて
いる。我々はこのような工程において、材料中の硬化促
進剤が十分に活性化(この活性化とは一般に言われてい
るアニオン重合触媒、例えばDBUが硬化剤であるフェ
ノールノボラックの酸性の水酸基に付加し、硬化反応に
寄与する活性種が生成するということを意味する)して
しまうと25〜40℃程度の所謂常温における材料(本
明細書においては樹脂組成物)の保存性が低下してしま
うのではないかと考え、DBUと有機化合物(C)との
塩(D)と硬化剤フェノールノボラックとの反応開始温
度(ここで言う反応開始温度とは塩(D)が熱により解
離し、遊離したDBUが前述のようにフェノールノボラ
ックの水酸基に付加し始める温度を実質的には意味す
る。なお、通常DBUがフェノール性水酸基に付加する
反応は発熱反応であり、示差走査熱量計(以下DSCと
略す)で十分に検出モニターできるものである)と樹脂
組成物の保存性の関係を検討した結果、この反応開始温
度(後述するDSC測定においては発熱開始温度)が7
0℃以上であれば常温保存性が著しく向上することがわ
かった。すなわちこれは前述加熱混練工程において、活
性種の生成を抑制すれば常温保存性が向上することを示
唆する事実である。
Generally, an epoxy resin molding material using a phenol resin as a curing agent, especially an epoxy resin encapsulating material, undergoes a kneading process while heating and melting using a hot roll or an extruder in a trial production process of the material ( This is also described in the example in Japanese Patent Publication No. 62-1612), and the temperature of the material during the heating and kneading is 6
It is said that the temperature of 0 ° C. or higher, preferably 70 ° C. or higher is necessary for uniformly mixing and kneading the components in the material. In such a process, we have found that the curing accelerator in the material is sufficiently activated (this activation is commonly referred to as anion polymerization catalyst, for example, DBU is added to the acidic hydroxyl group of phenol novolac as the curing agent). If it means that an active species that contributes to the curing reaction is generated), the preservability of the material (resin composition in this specification) at a so-called normal temperature of about 25 to 40 ° C. is deteriorated. Therefore, the reaction start temperature between the salt (D) of DBU and the organic compound (C) and the curing agent phenol novolac (the reaction start temperature here means that the salt (D) is dissociated by heat and liberated DBU). Means substantially the temperature at which the addition of phenol to the hydroxyl group of phenol novolac begins, as described above. Normally, the reaction of adding DBU to the phenolic hydroxyl group is an exothermic reaction. Scanning calorimeter (hereinafter abbreviated as DSC) in those that can be detected sufficiently monitor) and a result of examining the storage stability of the relationship of the resin composition, the reaction starting temperature (exothermic onset temperature in DSC measurement to be described later) is 7
It was found that the storage stability at room temperature was remarkably improved at 0 ° C or higher. That is, this is a fact that suggests that if the production of active species is suppressed in the above-mentioned heat-kneading step, the room temperature preservability is improved.

【0010】そこで具体的なこの反応開始温度の検出方
法について詳述する。使用するフェノールノボラックは
数平均分子量500、軟化点95℃(ボールリング法に
よる軟化点)、水酸基当量104のものを用い、このフ
ェノールノボラック70重量部に対し、DBUが30重
量部の割合となるように塩(D)の量を設定し、フェノ
ールノボラックと塩(D)の混合物を調製する。この混
合物を窒素雰囲気下、10℃/分の昇温速度でDSCに
よる測定を実施し、その発熱開始温度を検出するという
ものである。このように発熱開始温度が70℃以上とな
る条件を満たせば、有機化合物(C)は特に限定される
ものではないが、テレフタル酸、ピロメリット酸、2,
6-ナフタレンジカルボン酸、1,4-ナフタレンジカル
ボン酸、ポリアクリル酸などは発熱開始温度が高く、樹
脂組成物の保存性、硬化性の面で特に好ましい結果をも
たらす。
Therefore, a specific method for detecting the reaction start temperature will be described in detail. The phenol novolac used has a number average molecular weight of 500, a softening point of 95 ° C. (softening point according to the ball ring method) and a hydroxyl equivalent of 104, and the ratio of DBU is 30 parts by weight with respect to 70 parts by weight of this phenol novolac. The amount of salt (D) is set to 1, and a mixture of phenol novolac and salt (D) is prepared. This mixture is measured by DSC in a nitrogen atmosphere at a temperature rising rate of 10 ° C./min to detect the heat generation start temperature. The organic compound (C) is not particularly limited as long as it satisfies the condition that the heat generation starting temperature is 70 ° C. or higher, but terephthalic acid, pyromellitic acid, 2,
6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, polyacrylic acid and the like have a high exothermic onset temperature and bring particularly preferable results in terms of storage stability and curability of the resin composition.

