JPH08326109A - Water supply direct-connection water service system - Google Patents

Water supply direct-connection water service system

Info

Publication number
JPH08326109A
JPH08326109A JP13651895A JP13651895A JPH08326109A JP H08326109 A JPH08326109 A JP H08326109A JP 13651895 A JP13651895 A JP 13651895A JP 13651895 A JP13651895 A JP 13651895A JP H08326109 A JPH08326109 A JP H08326109A
Authority
JP
Japan
Prior art keywords
pressure
water
water supply
pump
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13651895A
Other languages
Japanese (ja)
Other versions
JP3287528B2 (en
Inventor
Koichi Sato
幸一 佐藤
Hiroshi Kunii
寛 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13651895A priority Critical patent/JP3287528B2/en
Publication of JPH08326109A publication Critical patent/JPH08326109A/en
Application granted granted Critical
Publication of JP3287528B2 publication Critical patent/JP3287528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE: To realize stabel supply by decreasing the start frequency of a pump in a water line direct connection water service system. CONSTITUTION: A second pressure sensor 7 provided at a suction pipe 2 connected to a water main 1 and a first pressure sensor 18 provided at a water feed pipe 20 are compared with each other, and by means of a controller 21, a pump is stopped in a case in which the origin pressure of the water main 1 has become, at discharge side required pressure, for more than a fixed time higher than a value that considers resistance between both pressure sensors 7, 18, and the pump is started again in a case in which the pressure of the water main 1 has become lower than a target pressure. After this condition has been realized, whether or not a small water amount use state exists is decided, and the pump is stooped in the case of a small water amount state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は配水管の水を末端給水栓
に自動的に給水する水道直結給水システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply system directly connected to a water supply system for automatically supplying water from a water distribution pipe to an end water tap.

【0002】[0002]

【従来の技術】例えば、水道配水管の水は元圧(静水
圧)がかかっているので、この元圧によって二階建の建
築物の末端給水栓には給水することが可能であることを
目標にしているが三階建以上の中高層建築物になると、
前記元圧だけでは不足して末端給水栓に給水することが
できないことがある。そこで、配水管からの水を一旦受
水槽に入れ、この受水槽から前記建築物の屋上に設けら
れた高置水槽から各階の末端給水栓へ自然流下によって
給水している。あるいは、一旦、受水槽に入れられた水
を加圧ポンプによって末端給水栓に直接給水していた。
しかし、最近、水道本管の圧力を利用すると共に、不衛
生な受水槽を排除するために、給水装置を同本管に直結
して給水する検討が始められている。この公知例に特願
平3−30560号(特開平4−330127号公報)
がある。
2. Description of the Related Art For example, since the water in a water pipe is under original pressure (hydrostatic pressure), it is possible to supply water to the end water tap of a two-story building by this original pressure. However, when it comes to middle- and high-rise buildings with three or more stories,
There is a case where it is not possible to supply water to the terminal hydrant due to the insufficient pressure alone. Therefore, the water from the water distribution pipe is once put in a water receiving tank, and from this water receiving tank, the water is supplied from the elevated water tank provided on the roof of the building to the terminal water tap on each floor by natural flow. Alternatively, the water once put in the water receiving tank was directly supplied to the terminal water tap by a pressure pump.
However, recently, in order to use the pressure of the water main and eliminate an unsanitary water receiving tank, studies have begun to directly connect a water supply device to the main to supply water. Japanese Patent Application No. 3-30560 (Japanese Patent Application Laid-Open No. 4-330127)
There is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術によれば以下の問題点があった。 (1)電動ポンプより上流側の配水管元圧が、最低圧以
上から所定圧以下の範囲か及び、前記ポンプより下流側
の吐出圧力が一定圧に等しいかを判定して、ポンプを作
動させるために、実際の制御においては所定圧に不感帯
があり、負荷使用量が相当多い場合でも吐出圧が所定圧
に等しくなっており、負荷使用水量が多い場合には、ポ
ンプ停止後、即、始動し、以下始動、停止を繰返してポ
ンプの始動頻度が高くなりモータ及びこれの駆動手段が
摩耗劣化する。さらに、駆動手段はインバータ等であ
り、一般的なじか入れ始動方式と比べると応答性がよく
ないため、始動時に一時的に給水圧が低下する。
However, the prior art has the following problems. (1) Operate the pump by determining whether the source pressure of the water distribution pipe upstream of the electric pump is in the range from the minimum pressure to a predetermined pressure or less and whether the discharge pressure downstream of the pump is equal to a constant pressure. Therefore, in the actual control, there is a dead zone at the predetermined pressure, the discharge pressure is equal to the predetermined pressure even when the load usage amount is considerably large, and when the load water usage amount is large, the pump is started immediately after stopping. However, after that, starting and stopping are repeated and the frequency of starting the pump increases, and the motor and its driving means wear and deteriorate. Further, the drive means is an inverter or the like, and the response is not good as compared with a general direct insertion start method, so that the water supply pressure temporarily decreases at the time of start.

【0004】(2)元圧及び吐出圧を検出する圧力セン
サをそれぞれ設けてあるが、両者間にはポンプ、弁類特
に、直結給水システムでは負荷側からの逆流による汚染
防止のため吸込側に逆流防止弁が設置することとされて
おり、これの抵抗損失が大きくなっている(例えば、減
圧式では10m程度の抵抗損失を有するものもある)等
抵抗体があるが、これの抵抗損失が配慮されておらず、
(1)の始動時給水圧力一瞬低下原因にもなっている。
そこで、本発明は配水管の元圧が十分なときには、この
元圧エネルギーを利用し、さらに、ポンプを停止させる
際には負荷側の使用状態及び前記した抵抗損失を考慮し
て、受水槽の設置は不要となるようにして、この水道直
結給水システムの維持費を安くするとともに安全衛生上
において問題のない水道直結給水システムを提供するこ
とを目的とする。
(2) Pressure sensors for detecting the source pressure and the discharge pressure are provided respectively. Between them, a pump, valves, etc., especially on the suction side for preventing pollution due to backflow from the load side in a direct connection water supply system. A check valve is supposed to be installed, and the resistance loss of the check valve is large (for example, some pressure reducing types have a resistance loss of about 10 m). Not being considered,
It is also a cause of a momentary drop in the water supply pressure at the start of (1).
Therefore, in the present invention, when the source pressure of the water distribution pipe is sufficient, this source pressure energy is utilized, and when the pump is stopped, the usage state on the load side and the resistance loss described above are taken into consideration, and It is an object of the present invention to provide a water supply system directly connected to the water supply which does not need to be installed, reduces the maintenance cost of the water supply system directly connected to the water supply, and has no problem in health and safety.

