JPH07188395A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH07188395A
JPH07188395A JP13981694A JP13981694A JPH07188395A JP H07188395 A JPH07188395 A JP H07188395A JP 13981694 A JP13981694 A JP 13981694A JP 13981694 A JP13981694 A JP 13981694A JP H07188395 A JPH07188395 A JP H07188395A
Authority
JP
Japan
Prior art keywords
parts
dbu
weight
epoxy
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13981694A
Other languages
Japanese (ja)
Inventor
Sumiya Miyake
澄也 三宅
Hiromi Honda
博美 本田
Toshiro Takeda
敏郎 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP13981694A priority Critical patent/JPH07188395A/en
Publication of JPH07188395A publication Critical patent/JPH07188395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain a resin composition having excellent curability and extremely excellent storage stability at normal temperature and exhibiting remarkable industrial merits e.g. to dispense with the refrigeration storage and the refrigerating transportation when used as a material for electronic and electric parts. CONSTITUTION:This resin composition is composed of (A) an epoxy resin having >=2 epoxy groups in one molecule, (B) a phenolic resin having >=2 phenolic hydroxyl groups in one molecule (the equivalent ratio of the epoxy group to the phenolic hydroxyl group is 0.5-2), (C) 0.5-20 pts.wt. (based on 100 pts.wt. of A+B) of a cure accelerator consisting of a salt of 1,8-diazabicyclo[5,4,0]-7- undecene (abbreviated to DBU) and an organic compound forming an ion pair with the DBU by giving at least one proton to the DBU and (D) 40-2,400 pts.wt. (based on 100 pts.wt. of A+B) of an inorganic filler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硬化性に優れ、かつ常
温における保存性のよい電子、電気部品用樹脂組成物に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composition for electronic and electric parts which is excellent in curability and has good storage stability at room temperature.

【0002】[0002]

【従来の技術】近年、IC、LSIなどの半導体素子や
電気部品などの封止用材料として、特性やコストのバラ
ンスの点から、エポキシ樹脂組成物が一般的に用いられ
ている。
2. Description of the Related Art In recent years, epoxy resin compositions have been generally used as a sealing material for semiconductor elements such as ICs and LSIs and electric parts, from the viewpoint of characteristics and cost balance.

【0003】このようなエポキシ樹脂封止材において、
従来用いられている硬化促進剤は、2−メチルイミダゾ
ール、DBU、トリフェニルホスフィンなどが挙げられ
るが、これらの硬化促進剤を用いたエポキシ樹脂封止材
は常温における保存性が悪く、そのため、常温で保存す
ると流れ性の低下から、成形時に未充填不良が発生した
り、ICチップの金ワイヤーが断線し、導通不良が発生
するなどの問題点があった。
In such an epoxy resin sealing material,
Conventionally used curing accelerators include 2-methylimidazole, DBU, triphenylphosphine, and the like, but epoxy resin encapsulants using these curing accelerators have poor storage stability at room temperature, and therefore, room temperature. When stored at 1, there was a problem that unfilled defects occurred during molding due to deterioration of flowability, and gold wires of IC chips were broken, leading to defective conduction.

【0004】このため現在は、エポキシ樹脂封止材を冷
蔵保存する必要があり、冷蔵保存、冷蔵輸送に多大なコ
ストがかかっているのが現状である。
For this reason, at present, it is necessary to store the epoxy resin encapsulating material in a refrigerating state, and it is a current situation that a great deal of cost is required for refrigerating storing and refrigerating transportation.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的とすると
ころは、硬化性に優れ、かつ常温における保存性のよい
電子、電気部品用樹脂組成物を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a resin composition for electronic and electric parts, which has excellent curability and storage stability at room temperature.