【0011】更に、この硬化促進剤(D)の添加量はエ
ポキシ樹脂(A)及びフェノール樹脂(B)の総重量1
00重量部に対し、0.5重量部以上20重量部以下が
好ましい。0.5重量部より少ないと硬化性の低下を生
じ、20重量部より多いと硬化が速すぎて成形時に未充
填不良などの問題が生ずる。
Further, the amount of the curing accelerator (D) added is 1 total weight of the epoxy resin (A) and the phenol resin (B).
It is preferably 0.5 parts by weight or more and 20 parts by weight or less with respect to 00 parts by weight. If the amount is less than 0.5 parts by weight, the curability will be deteriorated, and if the amount is more than 20 parts by weight, the curing will be too fast and problems such as unfilling failure will occur during molding.

【0012】本発明に用いられる無機充填剤はアルミ
ナ、溶融シリカ、結晶シリカ、クレー、タルクなどが例
示されるが、特にこれらに限定されるものではない。こ
の無機充填剤(E)の添加量は、樹脂成分(A)、
(B)の総重量100重量部に対し、40重量部以上2
400重量部以下が好ましく、40重量部より少ないと
成形材料にした場合、強度の低下を招くなどの問題が生
じ、2400重量部より多いと流動性が低下し、成形時
に未充填不良などの問題が生ずる。また、本発明の樹脂
組成物に必要に応じて従来公知の添加剤を配合すること
はなんら問題ない。例えば離型剤や酸化アンチモン、ハ
ロゲン化物などの難燃剤、カーボンブラックなどの顔
料、シランカッブリング剤のような無機充填剤の表面処
理剤などが具体例として挙げられる。
Examples of the inorganic filler used in the present invention include alumina, fused silica, crystalline silica, clay and talc, but the inorganic filler is not particularly limited thereto. The amount of the inorganic filler (E) added is the resin component (A),
40 parts by weight or more based on 100 parts by weight of (B) 2
It is preferably 400 parts by weight or less, and when it is less than 40 parts by weight, it causes a problem such as a decrease in strength when it is used as a molding material, and when it is more than 2400 parts by weight, fluidity deteriorates and a problem such as unfilling failure during molding occurs Occurs. In addition, there is no problem to add a conventionally known additive to the resin composition of the present invention as needed. Specific examples include a release agent, a flame retardant such as antimony oxide and a halide, a pigment such as carbon black, and a surface treatment agent for an inorganic filler such as a silane coupling agent.

【0013】[0013]

【作用】本発明に用いられるDBUと有機化合物(C)
との塩(D)はDBUに対して有機化合物(C)が少な
くとも1個のプロトンを供与してイオン対を形成したも
のであるが、この硬化促進剤(D)は常温から加熱混練
温度の領域では、DBUと有機化合物(C)のイオン対
(塩)が安定に存在しており、DBUの触媒作用を抑制
し、高温にさらされる成形時にはこのイオン対がすみや
かに解離し、DBUが活性化し、硬化を促進する作用を
有するものである。この硬化促進剤(D)はエポキシ樹
脂(A)、フェノール樹脂(B)の総重量100重量部
に対し、0.5重量部以上20重量部以下が好ましく、
0.5重量部より少ないと硬化性の低下を生じ、20重
量部より多いと硬化が速すぎて成形時に流動性の低下に
より、未充填不良などの問題が生ずる。
[Function] DBU and organic compound (C) used in the present invention
The salt (D) is a compound in which the organic compound (C) donates at least one proton to DBU to form an ion pair, and the curing accelerator (D) has a temperature of room temperature to a kneading temperature. In the region, the ion pair (salt) of DBU and the organic compound (C) is stably present, which suppresses the catalytic action of DBU and dissociates quickly during molding when exposed to high temperature, and DBU becomes active. And has the effect of promoting curing. The curing accelerator (D) is preferably 0.5 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the total weight of the epoxy resin (A) and the phenol resin (B),
If the amount is less than 0.5 parts by weight, the curability is lowered, and if the amount is more than 20 parts by weight, the curing is too fast and the fluidity is lowered at the time of molding, which causes problems such as unfilling failure.

【0014】[0014]

【実施例】以下、本発明を実施例により更に具体的に説
明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0015】(合成例1)冷却管をつけた200ml丸底
フラスコにN,N−ジメチルホルムアミド(DMF)6
0g、テレフタル酸3.27gを入れ、完全に溶解した
ところでDBU3.0gをゆっくりと滴下した。滴下途
中から白色結晶が生成し始めた。DBU滴下終了後1時
間反応させ、内容物を濾過、トルエンで洗浄し、80℃
で真空乾燥させ、DBUとテレフタル酸の塩(以下DB
U−TPAと略す)を得た。
(Synthesis Example 1) N, N-dimethylformamide (DMF) 6 was added to a 200 ml round bottom flask equipped with a cooling tube.
0 g and 3.27 g of terephthalic acid were added, and when completely dissolved, 3.0 g of DBU was slowly added dropwise. White crystals started to form during the dropping. After the addition of DBU was completed, the reaction was allowed to proceed for 1 hour.
Vacuum dried in DBU and terephthalic acid salt (hereinafter DB
U-TPA) was obtained.