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために、本発明にあっては、配水管の水を末端給水栓
へ給水する給水管と、この給水管の途中に介設され前記
末端給水栓へ水を吐出する少なくとも一つの電動ポンプ
と、この電動ポンプより上流側の給水管に配設され水源
の元圧を検知する元圧センサと、前記電動ポンプより下
流側の給水管に配設され、負荷側の過少水量使用状態を
検出する過少水量検出手段と吐出圧を検知する吐出圧セ
ンサと、検知された元圧が最低圧以上から所定圧以下の
範囲内及び次の条件を満足したときに、前記電動ポンプ
を作動させるための信号を出力する制御手段からの信号
に基づいて、可変電力を前記電動ポンプに指定して供給
する駆動手段とを備えた構成としたものである。
In order to achieve such an object, according to the present invention, a water supply pipe for supplying water from a water distribution pipe to an end water tap and an intermediate water supply pipe are provided. At least one electric pump that discharges water to the terminal water tap, a source pressure sensor that is arranged in a water supply pipe upstream of the electric pump and detects a source pressure of a water source, and a water supply pipe downstream of the electric pump. Is installed in the load side, an excessive water amount detecting means for detecting the usage state of the excessive water amount on the load side, a discharge pressure sensor for detecting the discharge pressure, and a detected original pressure within the range from the minimum pressure to the predetermined pressure and the following conditions. When the above condition is satisfied, a drive means for designating and supplying variable electric power to the electric pump based on a signal from a control means for outputting a signal for operating the electric pump is provided. is there.

【0006】そして、 (1)元圧センサが吐出圧力センサの検出値に、両セン
サ間の使用水量に応じた抵抗損失を加えた値を検出した
ときにポンプ停止信号を発する。 (2)元圧センサの検出値をP1、吐出センサ検出値を
2、両センサ間の使用水量に応じた抵抗損失をPfと
したときに、P1−P2≧Pfの条件が成立したらポンプ
停止信号を発する。 (3)これらの停止条件(1)又は(2)に過少水量検
出手段が過少水量を検出した条件が加わっていること。 (4)吐出圧と元圧とが等しくなり、過少水量検出手段
が過少水量を検出したときに停止信号を発する。 即ち、元圧始動条件と吐出圧始動条件が共に成立したと
きにポンプは始動し、元圧停止条件と吐出圧停止条件と
が共に成立したときにポンプは停止するようにしたもの
である。
(1) When the source pressure sensor detects a value obtained by adding resistance loss according to the amount of water used between the two to the detection value of the discharge pressure sensor, a pump stop signal is issued. (2) When the detected value of the source pressure sensor is P 1 , the detected value of the discharge sensor is P 2 , and the resistance loss according to the amount of water used between both sensors is Pf, the condition of P 1 -P 2 ≧ Pf is satisfied. Then, the pump stop signal is issued. (3) In addition to these stop conditions (1) or (2), the condition that the excessive water amount detecting means detects the excessive water amount is added. (4) When the discharge pressure becomes equal to the original pressure and the excessive water amount detecting means detects the excessive water amount, a stop signal is issued. That is, the pump is started when both the source pressure starting condition and the discharge pressure starting condition are satisfied, and the pump is stopped when both the source pressure stop condition and the discharge pressure stop condition are satisfied.

【0007】[0007]

【作用】[Action]

1)制御手段は元圧を検知し、この元圧が吐出側所定圧
力と元圧センサから吐出圧センサに到るまでの各給水器
具の抵抗損失を加えた値以上か判定し、判定した結果が
それ以上であればポンプを停止させる信号を発する。 2)制御手段は元圧と吐出圧を検知し、元圧と吐出圧と
の差圧が両者間の各給水器具の抵抗損失以上か判定し、
判定した結果がそれ以上であればポンプを停止させる信
号を発する。 3)さらに上記1)、2)の元圧による停止条件が成立
した後、流量スイッチの動作を判定し、使用水量が少な
いときに停止信号を発する。 4)元圧センサが給水制限圧力を検知した場合には、元
圧がこれを越えるまで現状のポンプ運転速度でロックす
る信号をインバータに出力する。
1) The control means detects the original pressure and determines whether the original pressure is equal to or more than the sum of the discharge side predetermined pressure and the resistance loss of each water supply device from the source pressure sensor to the discharge pressure sensor. If is higher than that, it issues a signal to stop the pump. 2) The control means detects the source pressure and the discharge pressure, and determines whether the pressure difference between the source pressure and the discharge pressure is equal to or more than the resistance loss of each water supply device between them.
If the judged result is more than that, a signal for stopping the pump is issued. 3) Further, after the stop conditions by the source pressure in 1) and 2) above are satisfied, the operation of the flow rate switch is determined, and a stop signal is issued when the amount of water used is small. 4) When the source pressure sensor detects the water supply limiting pressure, it outputs to the inverter a signal that locks at the current pump operating speed until the source pressure exceeds this.

【0008】[0008]

【実施例】以下、本発明の実施例を図1から図11によ
り説明する。本発明の第1の実施例を図1から図8によ
り説明する。ここで、図1は、本発明に係る水道直結給
水システムの実施例を示す全体構成図、図2は、流入圧
力(元圧)の各設定圧力を示すグラフ、図3は、ポンプ
吐出圧が一定制御方式の一例を示すグラフ、図4は、ポ
ンプ末端圧が一定制御方式の一例を示すグラフ、図5は
元圧センサ位置から吐出圧センサ位置に到るまでの各器
具類の抵抗損失を示すグラフ、図6は、本発明に係る水
道直結給水システムの制御回路図、図7,図8は、本発
明の実施例の作動を示すフローチャートである。本実施
例は、水道本管1に接続された吸込管2から分岐した複
数本の流路と、上記流路の各々にそれぞれ設けられたポ
ンプ10,11とポンプ10,11の上流側と下流側で
この流路にそれぞれ設けられた仕切り弁8,9,16,
17と、下流側の仕切り弁16,17の下流側で複数本
の流路を一つにまとめるよう接続された給水管20と、
給水管20に設けられた第1の圧力センサ18及び圧力
タンク19と、吸込管2に設けられた第2の圧力センサ
7と、複数台のポンプ10,11を制御する制御装置を
備えている。さらに、吸込管2と給水管20とは途中に
逆止め弁101を配設したバイパス管102を備えてい
る。
Embodiments of the present invention will be described below with reference to FIGS. A first embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is an overall configuration diagram showing an embodiment of a direct water supply system for water supply according to the present invention, FIG. 2 is a graph showing each set pressure of inflow pressure (source pressure), and FIG. FIG. 4 is a graph showing an example of a constant control method, FIG. 4 is a graph showing an example of a constant control method of pump end pressure, and FIG. 5 is a graph showing resistance loss of each instrument from the position of the original pressure sensor to the position of the discharge pressure sensor. The graph shown in FIG. 6 is a control circuit diagram of the water supply system directly connected to the water supply according to the present invention, and FIGS. 7 and 8 are flowcharts showing the operation of the embodiment of the present invention. In this embodiment, a plurality of flow paths branched from a suction pipe 2 connected to a water mains 1, and pumps 10 and 11 provided in each of the flow paths and upstream and downstream sides of the pumps 10 and 11 are provided. The sluice valves 8, 9, 16, which are respectively installed on this side in this flow path.
17, and a water supply pipe 20 connected downstream of the sluice valves 16 and 17 on the downstream side so as to combine a plurality of flow paths into one
A first pressure sensor 18 and a pressure tank 19 provided on the water supply pipe 20, a second pressure sensor 7 provided on the suction pipe 2, and a control device for controlling the plurality of pumps 10 and 11 are provided. . Further, the suction pipe 2 and the water supply pipe 20 are provided with a bypass pipe 102 in which a check valve 101 is arranged in the middle thereof.