【0006】[0006]

【課題を解決するための手段】本発明は、1分子内にエ
ポキシ基を2個以上有するエポキシ樹脂(A)と1分子
内にフェノール性水酸基を2個以上有するフェノール樹
脂(B)において、エポキシ基のフェノール性水酸基に
対する当量比が0.5以上2以下であり、更に硬化促進
剤として、1,8−ジアザビシクロ[5,4,0]−7−
ウンデセン(DBU)とこのDBUにプロトンを少なく
とも1個与えてDBUとイオン対を形成する有機化合物
(C)とからなる塩(D)を、(A)+(B)100重
量部に対し、0.5重量部以上20重量部以下を含有
し、更に無機充填剤(E)が(A)+(B)100重量
部に対し、40重量部以上2400重量部以下含有され
てなる樹脂組成物である。
The present invention provides an epoxy resin (A) having two or more epoxy groups in one molecule and a phenol resin (B) having two or more phenolic hydroxyl groups in one molecule. The equivalent ratio of the group to the phenolic hydroxyl group is 0.5 or more and 2 or less, and further, as a curing accelerator, 1,8-diazabicyclo [5,4,0] -7-
A salt (D) consisting of undecene (DBU) and an organic compound (C) which forms an ion pair with DBU by giving at least one proton to this DBU is added to 0 parts by weight of (A) + (B). A resin composition containing 0.5 parts by weight or more and 20 parts by weight or less and further containing 40 parts by weight or more and 2400 parts by weight or less of the inorganic filler (E) with respect to 100 parts by weight of (A) + (B). is there.

【0007】ここで上記エポキシ樹脂(A)の具体例と
してはオルソクレゾールノボラックエポキシ、フェノー
ルノボラックエポキシ、ビスフェノールA型エポキシ、
ビフェニル型エポキシなどが挙げられるが、特にこれら
に限定されるものではない。更にフェノール樹脂(A)
としては、フェノールノボラック、クレゾールノボラッ
クなどが例示できる。この(A)、(B)において、エ
ポキシ基のフェノール性水酸基に対する当量比は0.5
以上2以下が好ましく、この範囲外ではガラス転移温度
の低下、硬化性の低下などの問題が発生する。
Specific examples of the epoxy resin (A) include orthocresol novolac epoxy, phenol novolac epoxy, bisphenol A type epoxy,
Examples thereof include biphenyl type epoxy, but are not limited thereto. Further phenol resin (A)
Examples thereof include phenol novolac and cresol novolac. In these (A) and (B), the equivalent ratio of the epoxy group to the phenolic hydroxyl group is 0.5.
It is preferably 2 or more, and outside this range, problems such as lower glass transition temperature and lower curability occur.

【0008】硬化促進剤であるDBUと有機化合物
(C)との塩(D)は、DBUに対してプロトンを供与
する有機化合物(C)が少なくとも1個のプロトンを与
えてイオン対を形成すればよく、有機化合物(C)の具
体的な例としては、酢酸、トリフルオロ酢酸、安息香酸
及び安息香酸の芳香核に官能基を有するもの、フタル
酸、トリメリト酸、ポリアクリル酸などの各種高分子化
したカルボン酸、イソシアヌル酸、1,2,3−ベンゾト
リアゾールなどが例示でき、中でもカルボン酸類、イソ
シアヌル酸が特に好ましい。
The salt (D) of DBU which is a curing accelerator and the organic compound (C) forms an ion pair when the organic compound (C) which donates a proton to DBU gives at least one proton. As a specific example of the organic compound (C), acetic acid, trifluoroacetic acid, benzoic acid, and those having a functional group in the aromatic nucleus of benzoic acid, phthalic acid, trimellitic acid, polyacrylic acid, and other various compounds Examples thereof include molecularized carboxylic acids, isocyanuric acid, and 1,2,3-benzotriazole. Among them, carboxylic acids and isocyanuric acid are particularly preferable.

【0009】更に、この硬化促進剤(D)の添加量はエ
ポキシ樹脂(A)及びフェノール樹脂(B)の総重量1
00重量部に対し、0.5重量部以上20重量部以下が
好ましい。0.5重量部より少ないと硬化性の低下を生
じ、20重量部より多いと硬化が速すぎて成形時に未充
填不良などの問題が生ずる。
Further, the amount of the curing accelerator (D) added is 1 total weight of the epoxy resin (A) and the phenol resin (B).
It is preferably 0.5 parts by weight or more and 20 parts by weight or less with respect to 00 parts by weight. If the amount is less than 0.5 parts by weight, the curability will be deteriorated, and if the amount is more than 20 parts by weight, the curing will be too fast and problems such as unfilling failure will occur during molding.