【0016】(合成例2)冷却管をつけた300ml3つ
口セパラブルフラスコにテトラヒドロフラン150g、
p−ニトロ安息香酸20.0gを入れ、完全に溶解した
ところでDBU18.2gをゆっくりと滴下した。析出
した塩を濾過し、80℃で真空乾燥させ、DBUとp−
ニトロ安息香酸の塩(以下DBU−NBAと略す)を得
た。
(Synthesis example 2) 150 g of tetrahydrofuran in a 300 ml three-neck separable flask equipped with a cooling tube,
20.0 g of p-nitrobenzoic acid was added, and when it was completely dissolved, 18.2 g of DBU was slowly added dropwise. The precipitated salt was filtered, dried in vacuum at 80 ° C., and then DBU and p-
A salt of nitrobenzoic acid (hereinafter abbreviated as DBU-NBA) was obtained.

【0017】(合成例3)冷却管をつけた500ml3つ
口セパラブルフラスコにアセトン300g、ピロメリッ
ト酸30.0gを入れ、完全に溶解したところでDBU
18.0gをゆっくりと滴下した。析出した塩を濾過
し、80℃で真空乾燥させ、DBUとピロメリット酸の
塩(以下DBU−PMAと略す)を得た。
(Synthesis Example 3) 300 g of acetone and 30.0 g of pyromellitic acid were placed in a 500 ml three-neck separable flask equipped with a cooling tube, and when completely dissolved, DBU was added.
18.0 g was slowly added dropwise. The deposited salt was filtered and vacuum dried at 80 ° C. to obtain a salt of DBU and pyromellitic acid (hereinafter abbreviated as DBU-PMA).

【0018】(合成例4)冷却管をつけた300ml3つ
口セパラブルフラスコにN−メチルピロリドン(NM
P)150g、2,6-ナフタレンジカルボン酸10.0
gを入れ、100℃に加熱して2,6-ナフタレンジカル
ボン酸を完全に溶解させた。その後、DBU7.0gを
ゆっくりと滴下し、滴下終了後1時間撹拌しその後撹拌
を継続しながら徐々に室温まで冷却し、析出した塩を濾
過、トルエン洗浄し、80℃で真空乾燥させ、DBUと
2,6-ナフタレンジカルボン酸の塩(以下DBU-2,6
-NDCと略す)を得た。
(Synthesis Example 4) N-methylpyrrolidone (NM) was placed in a 300 ml three-neck separable flask equipped with a cooling tube.
P) 150 g, 2,6-naphthalenedicarboxylic acid 10.0
g was added and heated to 100 ° C. to completely dissolve 2,6-naphthalenedicarboxylic acid. After that, 7.0 g of DBU was slowly added dropwise, and after the completion of the addition, the mixture was stirred for 1 hour and then gradually cooled to room temperature while continuing the stirring, and the precipitated salt was filtered, washed with toluene, and dried in vacuum at 80 ° C. to obtain DBU. Salt of 2,6-naphthalenedicarboxylic acid (hereinafter DBU-2,6
-Abbreviated as NDC).

【0019】(合成例5)冷却管をつけた500ml3つ
口セパラブルフラスコにテトラヒドロフラン300g、
1,4-ナフタレンジカルボン酸20.0gを入れ、60
℃に加熱して1,4-ナフタレンジカルボン酸を完全に溶
解させた。その後、DBU14.1gをゆっくりと滴下
し、滴下終了後、析出した塩を濾過し、80℃で真空乾
燥させ、DBUと1,4-ナフタレンジカルボン酸の塩
(以下DBU-1,4-NDCと略す)を得た。
(Synthesis example 5) 300 g of tetrahydrofuran in a 500 ml three-neck separable flask equipped with a cooling tube,
Add 20.0 g of 1,4-naphthalenedicarboxylic acid, and add 60
The mixture was heated to 0 ° C. to completely dissolve 1,4-naphthalenedicarboxylic acid. After that, 14.1 g of DBU was slowly added dropwise, and after the addition was completed, the precipitated salt was filtered and dried under vacuum at 80 ° C. to obtain DBU and a salt of 1,4-naphthalenedicarboxylic acid (hereinafter referred to as DBU-1,4-NDC For short).

【0020】(合成例6)冷却管をつけた300ml3つ
口セパラブルフラスコにメタノール80g、東亜合成化
学工業(株)製ポリアクリル酸AC−10P 15.0g
を入れ、溶解したところでDBU31.7gをゆっくり
と滴下した。滴下終了後1時間反応させたところで10
0℃に加熱し、メタノール45gを留出させ反応物を濃
縮した後、バットに移し、100℃で真空乾燥し、DB
Uとポリアクリル酸の塩(以下DBU−PAと略す)を
得た。
(Synthesis Example 6) In a 300 ml three-neck separable flask equipped with a cooling tube, 80 g of methanol and 15.0 g of polyacrylic acid AC-10P manufactured by Toagosei Chemical Industry Co., Ltd.
Then, when dissolved, 31.7 g of DBU was slowly added dropwise. After reacting for 1 hour after completion of dropping, 10
After heating to 0 ° C. and distilling off 45 g of methanol to concentrate the reaction product, it was transferred to a vat and dried under vacuum at 100 ° C. to obtain DB.
A salt of U and polyacrylic acid (hereinafter abbreviated as DBU-PA) was obtained.