【0009】この制御装置21は水道管の元圧が吐き出
し側所要圧力に、両圧力センサ間の抵抗を考慮した値よ
り一定時間以上高くなった場合には上記ポンプを停止さ
せ、前記水道本管の圧力が目標圧力以下に低下したら上
記ポンプを再始動させるように構成されたものである。
さらに、負荷側の給水圧力低下防止のために、前記条件
が成立した後、少水量使用状態かどうかを判定し、少水
量状態の場合にはポンプを停止させるようにしたもので
ある。また、図6に示すように制御装置21は、ポンプ
10,11の速度を制御するインバータ26,27を備
え、水道本館の圧力が予め定めた給水制限圧力より低下
した場合にはこの圧力を越えて復帰するまで、現在の速
度でロックするようにしたものである。以下、詳細に説
明する。
The control device 21 stops the pump when the source pressure of the water pipe becomes higher than the pressure required on the discharge side for a certain time or more than the value considering the resistance between the pressure sensors, and the water main It is configured to restart the pump when the pressure of 1 drops below the target pressure.
Furthermore, in order to prevent a drop in the water supply pressure on the load side, it is determined whether or not a small amount of water is being used after the above conditions are met, and the pump is stopped in the case of a small amount of water. Further, as shown in FIG. 6, the control device 21 includes inverters 26 and 27 that control the speeds of the pumps 10 and 11, and when the pressure of the main water supply building falls below a predetermined water supply restriction pressure, this pressure is exceeded. It locks at the current speed until it returns. The details will be described below.

【0010】図1は本実施例の給水装置の構成を示す。
6は汚染防止の逆止め弁(逆流防止)、7はポンプ吸い
込み側の本管圧力を検出するための第2の圧力センサ、
同じく、18は送水管側の圧力を検出するための第1の
圧力センサ、8,9,16,17はそれぞれ仕切り弁、
14,15は逆止め弁、8,9はそれぞれ電動機12,
13によって駆動されるポンプ102は途中に逆止め弁
101を備えたバイパス管であり、前述したように水道
本管元圧が十分高い元圧のみで給水可能な際にはポンプ
を停止させこのバイパス管を通して給水する。19は内
部に空気留りを有する圧力タンク、23,24は少水量
使用状態を検出するための流量スイッチである。
FIG. 1 shows the structure of the water supply system of this embodiment.
6 is a check valve (prevention of backflow) for preventing pollution, 7 is a second pressure sensor for detecting the main pressure on the suction side of the pump,
Similarly, 18 is a first pressure sensor for detecting the pressure on the water pipe side, 8, 9, 16 and 17 are gate valves, respectively.
14 and 15 are check valves, 8 and 9 are electric motors 12,
The pump 102 driven by 13 is a bypass pipe provided with a check valve 101 in the middle thereof, and as described above, when the water main can be supplied only with sufficiently high source pressure, the pump is stopped and this bypass is bypassed. Supply water through a pipe. Reference numeral 19 is a pressure tank having an air trap inside, and numerals 23 and 24 are flow rate switches for detecting a small water usage state.

【0011】図6は、本実施例の給水装置の制御装置2
1の詳細を示し、PWは電源、23は配線用遮断器、2
4,25はそれぞれ電動機12,13を運転駆動するた
めの電磁接触器のコイルであり、24a,25aはその
主回路接点である。また、26,27は前記電動機1
2,13を運転駆動するためのインバータであり、4
5,46はインバータの各種設定(例えば、同インバー
タの運転速度範囲の下限値などの設定)を行うためのコ
ンソール(キー入力装置)である。N1,N2は後での
べるが同インバータの速度を指令する信号であり、28
a,29aと同じく運転指令信号であり、これのON時
に運転される。また、30はスイッチであり、これを閉
じることにより31の安定化電源ユニットが作動し、制
御電源が電源端子33に供給され自動運転の準備が完了
する。
FIG. 6 is a control device 2 of the water supply device of this embodiment.
1 shows the details, PW is a power source, 23 is a circuit breaker for wiring, 2
Reference numerals 4 and 25 are coils of an electromagnetic contactor for driving and driving the electric motors 12 and 13, respectively, and 24a and 25a are main circuit contacts thereof. Further, 26 and 27 are the electric motor 1
An inverter for driving 2 and 13
Reference numerals 5 and 46 are consoles (key input devices) for performing various settings of the inverter (for example, setting of the lower limit value of the operating speed range of the inverter). N1 and N2 are signals for instructing the speed of the inverter, which will be described later.
Similarly to a and 29a, it is an operation command signal and is operated when this is ON. Reference numeral 30 is a switch, and by closing this switch, the stabilizing power supply unit 31 is activated, control power is supplied to the power supply terminal 33, and preparation for automatic operation is completed.

【0012】34,35はそれぞれ前記したインバータ
に速度指令を発するためのD/A変換器などで構成され
るインターフェース、36はマイクロコンピューターの
CPUであり、37はRAM,ROMから成るメモリで
あり、38,39,40,41は入出力ポートである。
42,43は圧力や速度のデータを設定するためのスイ
ッチである。
Reference numerals 34 and 35 respectively denote an interface composed of a D / A converter for issuing a speed command to the above-mentioned inverter, 36 a CPU of a microcomputer, 37 a memory composed of a RAM and a ROM, 38, 39, 40 and 41 are input / output ports.
Reference numerals 42 and 43 are switches for setting pressure and speed data.