【0010】本発明に用いられる無機充填剤はアルミ
ナ、溶融シリカ、結晶シリカ、クレー、タルクなどが例
示されるが、特にこれらに限定されるものではない。こ
の無機充填剤(E)の添加量は、樹脂成分(A)、
(B)の総重量100重量部に対し、40重量部以上2
400重量部以下が好ましく、40重量部より少ないと
成形材料にした場合、強度の低下を招くなどの問題が生
じ、2400重量部より多いと流動性が低下し、成形時
に未充填不良などの問題が生ずる。
Examples of the inorganic filler used in the present invention include alumina, fused silica, crystalline silica, clay and talc, but the inorganic filler is not particularly limited thereto. The amount of the inorganic filler (E) added is the resin component (A),
40 parts by weight or more based on 100 parts by weight of (B) 2
It is preferably 400 parts by weight or less, and when it is less than 40 parts by weight, it causes a problem such as a decrease in strength when it is used as a molding material, and when it is more than 2400 parts by weight, fluidity deteriorates and a problem such as unfilling failure during molding occurs Occurs.

【0011】[0011]

【作用】本発明に用いられるDBUと有機化合物(C)
との塩(D)はDBUに対して有機化合物(C)が少な
くとも1個のプロトンを供与してイオン対を形成したも
のであるが、この硬化促進剤(D)は常温においてはD
BUと有機化合物(C)のイオン対(塩)が安定に存在
しており、DBUの触媒作用を抑制し、高温にさらされ
る成形時にはこのイオン対がすみやかに解離し、DBU
が活性化し、硬化を促進する作用を有するものである。
この硬化促進剤(D)はエポキシ樹脂(A)、フェノー
ル樹脂(B)の総重量100重量部に対し、0.5重量
部以上20重量部以下が好ましく、0.5重量部より少
ないと硬化性の低下を生じ、20重量部より多いと硬化
が速すぎて成形時に流動性の低下により、未充填不良な
どの問題が生ずる。
[Function] DBU and organic compound (C) used in the present invention
The salt (D) with and the organic compound (C) donates at least one proton to DBU to form an ion pair, and the curing accelerator (D) is D at room temperature.
The ion pair (salt) of BU and the organic compound (C) is stably present, which suppresses the catalytic action of DBU and promptly dissociates during molding when exposed to high temperature.
Is activated and has an action of promoting curing.
The curing accelerator (D) is preferably 0.5 parts by weight or more and 20 parts by weight or less, and less than 0.5 parts by weight with respect to 100 parts by weight of the total weight of the epoxy resin (A) and the phenol resin (B). If the amount is more than 20 parts by weight, the curing will be too fast and the fluidity will decrease during molding, resulting in problems such as unfilling failure.

【0012】[0012]

【実施例】以下、本発明を実施例により更に具体的に説
明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0013】(合成例1)冷却管をつけた200ml丸底
フラスコにN,N−ジメチルホルムアミド(DMF)6
0g、テレフタル酸3.27gを入れ、完全に溶解した
ところでDBU3.0gをゆっくりと滴下した。滴下途
中から白色結晶が生成し始めた。DBU滴下終了後1時
間反応させ、内容物を濾過、トルエンで洗浄し、80℃
で真空乾燥させ、DBUとテレフタル酸の塩(以下DB
U−TPAと略す)を得た。
(Synthesis Example 1) N, N-dimethylformamide (DMF) 6 was added to a 200 ml round bottom flask equipped with a cooling tube.
0 g and 3.27 g of terephthalic acid were added, and when completely dissolved, 3.0 g of DBU was slowly added dropwise. White crystals started to form during the dropping. After the addition of DBU was completed, the reaction was allowed to proceed for 1 hour.
Vacuum dried in DBU and terephthalic acid salt (hereinafter DB
U-TPA) was obtained.