【0021】(合成例7)冷却管をつけた300ml3つ
口セパラブルフラスコにトリメリット酸55g、DBU
39.8gを入れ3時間かけて160℃にした後30分
間反応させ、内容物をバットに移し、デシケーター中で
放冷し褐色レジン状のDBUとトリメリット酸の塩(以
下DBU−TMAと略す)を得た。
(Synthesis Example 7) 55 g of trimellitic acid and DBU were placed in a 300 ml three-neck separable flask equipped with a cooling tube.
39.8g was added and the temperature was raised to 160 ° C over 3 hours and then reacted for 30 minutes, the contents were transferred to a vat, allowed to cool in a desiccator, and brown resinous DBU and trimellitic acid salt (hereinafter abbreviated as DBU-TMA) ) Got.

【0022】(実施例1) (1)数平均分子量500、軟化点95℃、水酸基当量
104のフェノールノボラック(住友デュレズ(株)製
PR−51714)3.5g、合成例1で得たDBU−
TPA 3.15g(この中にDBUが1.5g含まれ
る)を乳鉢で混合し、窒素雰囲気下、10℃/分の昇温
速度でDSC測定を実施した。その結果、発熱開始温度
は80.3℃であった。
Example 1 (1) Phenol novolac having a number average molecular weight of 500, a softening point of 95 ° C. and a hydroxyl equivalent of 104 (manufactured by Sumitomo Durez Co., Ltd.)
PR-51714) 3.5 g, DBU-obtained in Synthesis Example 1
3.15 g of TPA (1.5 g of DBU is contained in this) was mixed in a mortar, and DSC measurement was performed at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. As a result, the heat generation starting temperature was 80.3 ° C.

【0023】(2)軟化点が65℃でエポキシ当量21
0のオルソクレゾールノボラックエポキシ(日本化薬
(株)製EOCN−1025−65)67部(以下重量
部をすべて部と略す)、軟化点が105℃で水酸基当量
104のフェノールノボラック(住友デュレズ(株)製
PR−51470)33部、硬化促進剤として合成例1
で得たDBU−TPA1.7部、溶融シリカ300部、
カルナバワックス2部を配合し、熱ロールで85℃5分
間混練した。このときの材料の実測温度は71℃であっ
た。得られた成形材料のトランスファー成形による17
5℃のスパイラルフローは75cm、175℃60秒成形
におけるバーコール硬度は82であった。なお、スパイ
ラルフローは流動性のパラメーターであり、値が大きい
方が流れ性がよい。またバーコール硬度は硬化性のパラ
メーターであり、値の大きい方が硬化性がよい。
(2) Epoxy equivalent 21 at a softening point of 65 ° C.
Orthocresol novolak epoxy (EOCN-1025-65 manufactured by Nippon Kayaku Co., Ltd.) of 0 (67 parts (all parts by weight are hereinafter abbreviated)), phenol novolak having a softening point of 105 ° C. and a hydroxyl equivalent of 104 (Sumitomo Dures Co., Ltd. ) PR-51470) 33 parts, Synthetic Example 1 as a curing accelerator
DBU-TPA (1.7 parts), fused silica (300 parts),
2 parts of carnauba wax was blended and kneaded with a hot roll at 85 ° C. for 5 minutes. The actually measured temperature of the material at this time was 71 ° C. 17 by transfer molding of the obtained molding material
The spiral flow at 5 ° C. was 75 cm, and the Barcol hardness in molding at 175 ° C. for 60 seconds was 82. The spiral flow is a fluidity parameter, and the larger the value, the better the fluidity. The Barcol hardness is a curability parameter, and the larger the value, the better the curability.

【0024】次にこの材料の25℃、6ケ月間保存後の
スパイラルフローを測定した。その結果、スパイラルフ
ローは71cmであり、フロー残存率(25℃6ケ月間
保存後フロー/初期フロー×100(%))は95%で
あった。
Next, the spiral flow of this material after storage at 25 ° C. for 6 months was measured. As a result, the spiral flow was 71 cm, and the flow residual rate (flow after storage for 6 months at 25 ° C./initial flow × 100 (%)) was 95%.

【0025】(実施例2) (1)実施例1の(1)のDBU−TPA 3.15g
を合成例2で得たDBU−NBA 3.1gに替える以
外はすべて実施例1の(1)と同様の操作でDSC測定
を実施したところ、発熱開始温度は72.3℃であっ
た。 (2)実施例1の(2)のDBU−TPA 1.7部に
替えて、DBU−NBA2.2部を用いる以外はすべて
実施例1の(2)と同様の操作で材料化した。この材料
のスパイラルフローは85cm、バーコール硬度は74で
あった。また、25℃6ケ月間保存後のスパイラルフロ
ーは77cmで、フロー残存率は91%であった。
(Example 2) (1) 3.15 g of DBU-TPA of (1) of Example 1
When DSC measurement was carried out in the same manner as in (1) of Example 1 except that 3.1 g of DBU-NBA obtained in Synthesis Example 2 was used, the exothermic onset temperature was 72.3 ° C. (2) The same procedure as in (2) of Example 1 was carried out except that 2.2 parts of DBU-NBA was used instead of 1.7 parts of DBU-TPA in (2) of Example 1. This material had a spiral flow of 85 cm and a Barcol hardness of 74. The spiral flow after storage at 25 ° C for 6 months was 77 cm, and the residual flow rate was 91%.