【0013】図2は設定データの例を示すもので、流入
側圧力の設定値a(最低圧力:ポンプ空転保護停止圧
力)、b(給水制限圧力)、c(流入圧力高停止圧力)
等を設定してある。尚、流入圧力高停止圧力cは図3を
用いた場合にはH0に圧力センサ間の抵抗を加えた値
に、図4を用いた場合には、前述のH0の代わりにH4
としている。さらに、詳細は後で述べるが図3に示す圧
力制御を行う場合の目標値である圧力H1(水量0の
点)、H4(水量Qイの点)、前述の流入側圧力の設定
値a,b,cなどの値をスイッチ42で設定し、同じく
運転速度ND、NAのデータをスイッチ43で設定しそ
れぞれPIO39,40を介してメモリに読み込む(R
AMに格納しておく)。当然ながら、このメモリMのR
OMには後述の通り、運転制御手順などのプログラムが
書き込まれているのは言うまでもない。尚、NDは初期
値であり予め設定しているものとする。
FIG. 2 shows an example of the set data. The set values of the inflow side pressure a (minimum pressure: pump idling protection stop pressure), b (water supply limit pressure), c (inflow pressure high stop pressure).
Etc. are set. The inflow pressure high stop pressure c is a value obtained by adding resistance between the pressure sensors to H0 when using FIG. 3, and when using FIG. 4, H4 is used instead of H0 described above.
And Further, as will be described later in detail, the pressures H1 (point of water amount 0), H4 (points of water amount Q), which are target values when performing the pressure control shown in FIG. Values such as b and c are set with the switch 42, data of operating speeds ND and NA are also set with the switch 43, and the data are read into the memory via the PIOs 39 and 40, respectively (R
Store it in AM). Naturally, the R of this memory M
Needless to say, programs such as operation control procedures are written in the OM as described later. Note that ND is an initial value and is set in advance.

【0014】また、44は第1及び、第2の圧力センサ
7,18の圧力信号をA/D変換して読み込むためのイ
ンターフェースであり、同様にして入力ポート41を介
してメモリ(RAM)に格納しておく。以上のようにし
て、制御装置CTLを構成する。
Reference numeral 44 is an interface for A / D converting the pressure signals of the first and second pressure sensors 7 and 18 to read them, and similarly to the memory (RAM) via the input port 41. Store it. The control device CTL is configured as described above.

【0015】図3は一般的な吐き出し圧力一定制御の場
合の運転特性図を示し、縦軸に全揚程H、横軸に水量Q
を取って示す。曲線A,B,C,Dは、運転速度は連続
であるがそれぞれ、速度をNA(最高速度)NB,N
C,ND(最低速度)と仮想した場合のポンプQ−H性
能であり、H0はこの際の吐き出し目標圧力である。
FIG. 3 shows an operating characteristic diagram in the case of a general constant discharge pressure control, in which the vertical axis is the total head H and the horizontal axis is the water amount Q.
Take and show. The curves A, B, C and D have continuous operating speeds, but the speeds are changed to NA (maximum speed) NB and N, respectively.
It is the pump Q-H performance when it is assumed to be C and ND (minimum speed), and H0 is the target discharge pressure at this time.

【0016】図4は同じく、一般的な末端圧力一定制御
方式の場合の運転特性図示し、図3と同一符号で示すも
のである。同図に於いて、曲線Eは送水管等の抵抗損失
曲線である。この方式では、使用水量がQイ,Qロ,Q
ハ,Qニと変化すると当然、インバータの運転速度はN
A,NB,NC,NDと変化しポンプの運転点は曲線E
上をイ,ロ,ハ,ニと変化する。また、図3,図4にお
いてQsは少水量検出センサ23,24の動作流量を示
し、これにより少ないと、例えばその接点を閉じ、これ
により若干多い水量で接点を開く。
Similarly, FIG. 4 is a diagram showing an operating characteristic in the case of a general constant end pressure control system, which is designated by the same reference numeral as FIG. In the figure, a curve E is a resistance loss curve of a water pipe or the like. In this method, the amount of water used is Q, Q, Q, Q
If it changes from C to Q, the operating speed of the inverter is N
A, NB, NC, ND changes and the operating point of the pump is curve E
The top changes to a, b, h, and d. Further, in FIGS. 3 and 4, Qs indicates the operating flow rate of the small water amount detection sensors 23 and 24. If the flow rate is small, Qs, for example, closes the contact point, thereby opening the contact point with a slightly larger water flow rate.

【0017】通常、ポンプの実揚程に対し配管抵抗が小
さいアパート、マンションなどの給水では吐き出し圧力
一定制御が使用されることが多い。実揚程に対して配管
抵抗が大きい送水管の長い場合には末端圧力一定制御が
使用される。これらの方式は給水系最適なものが選定さ
れ、前述した運転特性図にしたがって予めプログラミン
グした運転手順により運転制御される。
Normally, constant discharge pressure control is often used for water supply in apartments, condominiums, etc., where pipe resistance is small relative to the actual pump head. When the water pipe has a long pipe resistance with respect to the actual head, long terminal pressure constant control is used. An optimum water supply system is selected from these methods, and the operation is controlled according to the operation procedure programmed in advance according to the operation characteristic diagram described above.

【0018】ところで、図1に於いて、ポンプを運転せ
ず、水道本管元圧のみで給水することを考えると、逆止
め弁,ポンプ,仕切弁,配管類の抵抗損失を考慮せねば
ならないことは言うまでもない。即ち、吐出側圧力セン
サ18の元で負荷側の所定圧力(図3ではH0,図4で
はH4)を確保すると元圧センサ7の所では該センサ1
8の所で必要な所定圧力に前述の抵抗損失を加えた圧力
以上を確保しなければ十分な給水はできない。図5はこ
の抵抗損失を示したものであり、jは最大使用水量Qイ
時の抵抗損失であり、同様にKは過少水量Qsのときの
抵抗損失を示している。従来技術で述べたようにもし、
流入圧高停止圧力CをH0又はH4と等しく決めている
と、流入側圧力がCとなりポンプが停止すると、吐出側
圧力センサ18の所ではこの抵抗分だけCより圧力が低
下し、ポンプが即始動し、インチングする。あるいは高
所負荷側水栓では一時的に給水圧力が低下するのであ
る。
By the way, in FIG. 1, considering that the pump is not operated and water is supplied only by the main pressure of the water mains, it is necessary to consider the resistance loss of the check valve, the pump, the gate valve, and the piping. Needless to say. That is, when a predetermined pressure on the load side (H0 in FIG. 3, H4 in FIG. 4) is secured under the discharge side pressure sensor 18, the sensor 1 is detected at the source pressure sensor 7.
Sufficient water cannot be supplied unless a pressure equal to or higher than the above-mentioned resistance loss is added to the required pressure at 8 points. FIG. 5 shows this resistance loss, j is the resistance loss when the maximum amount of water used is Q, and similarly K is the resistance loss when the amount of water is too small Qs. As mentioned in the prior art,
If the inflow pressure high stop pressure C is set equal to H0 or H4, the inflow side pressure becomes C, and when the pump stops, the pressure at the discharge side pressure sensor 18 falls below this C by the amount of this resistance, and the pump immediately operates. Start and inching. Alternatively, the water pressure at the high-load side faucet temporarily drops.