【0014】(合成例2)冷却管をつけた3つ口セパラ
ブルフラスコにテトラヒドロフラン150g、3,5−
ジニトロ安息香酸15.0gを入れ、完全に溶解したと
ころでDBU10.8gをゆっくりと滴下した。析出し
た塩を濾過し、80℃で真空乾燥させ、DBUと3,5
−ジニトロ安息香酸の塩(以下DBU−DNBAと略
す)を得た。
(Synthesis Example 2) 150 g of tetrahydrofuran and 3,5-tetrahydrofuran were placed in a three-neck separable flask equipped with a cooling tube.
15.0 g of dinitrobenzoic acid was added, and when completely dissolved, 10.8 g of DBU was slowly added dropwise. The precipitated salt was filtered and dried in vacuum at 80 ° C.
A salt of dinitrobenzoic acid (hereinafter abbreviated as DBU-DNBA) was obtained.

【0015】(合成例3)冷却管をつけた3つ口丸底フ
ラスコにDMF120g、イソシアヌル酸5.16gを
入れ、90℃に加熱してイソシアヌル酸を完全に溶解さ
せた。その後、DBU6.08gをゆっくりと滴下し、
滴下終了後1時間撹拌し、その後撹拌を継続しながら、
徐々に室温まで冷却し、塩を析出させた。析出した塩を
濾過、トルエン洗浄し、80℃で真空乾燥させ、DBU
とイソシアヌル酸の塩(以下DBU−ICAと略す)を
得た。
(Synthesis Example 3) 120 g of DMF and 5.16 g of isocyanuric acid were placed in a three-necked round bottom flask equipped with a cooling tube and heated to 90 ° C. to completely dissolve isocyanuric acid. After that, 6.08 g of DBU was slowly dropped,
Stir for 1 hour after the completion of dropping, then continue stirring,
It was gradually cooled to room temperature to precipitate a salt. The precipitated salt was filtered, washed with toluene, and vacuum dried at 80 ° C. to obtain DBU.
And a salt of isocyanuric acid (hereinafter abbreviated as DBU-ICA) were obtained.

【0016】(実施例1)軟化点が65℃でエポキシ当
量210のオルソクレゾールノボラックエポキシ(日本
化薬(株)製EOCN−1025−65)67部(以下
重量部をすべて部と略す)、軟化点が105℃で水酸基
当量104のフェノールノボラック(住友デュレズ
(株)製PR−51470)33部、硬化促進剤として
合成例1で得たDBU−TPA1.7部、溶融シリカ3
00部、カルナバワックス2部を配合し、熱ロールで9
0℃5分間混練して成形材料を得た。この成形材料のト
ランスファー成形による175℃のスパイラルフローは
75cm、175℃60秒成形におけるバーコール硬度は
82であった。なお、スパイラルフローは流動性のパラ
メーターであり、値が大きい方が流れ性がよい。またバ
ーコール硬度は硬化性のパラメーターであり、値の大き
い方が硬化性がよい。
(Example 1) 67 parts of orthocresol novolac epoxy (EOCN-1025-65 manufactured by Nippon Kayaku Co., Ltd.) having a softening point of 65 ° C. and an epoxy equivalent of 210 (hereinafter, all parts by weight are abbreviated), and softened. 33 parts of phenol novolac (PR-51470 manufactured by Sumitomo Durez Co., Ltd.) having a hydroxyl equivalent of 104 at 105 ° C., 1.7 parts of DBU-TPA obtained in Synthesis Example 1 as a curing accelerator, fused silica 3
00 parts and 2 parts of carnauba wax are mixed, and 9 with a hot roll
The mixture was kneaded at 0 ° C. for 5 minutes to obtain a molding material. The spiral flow at 175 ° C. by transfer molding of this molding material was 75 cm, and the Barcol hardness in molding at 175 ° C. for 60 seconds was 82. The spiral flow is a fluidity parameter, and the larger the value, the better the fluidity. The Barcol hardness is a curability parameter, and the larger the value, the better the curability.

【0017】次にこの材料の25℃、6ケ月間保存後の
スパイラルフローを測定した。その結果、スパイラルフ
ローは71cmであり、フロー残存率(25℃6ケ月間
保存後フロー/初期フロー×100(%))は95%で
あった。
Next, the spiral flow of this material after storage at 25 ° C. for 6 months was measured. As a result, the spiral flow was 71 cm, and the flow residual rate (flow after storage for 6 months at 25 ° C./initial flow × 100 (%)) was 95%.