【0026】(実施例3) (1)実施例1の(1)のDBU−TPA 3.15g
を合成例3で得たDBU−PMA 4.0gに替える以
外はすべて実施例1の(1)と同様の操作でDSC測定
を実施したところ、発熱開始温度は80.3℃であっ
た。 (2)実施例1の(2)のDBU−TPA 1.7部に
替えて、DBU−PMA4.0部を用いる以外はすべて
実施例1の(2)と同様の操作で材料化した。この材料
のスパイラルフローは78cm、バーコール硬度は85で
あった。また、25℃6ケ月間保存後のスパイラルフロ
ーは75cmで、フロー残存率は96%であった。
(Example 3) (1) 3.15 g of DBU-TPA of (1) of Example 1
When DSC measurement was carried out in the same manner as in (1) of Example 1 except that 4.0 g of DBU-PMA obtained in Synthesis Example 3 was replaced by DSC, the exothermic onset temperature was 80.3 ° C. (2) A material was prepared in the same manner as in (2) of Example 1 except that 4.0 parts of DBU-PMA was used instead of 1.7 parts of DBU-TPA in (2) of Example 1. This material had a spiral flow of 78 cm and a Barcol hardness of 85. The spiral flow after storage at 25 ° C for 6 months was 75 cm, and the residual flow rate was 96%.

【0027】(実施例4) (1)実施例1の(1)のDBU−TPA 3.15g
を合成例4で得たDBU-2,6-NDC 3.6gに替え
る以外はすべて実施例1の(1)と同様の操作でDSC
測定を実施したところ、発熱開始温度は92.4℃であ
った。 (2)実施例1の(2)のDBU−TPA 1.7部に
替えて、DBU-2,6-NDC 1.9g部を用いる以外
はすべて実施例1の(2)と同様の操作で材料化した。
この材料のスパイラルフローは82cm、バーコール硬度
は86であった。また、25℃6ケ月間保存後のスパイ
ラルフローは81cmで、フロー残存率は99%であっ
た。
(Example 4) (1) 3.15 g of DBU-TPA of (1) of Example 1
Was operated in the same manner as in (1) of Example 1 except that 3.6 g of DBU-2,6-NDC obtained in Synthesis Example 4 was replaced with DSC.
Upon measurement, the exothermic onset temperature was 92.4 ° C. (2) The same operation as in (2) of Example 1 was performed except that 1.9 g of DBU-2,6-NDC was used instead of 1.7 parts of DBU-TPA in (2) of Example 1. Made into a material.
This material had a spiral flow of 82 cm and a Barcol hardness of 86. The spiral flow after storage at 25 ° C for 6 months was 81 cm, and the residual flow rate was 99%.

【0028】(実施例5) (1)実施例1の(1)のDBU−TPA 3.15g
を合成例5で得たDBU-1,4-NDC 3.6gに替え
る以外はすべて実施例1の(1)と同様の操作でDSC
測定を実施したところ、発熱開始温度は78.0℃であ
った。 (2)実施例1の(2)のDBU−TPA 1.7部に
替えて、DBU-1,4-NDC 1.9g部を用いる以外
はすべて実施例1の(2)と同様の操作で材料化した。
この材料のスパイラルフローは77cm、バーコール硬度
は81であった。また、25℃6ケ月間保存後のスパイ
ラルフローは72cmで、フロー残存率は94%であっ
た。
Example 5 (1) 3.15 g of DBU-TPA of (1) of Example 1
Was replaced by the same procedure as in (1) of Example 1 except that 3.6 g of DBU-1,4-NDC obtained in Synthesis Example 5 was used.
Upon measurement, the exothermic onset temperature was 78.0 ° C. (2) The same operation as in (2) of Example 1 was performed except that 1.9 g of DBU-1,4-NDC was used instead of 1.7 parts of DBU-TPA in (2) of Example 1. Made into a material.
This material had a spiral flow of 77 cm and a Barcol hardness of 81. The spiral flow after storage at 25 ° C for 6 months was 72 cm, and the residual flow rate was 94%.