【0019】そこで、図7に示すX枠に示すように、元
圧がC(吐出側所定圧力H0又はH4に抵抗損失Pfを
加算した値)以上となって、停止条件が成り立っている
か判定して停止させるようにしたものである。詳しく説
明するとステップS700で、運転するためのCPUの
初期設定を行い、ステップS701で図8に示すタイマ
割込処理へジャンプするための許可する。ステップS8
01では圧力センサ7で元圧を検出し、結果をメモリS
PDATAに格納する。同様にステップS802では圧
力センサ18によりポンプ吐出圧力を検出し、メモリD
PDATAに格納する。さらに、ステップS803では
流量スイッチ23,24の状態をチェックし、結果をメ
モリに格納し、ステップS804ではポンプ等の故障状
態を検出してメモリに格納し、ステップS805ではス
イッチ42,43で設定したデータを読み込み、それぞ
れメモリに格納する。この後、ステップS806で割込
処理からステップS702へ戻る。ステップS702で
は始動条件が確立しているか判定する。
Therefore, as shown in the X frame in FIG. 7, it is judged whether the stop condition is satisfied when the original pressure becomes equal to or higher than C (value obtained by adding the resistance loss Pf to the discharge side predetermined pressure H0 or H4). It is designed to be stopped. More specifically, in step S700, the CPU for driving is initialized, and in step S701, permission to jump to the timer interrupt process shown in FIG. 8 is granted. Step S8
In 01, the original pressure is detected by the pressure sensor 7, and the result is stored in the memory S
Store in PDATA. Similarly, in step S802, the pump discharge pressure is detected by the pressure sensor 18, and the memory D
Store in PDATA. Further, the states of the flow rate switches 23 and 24 are checked in step S803, the results are stored in the memory, the fault state of the pump or the like is detected and stored in the memory in step S804, and the switches 42 and 43 are set in step S805. Read data and store in memory respectively. After this, in step S806, the interrupt processing is returned to step S702. In step S702, it is determined whether the starting condition is established.

【0020】例えば図3,図4に於いて、給水圧力(ポ
ンプ吐出圧)がH3以下に下がるとステップS703で
ポンプを始動し、インバータ周波数がNDとなる信号を
出力する。次のステップS704では元圧(メモリSP
DATAに格納されている)が図2に示すb以上にある
か判定し、これ以上にあればステップS709へジャン
プし、そうでない場合には後で詳細に説明するがステッ
プS705へ進む。ステップS709でH4とH1とを
比較して、吐出圧力一定制御方式が末端圧力一定制御方
式か判定する。H4=H1=H0(図3,図4参照)で
あれば吐出圧力一定制御方式であり、ステップS714
へ進み、そうでなければステップS710へ進み、それ
ぞれの処理を実行する(ステップS710,ステップS
714)。
For example, in FIG. 3 and FIG. 4, when the water supply pressure (pump discharge pressure) falls below H3, the pump is started in step S703, and a signal indicating that the inverter frequency is ND is output. In the next step S704, the original pressure (memory SP
(Stored in DATA) is greater than or equal to b shown in FIG. 2, and if it is greater than or equal to b, the process jumps to step S709, and if not, the process proceeds to step S705, which will be described in detail later. In step S709, H4 and H1 are compared to determine whether the discharge pressure constant control method is the end pressure constant control method. If H4 = H1 = H0 (see FIG. 3 and FIG. 4), it means that the discharge pressure is constant and the step S714.
If not, the process proceeds to step S710 to execute each process (step S710, step S710).
714).

【0021】ステップS715では吐出圧力一定制御に
より前述した抵抗損失Pf=j(図5参照)と、末端圧
力一定制御ではステップS711でPf=(N)と図2
に示すように運転速度Nに基づく抵抗損失を与え、ステ
ップS712では元圧(SPDATA)がC(吐出圧力
一定制御方式の場合にはH0+j、末端圧力一定制御方
式の場合には目標値である曲線E上の圧力にf(N)
(Pf=f(N))を加えた値)より高いか確認し、高
ければステップS713へ、そうでなければステップS
716へ進み、ステップS713では元圧がCより高い
状態が△t時間継続したか確認し、継続していれば元圧
のみで十分給水が可能であるから、ステップS717へ
進みポンプの停止処理を実行する。ステップS712,
713での判定が元圧での給水が不可能な場合にはステ
ップS716以降の吐出側による通常の制御を行う。
In step S715, the above-mentioned resistance loss Pf = j (see FIG. 5) by the constant discharge pressure control and Pf = (N) in step S711 with the constant end pressure control are shown in FIG.
A resistance loss based on the operating speed N is given as shown in FIG. 7, and in step S712, the source pressure (SPDATA) is C (H0 + j in the case of the constant discharge pressure control method, and a target value in the case of the constant end pressure control method). F (N) for pressure on E
It is confirmed whether it is higher than (the value obtained by adding (Pf = f (N))).
Proceeding to step 716, in step S713, it is confirmed whether the state in which the original pressure is higher than C has continued for Δt time. If it continues, sufficient water can be supplied only by the original pressure. Run. Step S712
If it is determined in 713 that water cannot be supplied at the original pressure, normal control by the discharge side after step S716 is performed.

【0022】次に、圧力センサ7と18の圧力差が抵抗
損失以上となった場合にポンプを停止させる別の実施例
を図8により説明する。図8は図7に示すX部を変更し
たもので、ステップS900で元圧(メモリSPDAT
Aに格納されている)と吐出圧(メモリDPDATAに
格納されている)の差DELTAPを求め、次のステッ
プS901で前述した抵抗損失Pf以上となっているか
判定し、真値であれば図7での説明と同様にステップS
902で△t時間この状態が継続しているか判定し、継
続していれば元圧にて十分給水可能な状態であるからス
テップS903で、ポンプを停止させ、元圧で給水を行
う。これ以外については図7の説明と同じであるから説
明を省く。
Next, another embodiment in which the pump is stopped when the pressure difference between the pressure sensors 7 and 18 exceeds the resistance loss will be described with reference to FIG. FIG. 8 shows a modification of the X part shown in FIG. 7, and in step S900, the original pressure (memory SPDAT
(Stored in A) and discharge pressure (stored in the memory DPDATA), DELTAP is determined, and it is determined in the next step S901 whether or not the resistance loss Pf is greater than or equal to the above. As in step S
At 902, it is determined whether or not this state continues for Δt time. If it continues, it means that water can be sufficiently supplied at the original pressure. In step S903, the pump is stopped and water is supplied at the original pressure. Other than this, the description is omitted because it is the same as the description of FIG. 7.

【0023】以上のようにすれば従来技術で述べた、ポ
ンプがインチングする、一時的に水圧が低下するという
問題を解決することが可能である。これらの問題点を解
決し、さらに始動頻度を低く改良した実施例を図10に
より説明する。同図は図7又は図8で示した元圧が停止
条件を満足した後、水の使用状態が少ないときにポンプ
を停止させるようにするために、ステップS103をこ
れらとAND条件で挿入したものである。即ち、ステッ
プS100〜S102は図9の例を使用しており、元圧
での停止条件が成立した後、ステップS103で流量ス
イッチが動作しているか判定し、使用量が少なく(通常
10〜20l/mm以下)動作していれば次のステップ
S104でポンプを停止するものである。
By doing so, it is possible to solve the problems described in the prior art, such as the inching of the pump and the temporary decrease of the water pressure. An embodiment in which these problems are solved and the starting frequency is further improved will be described with reference to FIG. In the figure, after the source pressure shown in FIG. 7 or FIG. 8 satisfies the stop condition, step S103 is inserted under these conditions in order to stop the pump when the water usage condition is small. Is. That is, steps S100 to S102 use the example of FIG. 9, and after the stop condition at the original pressure is satisfied, it is determined in step S103 whether the flow rate switch is operating, and the usage amount is small (usually 10 to 20 l). / Mm or less) If it is operating, the pump is stopped in the next step S104.