【0018】(実施例2)実施例1の硬化促進剤DBU
−TPA1.7部に替えて、硬化促進剤に合成例2で得
たDBU−DNBA2.5部使用する以外はすべて実施
例1と同様の操作で材料化した。この材料のスパイラル
フローは80cm、60秒のバーコール硬度は84であっ
た。また、25℃6ケ月間保存後のスパイラルフローは
77cmで、フロー残存率は96%であった。
(Example 2) The curing accelerator DBU of Example 1
-A material was prepared in the same manner as in Example 1 except that 2.5 parts of DBU-DNBA obtained in Synthesis Example 2 was used as the curing accelerator instead of 1.7 parts of TPA. This material had a spiral flow of 80 cm and a Barcol hardness of 84 at 60 seconds. The spiral flow after storage at 25 ° C for 6 months was 77 cm, and the residual flow rate was 96%.

【0019】(実施例3)実施例1の硬化促進剤DBU
−TPA1.7部に替えて、硬化促進剤に合成例3で得
たDBU−ICA2部使用する以外はすべて実施例1と
同様の操作で材料化した。この材料のスパイラルフロー
は69cm、60秒のバーコール硬度は81であった。ま
た、25℃6ケ月間保存後のスパイラルフローは67cm
で、フロー残存率は97%であった。
Example 3 Curing accelerator DBU of Example 1
In the same manner as in Example 1 except that 2 parts of DBU-ICA obtained in Synthesis Example 3 was used as the curing accelerator instead of 1.7 parts of -TPA, the material was made into a material. This material had a spiral flow of 69 cm and a Barcol hardness of 81 for 60 seconds. In addition, the spiral flow after storage at 25 ° C for 6 months is 67 cm.
The flow residual rate was 97%.

【0020】(実施例4)ビフェニル型エポキシである
油化シェルエポキシ(株)製YX−4000H 67部、
軟化点が95℃、水酸基当量103のフェノールノボラ
ック(住友デュレズ(株)製PR−51714)33部、
硬化促進剤として合成例1で得たDBU−TPA 3.
4部、溶融シリカ2300部を使用する以外は実施例1
と同様の操作で材料化した。この材料のスパイラルフロ
ーは55cm、60秒のバーコール硬度は62であった。
また、25℃6ケ月間保存後のスパイラルフローは51
cmで、フロー残存率は93%であった。
(Example 4) 67 parts of YX-4000H manufactured by Yuka Shell Epoxy Co., Ltd., which is a biphenyl type epoxy,
33 parts of phenol novolac (PR-51714 manufactured by Sumitomo Durez Co., Ltd.) having a softening point of 95 ° C. and a hydroxyl equivalent of 103,
DBU-TPA obtained in Synthesis Example 1 as a curing accelerator.
Example 1 except that 4 parts and 2300 parts of fused silica are used.
It was made into a material by the same operation as. This material had a spiral flow of 55 cm and a Barcol hardness of 62 at 60 seconds.
The spiral flow after storage at 25 ° C for 6 months is 51
In cm, the residual flow rate was 93%.

【0021】(比較例1)実施例1のフェノールノボラ
ック33部、硬化促進剤DBU−TPA1.7部に替え
て、フェノールノボラック31.1部、硬化促進剤にD
BU30%含有フェノールノボラック2.7部(サンア
プロ(株)製SA841)を使用する以外はすべて実施
例1と同様の操作で材料化した。この材料のスパイラル
フローは73cm、60秒のバーコール硬度は70であっ
た。また、25℃6ケ月間保存後のスパイラルフローは
49cmで、フロー残存率は67%であった。
(Comparative Example 1) In place of 33 parts of the phenol novolac of Example 1 and 1.7 parts of the curing accelerator DBU-TPA, 31.1 parts of phenol novolac and D of the curing accelerator were used.
A material was prepared in the same manner as in Example 1 except that 2.7 parts of BU30% phenol novolac (SA841 manufactured by San-Apro Co., Ltd.) was used. This material had a spiral flow of 73 cm and a Barcol hardness of 70 for 60 seconds. The spiral flow after storage at 25 ° C for 6 months was 49 cm, and the residual flow rate was 67%.