【0029】(実施例6) (1)実施例1の(1)のDBU−TPA 3.15g
を合成例6で得たDBU−PA 2.2gに替える以外
はすべて実施例1の(1)と同様の操作でDSC測定を
実施したところ、発熱開始温度は81.0℃であった。 (2)実施例1の(2)のDBU−TPA 1.7部に
替えて、DBU−PA2.4部を用いる以外はすべて実
施例1の(2)と同様の操作で材料化した。この材料の
スパイラルフローは73cm、バーコール硬度は84であ
った。また、25℃6ケ月間保存後のスパイラルフロー
は71cmで、フロー残存率は97%であった。
Example 6 (1) 3.15 g of DBU-TPA of (1) of Example 1
When DSC measurement was carried out in the same manner as in (1) of Example 1 except that 2.2 g of DBU-PA obtained in Synthesis Example 6 was used, the exothermic onset temperature was 81.0 ° C. (2) The same procedure as in (2) of Example 1 was carried out except that 2.4 parts of DBU-PA was used instead of 1.7 parts of DBU-TPA in (2) of Example 1. This material had a spiral flow of 73 cm and a Barcol hardness of 84. The spiral flow after storage at 25 ° C for 6 months was 71 cm, and the residual flow rate was 97%.

【0030】(実施例7)ビフェニル型エポキシ(油化
シェルエポキシ(株)製YX−4000H)67部、軟化
点が95℃、水酸基当量103のフェノールノボラック
(住友デュレズ(株)製PR−51714)33部、硬化
促進剤として合成例1で得たDBU−TPA3.4部、
溶融シリカ2300部を使用する以外は実施例1の
(2)と同様の操作で材料化した。この材料のスパイラ
ルフローは52cm、60秒のバーコール硬度は63であ
った。また、25℃6ケ月間保存後のスパイラルフロー
は49cmで、フロー残存率は94%であった。
Example 7 67 parts of biphenyl type epoxy (YX-4000H manufactured by Yuka Shell Epoxy Co., Ltd.), a phenol novolak having a softening point of 95 ° C. and a hydroxyl equivalent of 103 (PR-51714 manufactured by Sumitomo Durez Co., Ltd.) 33 parts, 3.4 parts of DBU-TPA obtained in Synthesis Example 1 as a curing accelerator,
A material was prepared in the same manner as in (2) of Example 1 except that 2300 parts of fused silica was used. This material had a spiral flow of 52 cm and a Barcol hardness of 63 at 60 seconds. The spiral flow after storage at 25 ° C for 6 months was 49 cm, and the residual flow rate was 94%.

【0031】(比較例1) (1)実施例1の(1)のDBU−TPA 3.15g
をDBU 1.5gに替える以外はすべて実施例1の
(1)と同様の操作でDSC測定を実施したところ、発
熱開始温度は63.1℃であった。 (2) 実施例1の(2)のDBU−TPA 1.7部
に替えて、DBU 0.8部を用いる以外はすべて実施
例1の(2)と同様の操作で材料化した。この材料のス
パイラルフローは76cm、バーコール硬度は71であっ
た。また、25℃6ケ月間保存後のスパイラルフローは
53cmで、フロー残存率は70%であった。
Comparative Example 1 (1) 3.15 g of DBU-TPA of (1) of Example 1
When the DSC measurement was carried out in the same manner as in (1) of Example 1 except that DBU was changed to 1.5 g, the exothermic onset temperature was 63.1 ° C. (2) A material was prepared in the same manner as in (2) of Example 1 except that 0.8 part of DBU-TPA was used instead of 1.7 parts of DBU-TPA in (2) of Example 1. This material had a spiral flow of 76 cm and a Barcol hardness of 71. The spiral flow after storage at 25 ° C for 6 months was 53 cm, and the residual flow rate was 70%.

【0032】(比較例2)実施例1の(2)のオルソク
レゾールノボラックエポキシ67部、フェノールノボラ
ック33部に替えて、オルソクレゾールノボラックエポ
キシ30部、フェノールノボラック70部使用する以外
はすべて実施例1と同様の操作で材料化した。この材料
のスパイラルフローを測定しようとしたが、硬化不良で
測定不能であった。
(Comparative Example 2) All of Example 1 except that 30 parts of orthocresol novolac epoxy and 70 parts of phenol novolac were used in place of 67 parts of orthocresol novolac epoxy and 33 parts of phenol novolac of (2) of Example 1 It was made into a material by the same operation as. An attempt was made to measure the spiral flow of this material, but it could not be measured due to poor curing.

【0033】(比較例3)実施例1の(2)の硬化促進
剤DBU−TPA1.7部に替えて、硬化促進剤にDB
U−TPAを30部使用する以外はすべて実施例1と同
様の操作で材料化したが、硬化が速すぎ成形不能であっ
た。
(Comparative Example 3) The curing accelerator DBU-TPA in Example 2 (2) was replaced with 1.7 parts of the curing accelerator DB.
All were made into a material by the same operation as in Example 1 except that 30 parts of U-TPA was used, but the curing was too fast and molding was impossible.

【0034】(比較例4)実施例1の(2)の溶融シリ
カ300部に替えて、溶融シリカを3000部使用する
以外はすべて実施例1の(2)と同様の操作で材料化し
たが、流動性がほとんどなく成形不能であった。
(Comparative Example 4) A material was prepared in the same manner as in (2) of Example 1 except that 3000 parts of fused silica was used instead of 300 parts of fused silica in (2) of Example 1. However, it had almost no fluidity and could not be molded.