【0024】このようにすればポンプが停止するのは元
圧のみで給水が可能で且つ、負荷側での水使用が殆どな
い時であるから、ポンプ始動頻度をさらに低減すること
が可能となる。さらに、従来技術で述べたように(図1
1参照)元圧によるポンプ停止圧力CをC=J0C=H
4)と選んだ場合も図10に示したように、使用水量が
極、少ないときのみポンプを停止させて元圧で給水する
ようにすれば前述した従来の問題点を解決することがで
きる。
In this way, the pump can be stopped only when the water is supplied by the original pressure and when there is almost no water used on the load side. Therefore, the pump start frequency can be further reduced. . Furthermore, as described in the prior art (see FIG.
1) Pump stop pressure C due to original pressure is C = J0C = H
In the case of selecting 4) as well, as shown in FIG. 10, the conventional problems described above can be solved by stopping the pump and supplying water at the original pressure only when the amount of water used is extremely small.

【0025】ところで、この水道管に直結した本給水方
式では、他の給水方式と比較して、給水制限時でも直結
した給水方式の方が優先的に使用され、不公平であると
の懸念がある。これを対策したものの実施例を図7によ
り説明する。即ち、同図ステップS705での元圧がb
以下かの判定でb以下と判定されると次ぎのステップS
705へ進む(図2参照)。ステップS705では元圧
がbを越えるまで現状のポンプ運転速度をロックするよ
う、インバータ(26又は27)の速度指令信号N1又
はN2の信号を出する。さらに、ステップS706以降
では元圧が図2に示す最低圧力a以下か判定し、そうで
あればポンプを空転保護のために停止させる。このよう
に給水制限圧力bを予め決めておき、これ以下に元圧が
下がった場合にはポンプの運転速度を現状速度でロック
するため給水が制限され、不公平感が解消する。
By the way, in this water supply system directly connected to the water pipe, the water supply system directly connected is preferentially used even when the water supply is restricted, as compared with other water supply systems, and there is a concern that it is unfair. is there. An example of a countermeasure against this will be described with reference to FIG. That is, the source pressure in step S705 in FIG.
If it is determined to be b or less by the following determination, the next step S
Proceed to 705 (see FIG. 2). In step S705, the speed command signal N1 or N2 of the inverter (26 or 27) is output so as to lock the current pump operating speed until the original pressure exceeds b. Further, after step S706, it is determined whether the source pressure is equal to or lower than the minimum pressure a shown in FIG. 2, and if so, the pump is stopped for idling protection. In this way, the water supply limiting pressure b is determined in advance, and when the source pressure falls below this, the operating speed of the pump is locked at the current speed, so the water supply is limited and the unfair feeling is eliminated.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば配
水管にかかっている元圧が吐出側所定圧力と元圧センサ
から吐出圧センサに到るまでの抵抗損失とを上回った際
に、あるいはこの条件と使用水量が少ないという条件と
で、元圧給水が可能と判断するようにしてあるため、元
圧の有するエネルギーを利用することができ、省エネル
ギーとなるばかりでなく、始動頻度が低く、一時的な給
水圧低下を未然に防ぐことが可能となり、安定給水がで
きる。また、受水槽の設置が不要となるので、安全衛生
管理やこのための高い人件費等が不要となり、したがっ
て、この水道直結給水システムの維持費を安くすること
ができるとともに安全衛生上においても問題はない。
As described above, according to the present invention, when the source pressure applied to the water pipe exceeds the predetermined pressure on the discharge side and the resistance loss from the source pressure sensor to the discharge pressure sensor. Or, with this condition and the condition that the amount of water used is small, it is judged that the source pressure water supply is possible, so the energy of the source pressure can be used, not only energy saving but also the starting frequency It is low, and it is possible to prevent a temporary decrease in water supply pressure, and stable water supply is possible. In addition, since it is not necessary to install a water tank, safety and hygiene management and high labor costs for this are unnecessary, and therefore maintenance costs for this direct water supply system can be reduced and there is a problem in terms of health and safety. There is no.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水道直結給水システムの実施例を
示す全体構成図。
FIG. 1 is an overall configuration diagram showing an embodiment of a water supply system directly connected to a water supply according to the present invention.

【図2】流入圧力(元圧)の各設定圧力を示すグラフ。FIG. 2 is a graph showing each set pressure of inflow pressure (original pressure).

【図3】ポンプ吐出圧が一定制御方式の一例を示すグラ
フ。
FIG. 3 is a graph showing an example of a control method in which the pump discharge pressure is constant.

【図4】ポンプ末端圧が一定制御方式の一例を示すグラ
フ。
FIG. 4 is a graph showing an example of a control method in which the pump end pressure is constant.

【図5】元圧センサ位置から吐出圧センサ位置に到るま
での各器具類の抵抗損失を示すグラフ。
FIG. 5 is a graph showing resistance loss of each device from the position of the original pressure sensor to the position of the discharge pressure sensor.

【図6】本発明に係る水道直結給水システムの制御回路
図。
FIG. 6 is a control circuit diagram of a water supply system directly connected to a water supply according to the present invention.

【図7】同上の各実施例の作動を示すフローチャート。FIG. 7 is a flowchart showing the operation of each of the above embodiments.

【図8】同上の各実施例の作動を示すフローチャート。FIG. 8 is a flowchart showing the operation of each of the above embodiments.

【図9】同上の各実施例の作動を示すフローチャート。FIG. 9 is a flowchart showing the operation of each of the above embodiments.

【図10】同上の各実施例の作動を示すフローチャー
ト。
FIG. 10 is a flowchart showing the operation of each of the above embodiments.

【図11】流入圧力(元圧)の各設定圧力を示すグラ
フ。
FIG. 11 is a graph showing each set pressure of the inflow pressure (original pressure).