【0022】(比較例2)実施例1の硬化促進剤DBU
−TPA1.7部に替えて、硬化促進剤にトリフェニル
ホスフィン(TPPと略す)0.8部使用する以外はす
べて実施例1と同様の操作で材料化した。この材料のス
パイラルフローは78cm、60秒のバーコール硬度は7
3であった。また、25℃6ケ月間保存後のスパイラル
フローは55cmで、フロー残存率は71%であった。
Comparative Example 2 Curing accelerator DBU of Example 1
In the same manner as in Example 1 except that 0.8 part of triphenylphosphine (abbreviated as TPP) was used as a curing accelerator in place of 1.7 parts of TPA, a material was prepared. This material has a spiral flow of 78 cm and a Barcol hardness of 60 seconds of 7
It was 3. The spiral flow after storage at 25 ° C for 6 months was 55 cm, and the residual flow rate was 71%.

【0023】(比較例3)実施例1のオルソクレゾール
ノボラックエポキシ67部、フェノールノボラック33
部に替えて、オルソクレゾールノボラックエポキシ30
部、フェノールノボラック70部使用する以外はすべて
実施例1と同様の操作で材料化した。この材料のスパイ
ラルフローを測定しようとしたが、硬化不良で測定不能
であった。
(Comparative Example 3) 67 parts of orthocresol novolak epoxy of Example 1 and 33 of phenol novolac
Orthocresol novolak epoxy 30
Parts and 70 parts of phenol novolac were used, and the same procedure as in Example 1 was carried out. An attempt was made to measure the spiral flow of this material, but it could not be measured due to poor curing.

【0024】(比較例4)実施例1の硬化促進剤DBU
−TPA1.7部に替えて、硬化促進剤にDBU−TP
Aを30部使用する以外はすべて実施例1と同様の操作
で材料化したが、硬化が速すぎ成形不能であった。
Comparative Example 4 Curing accelerator DBU of Example 1
-In place of 1.7 parts of TPA, DBU-TP was used as a curing accelerator.
All were made into a material by the same operation as in Example 1 except that 30 parts of A was used, but the curing was too fast and molding was impossible.

【0025】(比較例5)実施例1の溶融シリカ300
部に替えて、溶融シリカを2500部使用する以外はす
べて実施例1と同様の操作で材料化したが、流動性がほ
とんどなく成形不能であった。
(Comparative Example 5) Fused silica 300 of Example 1
The material was made into a material by the same operation as in Example 1 except that 2500 parts of fused silica was used instead of parts, but it had almost no fluidity and could not be molded.

【0026】実施例1〜4、比較例1〜5の結果をまと
めて表1に示す。
The results of Examples 1 to 4 and Comparative Examples 1 to 5 are summarized in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明による樹脂組成物は硬化性に優
れ、かつ常温における保存性が非常によく、本発明によ
る樹脂組成物を電子、電気部品用材料として用いれば、
冷蔵保存、冷蔵輸送が不要になるなど産業へのメリット
は大きい。
The resin composition according to the present invention has excellent curability and very good storage stability at room temperature. When the resin composition according to the present invention is used as a material for electronic and electric parts,
There are great advantages for the industry, such as refrigeration storage and refrigeration transportation are unnecessary.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1分子内にエポキシ基を2個以上有する
エポキシ樹脂(A)と1分子内にフェノール性水酸基を
2個以上有するフェノール樹脂(B)において、エポキ
シ基のフェノール性水酸基に対する当量比が0.5以上
2以下であり、更に硬化促進剤として、1,8−ジアザ
ビシクロ[5,4,0]−7−ウンデセン(以下DBUと
略す)とこのDBUにプロトンを少なくとも1個与えて
DBUとイオン対を形成する有機化合物(C)とからな
る塩(D)を、(A)+(B)100重量部に対し、
0.5重量部以上20重量部以下を含有し、更に無機充
填剤(E)が(A)+(B)100重量部に対し、40
重量部以上2400重量部以下含有されてなる樹脂組成
物。
1. In an epoxy resin (A) having two or more epoxy groups in one molecule and a phenol resin (B) having two or more phenolic hydroxyl groups in one molecule, the equivalent ratio of epoxy groups to phenolic hydroxyl groups. Is 0.5 or more and 2 or less, and further 1,8-diazabicyclo [5,4,0] -7-undecene (hereinafter abbreviated as DBU) as a curing accelerator and at least one proton is given to this DBU. And a salt (D) consisting of an organic compound (C) forming an ion pair with 100 parts by weight of (A) + (B),
The content of the inorganic filler (E) is 0.5 parts by weight or more and 20 parts by weight or less and 40 parts by weight based on 100 parts by weight of (A) + (B).
A resin composition containing at least 2400 parts by weight.
【請求項2】 請求項1の有機化合物(C)が1分子内
にカルボキシル基を少なくとも1個有するカルボン酸で
ある請求項1記載の樹脂組成物。
2. The resin composition according to claim 1, wherein the organic compound (C) according to claim 1 is a carboxylic acid having at least one carboxyl group in one molecule.
【請求項3】 請求項1の有機化合物(C)がイソシア
ヌル酸である請求項1記載の樹脂組成物。
3. The resin composition according to claim 1, wherein the organic compound (C) according to claim 1 is isocyanuric acid.
JP13981694A 1993-11-16 1994-06-22 Resin composition Pending JPH07188395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13981694A JPH07188395A (en) 1993-11-16 1994-06-22 Resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28704793 1993-11-16
JP5-287047 1993-11-16
JP13981694A JPH07188395A (en) 1993-11-16 1994-06-22 Resin composition

Publications (1)

Publication Number Publication Date
JPH07188395A true JPH07188395A (en) 1995-07-25

Family

ID=26472519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13981694A Pending JPH07188395A (en) 1993-11-16 1994-06-22 Resin composition

Country Status (1)

Country Link
JP (1) JPH07188395A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495270B1 (en) 1998-02-19 2002-12-17 Hitachi Chemical Company, Ltd. Compounds, hardening accelerator, resin composition, and electronic part device
JP2003048958A (en) * 2001-08-07 2003-02-21 Kyocera Chemical Corp Epoxy resin composition and device for sealing semiconductor
JP2006137809A (en) * 2004-11-10 2006-06-01 Nichias Corp Conductive epoxy resin composition and its manufacturing method
JP2012058725A (en) * 2010-08-10 2012-03-22 Jsr Corp Radiation-sensitive resin composition, cured film, method for forming cured film, color filter and method for forming color filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495270B1 (en) 1998-02-19 2002-12-17 Hitachi Chemical Company, Ltd. Compounds, hardening accelerator, resin composition, and electronic part device
JP2003048958A (en) * 2001-08-07 2003-02-21 Kyocera Chemical Corp Epoxy resin composition and device for sealing semiconductor
JP2006137809A (en) * 2004-11-10 2006-06-01 Nichias Corp Conductive epoxy resin composition and its manufacturing method
JP2012058725A (en) * 2010-08-10 2012-03-22 Jsr Corp Radiation-sensitive resin composition, cured film, method for forming cured film, color filter and method for forming color filter

Similar Documents

Publication Publication Date Title
JP4163162B2 (en) Latency catalyst for epoxy resin, epoxy resin composition and semiconductor device
JP5164076B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP4367046B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
JP4128420B2 (en) Hardener composition for epoxy resin, epoxy resin composition using the hardener composition, and semiconductor device
JPH07188395A (en) Resin composition
JP3173755B2 (en) Resin composition
JPH0892355A (en) Resin composition
JPH07228670A (en) Resin composition
JPH0841290A (en) Resin composition
JPH0834834A (en) Resin composition
JP4240976B2 (en) Curing accelerator, method for producing curing accelerator, epoxy resin composition, and semiconductor device
JP3585615B2 (en) Epoxy resin composition for semiconductor encapsulation
JP5261880B2 (en) Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JP4341261B2 (en) Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device
JPH0892356A (en) Resin composition
JP2939166B2 (en) Latent catalyst and thermosetting resin composition containing the catalyst
JP4538972B2 (en) Epoxy resin composition and semiconductor device
JP4622025B2 (en) Epoxy resin composition and semiconductor device
JP4128430B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
JP4244662B2 (en) Thermosetting resin composition and semiconductor device using the same
JPH10176035A (en) Epoxy resin composition for sealing semiconductor device
JP2000319359A (en) Thermosetting resin composition
JP2000212397A (en) Epoxy resin composition and semiconductor apparatus
JP2004256729A (en) Epoxy resin composition and sealed semiconductor device