【0035】(比較例5) (1)実施例1の(1)のDBU−TPA 3.15g
を合成例7で得たDBU−TMA 3.6gに替える以
外はすべて実施例1の(1)と同様の操作でDSC測定
を実施したところ、発熱開始温度は64.2℃であっ
た。 (2) 実施例1の(2)のDBU−TPA 1.7部
に替えて、DBU−TMA 3.3部を用いる以外はす
べて実施例1の(2)と同様の操作で材料化した。この
材料のスパイラルフローは83cm、バーコール硬度は8
0であった。また、25℃6ケ月間保存後のスパイラル
フローは62cmで、フロー残存率は75%であった。
Comparative Example 5 (1) 3.15 g of DBU-TPA of (1) of Example 1
When DSC measurement was carried out in the same manner as in (1) of Example 1 except that 3.6 g of DBU-TMA obtained in Synthesis Example 7 was used, the exothermic onset temperature was 64.2 ° C. (2) A material was prepared in the same manner as in (2) of Example 1 except that 3.3 parts of DBU-TMA was used instead of 1.7 parts of DBU-TPA in (2) of Example 1. This material has a spiral flow of 83 cm and a Barcol hardness of 8
It was 0. The spiral flow after storage at 25 ° C for 6 months was 62 cm, and the residual flow rate was 75%.

【0036】実施例1〜7、比較例1〜5の結果をまと
めて表1に示す。
The results of Examples 1 to 7 and Comparative Examples 1 to 5 are summarized in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明による樹脂組成物は硬化性に優
れ、かつ常温における保存性が非常によく、本発明によ
る樹脂組成物を電子、電気部品用材料として用いれば、
冷蔵保存、冷蔵輸送が不要になるなど産業へのメリット
は大きい。
The resin composition according to the present invention has excellent curability and very good storage stability at room temperature. When the resin composition according to the present invention is used as a material for electronic and electric parts,
There are great advantages for the industry, such as refrigeration storage and refrigeration transportation are unnecessary.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 1分子内にエポキシ基を2個以上有する
エポキシ樹脂(A)と1分子内にフェノール性水酸基を
2個以上有するフェノール樹脂(B)において、エポキ
シ基のフェノール性水酸基に対する当量比が0.5以上
2以下であり、更に硬化促進剤として、1,8−ジアザ
ビシクロ[5,4,0]−7−ウンデセン(以下DBUと
略す)とこのDBUにプロトンを少なくとも1個与えて
DBUとイオン対を形成する有機化合物(C)とからな
る塩(D)であって、しかもこの塩(D)は数平均分子
量500、軟化点95℃、水酸基当量104のフェノー
ルノボラック70重量部に対し、DBUが30重量部の
割合になるように、このフェノールノボラックと塩
(D)を混合し、10℃/分の昇温速度で示差走査熱量
測定を実施したときの発熱開始温度が70℃以上となる
塩として定義されるものであり、この塩(D)を、
(A)+(B)100重量部に対し、0.5重量部以上
20重量部以下含有し、更に無機充填剤(E)が(A)
+(B)100重量部に対し、40重量部以上2400
重量部以下含有されてなる樹脂組成物。
1. In an epoxy resin (A) having two or more epoxy groups in one molecule and a phenol resin (B) having two or more phenolic hydroxyl groups in one molecule, the equivalent ratio of epoxy groups to phenolic hydroxyl groups. Is 0.5 or more and 2 or less, and further 1,8-diazabicyclo [5,4,0] -7-undecene (hereinafter abbreviated as DBU) as a curing accelerator and at least one proton is given to this DBU. And a salt (D) consisting of an organic compound (C) forming an ion pair, and this salt (D) is used for 70 parts by weight of phenol novolac having a number average molecular weight of 500, a softening point of 95 ° C. and a hydroxyl equivalent of 104. , DBU in an amount of 30 parts by weight, the phenol novolac and the salt (D) were mixed, and the differential scanning calorimetry was carried out at a heating rate of 10 ° C./min. Are those starting temperature is defined as a salt which is a 70 ° C. or higher, the salt (D),
0.5 to 20 parts by weight per 100 parts by weight of (A) + (B), and the inorganic filler (E) is (A)
+ (B) 100 parts by weight, 40 parts by weight or more 2400
A resin composition containing less than or equal to parts by weight.
【請求項2】 請求項1の有機化合物(C)がテレフタ
ル酸である請求項1記載の樹脂組成物。
2. The resin composition according to claim 1, wherein the organic compound (C) according to claim 1 is terephthalic acid.
【請求項3】 請求項1の有機化合物(C)がピロメリ
ット酸である請求項1記載の樹脂組成物。
3. The resin composition according to claim 1, wherein the organic compound (C) according to claim 1 is pyromellitic acid.
【請求項4】 請求項1の有機化合物(C)が2,6-ナ
フタレンジカルボン酸である請求項1記載の樹脂組成
物。
4. The resin composition according to claim 1, wherein the organic compound (C) according to claim 1 is 2,6-naphthalenedicarboxylic acid.
【請求項5】 請求項1の有機化合物(C)が1,4-ナ
フタレンジカルボン酸である請求項1記載の樹脂組成
物。
5. The resin composition according to claim 1, wherein the organic compound (C) according to claim 1 is 1,4-naphthalenedicarboxylic acid.
【請求項6】 請求項1の有機化合物(C)がポリアク
リル酸である請求項1記載の樹脂組成物。
6. The resin composition according to claim 1, wherein the organic compound (C) according to claim 1 is polyacrylic acid.
JP13981794A 1994-06-22 1994-06-22 Resin composition Expired - Fee Related JP3173755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13981794A JP3173755B2 (en) 1994-06-22 1994-06-22 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13981794A JP3173755B2 (en) 1994-06-22 1994-06-22 Resin composition