【符号の説明】[Explanation of symbols]

1 水道本管 6,14,15 逆止め弁 7 吸込管2に備わる元圧センサ 18 吸込管2に備わる吐出圧センサ 10,11 ポンプ 19 圧力タンク 21 制御装置 26,27 インバータ 1 Water mains 6,14,15 Check valve 7 Source pressure sensor in suction pipe 18 Discharge pressure sensor in suction pipe 2, Pump 11 Pressure tank 21 Control device 26,27 Inverter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 配水管の水を末端給水栓へ給水する給水
管と、この給水管の途中に介設され前記末端給水栓へ水
を吐出する少なくとも一つの電動ポンプと、この電動ポ
ンプより上流側の給水管に配設され水源の元圧を検知す
る元圧センサと、前記電動ポンプより下流側の給水管に
配設され吐出圧を検知する吐出圧センサと、検知された
元圧が吐出側所要圧力と前記両圧力センサ間の抵抗を加
算した値以上となった時にポンプを停止して、配水管圧
力で直接給水し、検知された吐出圧力が所定の始動圧力
以下に下がったときに始動させるための信号を出力する
制御手段と、この制御手段からの信号に基づいて可変電
力を前記電動ポンプに指定して供給する駆動手段とを備
えたことを特徴とする水道直結給水システム。
1. A water supply pipe for supplying water from a water supply pipe to an end water tap, at least one electric pump interposed in the middle of the water supply pipe to discharge water to the end water tap, and an upstream of the electric pump. Side pressure sensor for detecting the source pressure of the water source, the discharge pressure sensor for detecting the discharge pressure, which is disposed on the downstream side of the electric pump, and the detected source pressure. When the required pressure on the side and the resistance between the two pressure sensors have been exceeded, the pump is stopped and water is directly supplied at the water pipe pressure, and when the detected discharge pressure falls below the specified starting pressure. A water supply system directly connected to a water supply system, comprising: a control means for outputting a signal for starting the operation; and a drive means for designating and supplying variable electric power to the electric pump based on a signal from the control means.
【請求項2】 元圧検出センサの検出した圧力をSPD
ATA、吐出圧力センサの検出した圧力をDPDAT
A、両者間の抵抗損失をPfとしたとき、これらの圧力
関係がSPDATA−DPDATA≧Pfとなったとき
にポンプを停止する信号を出力する制御手段を設けてあ
ることを特徴とする請求項1記載の水道直結給水システ
ム。
2. The pressure detected by the source pressure detection sensor is set to SPD.
ATA, the pressure detected by the discharge pressure sensor is DPDAT
A, and a resistance loss between them is Pf, and a control means is provided for outputting a signal for stopping the pump when the pressure relationship between them becomes SPDATA-DPDATA ≧ Pf. Directly connected water supply system.
【請求項3】 両圧力センサの検出する抵抗損失を所定
水量所定圧力に対応した運転速度における値としてある
ことを特徴とする請求項1記載の水道直結給水システ
ム。
3. The water supply system directly connected to a water supply system according to claim 1, wherein the resistance loss detected by both pressure sensors is a value at an operating speed corresponding to a predetermined water amount and a predetermined pressure.
【請求項4】 配水管の水を末端給水栓へ給水する給水
管と、この給水管の途中に介設され前記末端給水栓へ水
を吐出する少なくとも一つの電動ポンプと、この電動ポ
ンプより上流側の給水管に配設され水源の元圧を検知す
る元圧センサと、前記電動ポンプより下流側の給水管に
配設され過少水量を検知する過少水量検出手段と、吐出
圧を検知する吐出圧センサと、検知された元圧が吐出側
所要圧力と前記両圧力センサ間の所定の抵抗を加算した
値以上となり、前記過少水量検知手段が過少水量状態を
検出したときにポンプを停止して、配水管圧力が直接給
水し、検知された吐出圧力が所定の始動圧力以下に下が
ったときに始動させるための信号を出力する制御手段
と、この制御手段からの信号に基づいて可変電力を前記
電動ポンプに指定して供給する駆動手段とを備えたこと
を特徴とする水道直結給水システム。
4. A water supply pipe for supplying water from a water distribution pipe to an end water tap, at least one electric pump interposed in the middle of the water supply pipe to discharge water to the end water tap, and an upstream of the electric pump. Source pressure sensor installed in the side water supply pipe to detect the source pressure of the water source, an underwater amount detection means installed in the water supply pipe downstream from the electric pump to detect the underwater amount, and a discharge for detecting the discharge pressure. When the pressure sensor and the detected original pressure are equal to or greater than the sum of the required pressure on the discharge side and the predetermined resistance between the pressure sensors, and the excessive water amount detecting means detects the excessive water amount state, the pump is stopped. , Control means for outputting a signal for starting when the distribution pipe pressure is directly supplied and the detected discharge pressure falls below a predetermined starting pressure, and variable power based on the signal from this control means Specify as an electric pump A water supply system directly connected to a water supply, comprising a drive means for supplying the water.
【請求項5】 元圧検出センサの検出した圧力をSPD
ATA、吐出圧検出センサの検出した圧力をDPDAT
A、両者間の抵抗損失をPfとしたとき、これらの圧力
関係がSPDATA−DPDATA≧Pfとなり、且
つ、過少水量検出手段が過少水量を検出したときにポン
プを停止する信号を出力する制御手段を設けてあること
を特徴とする請求項4記載の水道直結給水システム。
5. The pressure detected by the source pressure detection sensor is set to SPD.
ATA, the pressure detected by the discharge pressure detection sensor is DPDAT
A, when the resistance loss between them is Pf, the pressure relationship between them becomes SPDATA-DPDATA ≧ Pf, and the control means for outputting a signal to stop the pump when the underwater amount detection means detects the underwater amount The water supply system directly connected to the water supply system according to claim 4, wherein the water supply system is provided.
【請求項6】 配水管の水を末端給水栓へ給水する給水
管と、この給水管の途中に介設され前記末端給水栓へ水
を吐出する少なくとも一つの電動ポンプと、この電動ポ
ンプより上流側の給水管に配設され水源の元圧を検知す
る元圧センサと、前記電動ポンプより下流側の給水管に
配設され、過少水量を検知する過少水量検出手段と、吐
出圧を検知する吐出圧センサと、検知された元圧が最低
圧以上から所定圧以下の範囲内及び吐出圧が一定圧以下
か、前記過少水量検出手段が過少水量を検出したかを判
定し、前記電動ポンプを作動させるために信号を出力す
る制御手段と、この制御手段からの信号に基づいて可変
電力を前記電動ポンプに指定して供給する駆動手段とを
備えたことを特徴とする水道直結給水システム。
6. A water supply pipe for supplying water from a water supply pipe to an end water supply tap, at least one electric pump interposed in the middle of the water supply pipe to discharge water to the end water supply tap, and an upstream of the electric pump Side pressure sensor for detecting the source pressure of the water source, an excessive pressure detecting means for detecting an excessive amount of water and a discharge pressure for detecting an excessive amount of water. The discharge pressure sensor and the detected original pressure is within a range from a minimum pressure or more to a predetermined pressure or less and a discharge pressure is less than or equal to a constant pressure, and it is determined whether the excessive water amount detecting means detects an excessive water amount, and the electric pump is operated. A water supply system directly connected to a water supply, comprising: a control unit that outputs a signal for operating the drive unit; and a drive unit that specifies and supplies variable electric power to the electric pump based on a signal from the control unit.
【請求項7】 配水管の水を末端給水栓へ供給する給水
管と、この給水管の途中に介設され前記末端給水栓へ水
を吐出する少なくとも一つの電動ポンプと、この電動ポ
ンプより上流側の給水管に配設され水源の元圧を検知す
る元圧センサと、前記電動ポンプより下流側の給水管に
配設され吐出圧を検知する吐出圧センサと、上記複数台
のポンプを制御する制御装置を備え、該制御装置は、前
記ポンプの速度を制御するインバータを備え、水源の元
圧が予め定めた給水制限圧力に低下した場合には、これ
を越えた圧力の復帰するまで現在の速度でロックするよ
うにしたことを特徴とする水道直結給水システム。
7. A water supply pipe for supplying water from a water distribution pipe to an end water tap, at least one electric pump interposed in the water supply pipe for discharging water to the end water tap, and an upstream of the electric pump. Source pressure sensor for detecting the source pressure of the water source, which is arranged in the side water supply pipe, a discharge pressure sensor which is arranged in the water supply pipe downstream of the electric pump for detecting the discharge pressure, and controls the plurality of pumps. Which includes an inverter for controlling the speed of the pump, and when the source pressure of the water source has dropped to a predetermined water supply limit pressure, the current pressure until the pressure exceeds this is restored. A water supply system directly connected to the water supply, characterized by being locked at the speed of.
JP13651895A 1995-06-02 1995-06-02 Water supply device Expired - Lifetime JP3287528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13651895A JP3287528B2 (en) 1995-06-02 1995-06-02 Water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13651895A JP3287528B2 (en) 1995-06-02 1995-06-02 Water supply device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP05832498A Division JP3649897B2 (en) 1998-03-10 1998-03-10 Direct water supply system

Publications (2)

Publication Number Publication Date
JPH08326109A true JPH08326109A (en) 1996-12-10
JP3287528B2 JP3287528B2 (en) 2002-06-04

Family

ID=15177056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13651895A Expired - Lifetime JP3287528B2 (en) 1995-06-02 1995-06-02 Water supply device

Country Status (1)

Country Link
JP (1) JP3287528B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190219A (en) * 2007-02-05 2008-08-21 Kawamoto Pump Mfg Co Ltd Backflow preventing structure of boost water supply device
JP2013050003A (en) * 2011-08-31 2013-03-14 Kawamoto Pump Mfg Co Ltd Water service installation
CN103452167A (en) * 2012-05-31 2013-12-18 上海熊猫机械(集团)有限公司 Intermediate booster pump station
CN105350600A (en) * 2015-10-30 2016-02-24 杭州美安物联科技有限公司 Secondary water supply control system
CN105756134A (en) * 2016-04-22 2016-07-13 无锡康宇水处理设备有限公司 Multifunctional control device of water supply equipment
JP6179747B1 (en) * 2017-02-15 2017-08-16 竜太郎 岡 Residual chlorine concentration adjustment device.
CN108678081A (en) * 2018-05-28 2018-10-19 苏州科博思流体科技有限公司 A kind of mute energy-saving pot type no-negative-pressure water supply equipment
JP2019002343A (en) * 2017-06-15 2019-01-10 株式会社川本製作所 Boost water supply apparatus
CN110284555A (en) * 2019-06-28 2019-09-27 钟志标 A kind of tired water system of more pumps zero and method
JP2020094514A (en) * 2018-12-11 2020-06-18 株式会社川本製作所 Boost water supply device, and control method of boost water supply device
CN113756396A (en) * 2021-09-26 2021-12-07 朱贝贝 Self-induction pressurization pumping pipe conveying system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174193A (en) * 2013-01-04 2013-06-26 徐明冬 Non-negative pressure box-type pressure-superposed water supply system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190219A (en) * 2007-02-05 2008-08-21 Kawamoto Pump Mfg Co Ltd Backflow preventing structure of boost water supply device
JP2013050003A (en) * 2011-08-31 2013-03-14 Kawamoto Pump Mfg Co Ltd Water service installation
CN103452167A (en) * 2012-05-31 2013-12-18 上海熊猫机械(集团)有限公司 Intermediate booster pump station
CN105350600A (en) * 2015-10-30 2016-02-24 杭州美安物联科技有限公司 Secondary water supply control system
CN105756134A (en) * 2016-04-22 2016-07-13 无锡康宇水处理设备有限公司 Multifunctional control device of water supply equipment
JP2018130714A (en) * 2017-02-15 2018-08-23 竜太郎 岡 Residual chlorine concentration regulator
JP6179747B1 (en) * 2017-02-15 2017-08-16 竜太郎 岡 Residual chlorine concentration adjustment device.
JP2019002343A (en) * 2017-06-15 2019-01-10 株式会社川本製作所 Boost water supply apparatus
CN108678081A (en) * 2018-05-28 2018-10-19 苏州科博思流体科技有限公司 A kind of mute energy-saving pot type no-negative-pressure water supply equipment
JP2020094514A (en) * 2018-12-11 2020-06-18 株式会社川本製作所 Boost water supply device, and control method of boost water supply device
CN110284555A (en) * 2019-06-28 2019-09-27 钟志标 A kind of tired water system of more pumps zero and method
CN113756396A (en) * 2021-09-26 2021-12-07 朱贝贝 Self-induction pressurization pumping pipe conveying system
CN113756396B (en) * 2021-09-26 2023-02-24 朱贝贝 Self-induction booster pump send pipe system

Also Published As

Publication number Publication date
JP3287528B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JPH08326109A (en) Water supply direct-connection water service system
JP3649897B2 (en) Direct water supply system
WO2008119932A1 (en) Sewage pump blockage detection
WO2021075387A1 (en) Hydroelectric power generation system
JP5147748B2 (en) Booster water supply system
JP3301860B2 (en) Intensified water supply system for middle and high rise buildings
JP5094156B2 (en) Water supply equipment
JP2933249B2 (en) Water supply device and its pump control method
JPH06102909B2 (en) Automatic water supply system
JP3225222B2 (en) Water supply device and its pump control method
JP3302004B2 (en) Intensified water supply system for middle and high rise buildings
JP2923265B2 (en) Water supply device and its pump control method
JP2923250B2 (en) Water supply device and its pump control method
JP3225235B2 (en) Water supply device and its pump control method
JPH08144960A (en) Pump device
JP5455384B2 (en) Increased pressure water supply system for medium to high-rise buildings
JP3288635B2 (en) Water supply system
JP3961932B2 (en) Water supply device
JPH07139023A (en) Pump monitoring system for sewerage
JP2652579B2 (en) Automatic water supply pump control device
JPS6321097B2 (en)
JPH0246799B2 (en) KYUEKISHISUTEMUSEIGYOSOCHI
JPH0819915B2 (en) Variable speed pump operating device
JPH09119377A (en) Water supply device for water system and method for operating pump thereof
JPS59131784A (en) Control of operating number of pumps

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140315

Year of fee payment: 12

EXPY Cancellation because of completion of term