Publications (2)

Publication Number Publication Date
JPH083280A true JPH083280A (en) 1996-01-09
JP3173755B2 JP3173755B2 (en) 2001-06-04

Family

ID=15254155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13981794A Expired - Fee Related JP3173755B2 (en) 1994-06-22 1994-06-22 Resin composition

Country Status (1)

Country Link
JP (1) JP3173755B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495270B1 (en) 1998-02-19 2002-12-17 Hitachi Chemical Company, Ltd. Compounds, hardening accelerator, resin composition, and electronic part device
JP2006137809A (en) * 2004-11-10 2006-06-01 Nichias Corp Conductive epoxy resin composition and its manufacturing method
US9194149B2 (en) 2002-06-14 2015-11-24 Beacons Pharmaceutical Pte. Ltd. Efficient layout and design of production facility
US9353543B2 (en) 2002-06-14 2016-05-31 Beacons Pharmaceutical Pte Ltd Efficient layout and design of production facility
WO2016157259A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Sealing resin composition, semiconductor device that uses said sealing resin composition, and method for manufacturing semiconductor device that uses said sealing resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0702163L (en) 2007-09-25 2008-12-23 Abb Research Ltd An apparatus and method for stabilizing and visual monitoring an elongated metallic band

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495270B1 (en) 1998-02-19 2002-12-17 Hitachi Chemical Company, Ltd. Compounds, hardening accelerator, resin composition, and electronic part device
US9194149B2 (en) 2002-06-14 2015-11-24 Beacons Pharmaceutical Pte. Ltd. Efficient layout and design of production facility
US9353543B2 (en) 2002-06-14 2016-05-31 Beacons Pharmaceutical Pte Ltd Efficient layout and design of production facility
US9493961B2 (en) 2002-06-14 2016-11-15 Beacons Pharmaceutical Pte. Ltd. Efficient layout and design of production facility
JP2006137809A (en) * 2004-11-10 2006-06-01 Nichias Corp Conductive epoxy resin composition and its manufacturing method
WO2016157259A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Sealing resin composition, semiconductor device that uses said sealing resin composition, and method for manufacturing semiconductor device that uses said sealing resin composition
US9932473B2 (en) 2015-03-31 2018-04-03 Panasonic Intellectual Property Management Co., Ltd. Encapsulating resin composition, semiconductor device using the encapsulating resin composition, and method for manufacturing semiconductor device using the encapsulating resin composition

Also Published As

Publication number Publication date
JP3173755B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
TWI394791B (en) Epoxy resin composition for semiconductor sealing and semiconductor device
TWI406880B (en) Epoxy resin composition, process for providing latency to the composition and a semiconductor device
US5739187A (en) Semiconductor encapsulating epoxy resin compositions and semiconductor devices encapsulated therewith
US5001174A (en) Epoxy resin composition for semiconductor sealing employing triphenylmethane based novolac epoxy resin
JPH04328121A (en) Epoxy resin composition for sealing semiconductor
JPH083280A (en) Resin composition
JP4367046B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
JP2004115742A (en) Curing agent composition for epoxy resin, epoxy resin composition using curing agent composition, and semiconductor device
JP4054927B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006225630A (en) Epoxy resin composition, method for forming latent of the same and semiconductor device
JP3861953B2 (en) Semiconductor encapsulating resin composition and resin encapsulated semiconductor device encapsulated with the composition
JPH07188395A (en) Resin composition
JPH0892355A (en) Resin composition
JP4240976B2 (en) Curing accelerator, method for producing curing accelerator, epoxy resin composition, and semiconductor device
JP3432445B2 (en) Epoxy resin composition for optical semiconductor and semiconductor device
JPH1160898A (en) Semiconductor molding resin composition and resin molded type semiconductor device
JP3847017B2 (en) Method for producing curing accelerator for epoxy resin
JPH07228670A (en) Resin composition
JP3672392B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3176800B2 (en) Resin composition
JPH0841290A (en) Resin composition
JPH08337709A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP4128430B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
JP4341254B2 (en) Curing accelerator for epoxy resin composition, epoxy resin composition and semiconductor device
JPH0892356A (en) Resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees