JPS6321097B2 - - Google Patents

Info

Publication number
JPS6321097B2
JPS6321097B2 JP54123671A JP12367179A JPS6321097B2 JP S6321097 B2 JPS6321097 B2 JP S6321097B2 JP 54123671 A JP54123671 A JP 54123671A JP 12367179 A JP12367179 A JP 12367179A JP S6321097 B2 JPS6321097 B2 JP S6321097B2
Authority
JP
Japan
Prior art keywords
pressure
pump
piping
pipe
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54123671A
Other languages
Japanese (ja)
Other versions
JPS5646939A (en
Inventor
Takatoshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP12367179A priority Critical patent/JPS5646939A/en
Publication of JPS5646939A publication Critical patent/JPS5646939A/en
Publication of JPS6321097B2 publication Critical patent/JPS6321097B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 本発明は、地域冷暖房システムの建物内ポンプ
の運転時間を最小限に短縮することを図つたポン
プ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pump control device designed to minimize the operating time of a pump in a building in a district heating and cooling system.

地域冷暖房システムにおいては、熱源水供給者
側と需要者側とで、その受渡点における熱源水温
度と圧力が所定の範囲となるように協定を結んで
いる。例えば供給圧力については基準値P0±0.5
Kg/cm2、つまり(P0−0.5)と(P0+0.5)の範囲
(P0は不動値)となるように、返送圧力について
は基準値Pr±0.5Kg/cm2、つまり(Pr−0.5)とPr
+0.5)の範囲(Prは不動値であり、Pr<Pp)と
なるように定めてある。このため、建物(負荷
側)の設備容量は、(Pr−0.5)の圧力の熱源水を
(Pr+0.5)の圧力で返送するという基準で算出す
るのが通常である。すなわち、設備容量は最悪条
件を基準として算出されている。だが、通常の運
転もこの最悪条件を基準として制御すると、圧力
ロスが発生することは明らかである。換言すれば
建物内ポンプを不必要に稼動している時が存在す
る。
In a district heating and cooling system, an agreement is made between the heat source water supplier and the consumer so that the temperature and pressure of the heat source water at the delivery point will be within a predetermined range. For example, for the supply pressure, the reference value P 0 ±0.5
Kg/cm 2 , that is, in the range of (P 0 −0.5) and (P 0 +0.5) (P 0 is a fixed value), and for the return pressure, the reference value P r ±0.5Kg/cm 2 , that is, (P r −0.5) and P r
+0.5) (P r is an immovable value, P r <P p ). For this reason, the installed capacity of a building (load side) is usually calculated on the basis that heat source water at a pressure of (P r −0.5) is returned at a pressure of (P r +0.5). In other words, the installed capacity is calculated based on the worst-case conditions. However, if normal operation is controlled based on this worst-case condition, it is clear that pressure loss will occur. In other words, there are times when pumps in buildings are operated unnecessarily.

本発明は、このような地域冷暖房システムにお
ける建物内ポンプ動力を必要最小限にする装置を
提供するものである。すなわち本発明は、建物内
の負荷側回路に地域配管の往管から所定範囲内圧
力の熱源水を供給し、地域配管の還管に所定範囲
内圧力の熱源水を返送する地域冷暖房システムの
建物側配管系において、この配管系に介装したポ
ンプをバイパスするバイパス管を設けると共にこ
のバイパス管に弁を取付けたうえ、該配管系の総
流量の検出手段(後記実施例では流量計7)、地
域配管からの供給圧と地域配管への返送圧との差
圧検出手段(同供給側差圧発信器8)、該総流量
検出手段(流量計7)と差圧検出手段(供給側差
圧発信器8)の両検出値(例えば両者とも電流
値)を比較する手段(同減算器14)、および該
比較手段の比較結果に応じて前記のポンプの発停
と前記の弁の開閉の選択制御を行う手段、を設け
たことを特徴とする地域冷暖房システムの建物内
ポンプ制御装置を提供するものである。以下、図
面の実施例に従つて本発明装置を具体的に説明す
る。
The present invention provides a device that minimizes the power of pumps in buildings in such district heating and cooling systems. That is, the present invention provides a building with a district heating and cooling system that supplies heat source water with a pressure within a predetermined range from an outgoing pipe of local piping to a load side circuit in a building, and returns heat source water with a pressure within a predetermined range to a return pipe of the local piping. In the side piping system, a bypass pipe is provided to bypass the pump installed in this piping system, a valve is attached to this bypass pipe, and a means for detecting the total flow rate of the piping system (flow meter 7 in the embodiment described later), Differential pressure detection means (supply side differential pressure transmitter 8) between the supply pressure from the local piping and the return pressure to the local piping, the total flow rate detection means (flow meter 7) and the differential pressure detection means (supply side differential pressure transmitter 8), a means (subtractor 14) for comparing both detected values (for example, both are current values) of the transmitter 8), and selection of whether to start or stop the pump and to open or close the valve according to the comparison result of the comparing means. The present invention provides an in-building pump control device for a district heating and cooling system, characterized in that it is provided with means for performing control. DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus of the present invention will be specifically described below with reference to embodiments shown in the drawings.

第1図は、地域配管の往管1と還管2に、負荷
群3を有せる建物側配管を接続した低層部分を示
す本発明系統図である。本発明においては、建物
内ポンプ4をバイパスするバイパス管5を設け、
このバイパス管5に弁6(バタ弁)を介装し、こ
の弁6の開閉とポンプ4の切換えを、流量計7と
供給側差圧発信器8とのカスケード制御によつて
行なうようになつている。第1図において9は負
荷側圧力調整弁であり、この調整弁9の開度制御
により前述の所定圧にして地域還管2に熱源水を
返送する。すなわち、建物内往管10と還管11
との間の管内差圧を検出する負荷側差圧発信器1
2の差圧信号を負荷側差圧調整器13で調節して
調整弁9の開度制御を行ない、規定範囲の圧力と
して地域還管2に返送する。そのさい、流量計7
からの信号と供給側差圧発信器8の信号とを減算
器14に送り、負荷流量読込値を受入れ返送圧力
差の読込値によつてカスケードし、モニタースイ
ツチ15にポンプ4のON,OFF信号を与え、同
時に弁6を閉と開に追従制御する。この制御の一
例を第5図に示した。第5図に示すように、流量
読込部では流量計7からその流量に対応する電流
値(mA)が減算器14に送信され、受入・返送
圧力差読込部では供給側差圧発信器8からその差
圧に対応する電流値(mA)が減算器14に送信
され、この減算器14において、両電流値がポン
プOFFの域値ラインAとONの域値ラインBのい
ずれの側にあるかを判断する。例えば受入・返送
圧力差読込値が3.8Kg/cm2であつた場合に流量読
込値が3.3m3/minであると、これらに対応する
各検出電流値はポンプOFFの域値ラインAより
も図の右側に位置することになるのでモニタース
イツチ15にポンプにOFFの信号を与える。す
なわち、ある流量に対して受入れ返送圧力差が所
定値以上であるときは、ポンプ4を停止し、弁6
を開として返送する。一方、負荷側の総流量が多
くなつて大きな検出値が流量計7から送信される
と、そのときの差圧発信器8の検出電流値では予
め設定されたポンプONの域値ラインBよりも左
側にくるようになればモニタースイツチ15にポ
ンプONの信号を与え、同時に弁6を閉じる。こ
のようにして、負荷側の総流量を流量計7で電流
値として検出すると同時に地域配管の受入・返送
圧力差を差圧発信器8によつて電流値として検出
し、減算器14において両者の検出値を比較演算
し、それに基づいてポンプの発停制御とバイパス
管の弁6の開閉制御を選択して行なうことによ
り、返送圧が不必要に高いときのポンプの稼働を
停止することができる。なお第1図において、1
6は受入側バルブ、17は返送側バルブ、18は
高層側往管、19は高層側還管を示している。
FIG. 1 is a system diagram of the present invention showing a low-rise portion in which building-side pipes having a load group 3 are connected to outgoing pipes 1 and return pipes 2 of regional piping. In the present invention, a bypass pipe 5 is provided to bypass the in-building pump 4,
A valve 6 (Bata valve) is installed in this bypass pipe 5, and the opening/closing of this valve 6 and switching of the pump 4 are performed by cascade control of a flow meter 7 and a supply side differential pressure transmitter 8. ing. In FIG. 1, reference numeral 9 denotes a load side pressure regulating valve, and by controlling the opening degree of this regulating valve 9, the heat source water is returned to the local return pipe 2 at the aforementioned predetermined pressure. In other words, the in-building outbound pipe 10 and the return pipe 11
A load-side differential pressure transmitter 1 that detects the differential pressure in the pipe between
The differential pressure signal of 2 is adjusted by the load-side differential pressure regulator 13 to control the opening of the regulating valve 9, and is returned to the regional return pipe 2 as a pressure within a specified range. At that time, flow meter 7
and the signal from the supply side differential pressure transmitter 8 are sent to the subtractor 14, the load flow rate reading value is cascaded by the reading value of the receiving and return pressure difference, and the ON/OFF signal of the pump 4 is sent to the monitor switch 15. is given, and at the same time, the valve 6 is controlled to close and open. An example of this control is shown in FIG. As shown in FIG. 5, in the flow rate reading section, the current value (mA) corresponding to the flow rate is sent from the flow meter 7 to the subtractor 14, and in the receiving/return pressure difference reading section, the current value (mA) corresponding to the flow rate is sent from the supply side differential pressure transmitter 8. The current value (mA) corresponding to the differential pressure is sent to the subtracter 14, and the subtracter 14 determines which side of the pump OFF threshold line A and the pump ON threshold line B the current values are on. to judge. For example, if the reading of the receiving/returning pressure difference is 3.8Kg/cm 2 and the reading of the flow rate is 3.3m 3 /min, the corresponding detected current values will be lower than the pump OFF threshold line A. Since it will be located on the right side of the figure, give the monitor switch 15 a signal to turn off the pump. That is, when the acceptance and return pressure difference is equal to or higher than a predetermined value for a certain flow rate, the pump 4 is stopped and the valve 6 is closed.
Return it as open. On the other hand, when the total flow rate on the load side increases and a large detected value is sent from the flow meter 7, the detected current value of the differential pressure transmitter 8 at that time is higher than the preset pump ON threshold line B. When it comes to the left side, a pump ON signal is given to the monitor switch 15, and at the same time, the valve 6 is closed. In this way, the total flow rate on the load side is detected as a current value by the flowmeter 7, and at the same time, the difference in reception and return pressure of the local piping is detected as a current value by the differential pressure transmitter 8. By comparing and calculating the detected values and selectively controlling the start/stop of the pump and the opening/closing control of the bypass pipe valve 6 based on the comparison, operation of the pump can be stopped when the return pressure is unnecessarily high. . In addition, in Figure 1, 1
Reference numeral 6 indicates a receiving valve, 17 a return valve, 18 a high-rise outbound pipe, and 19 a high-rise return pipe.

第2図は、前記のバイパス運転とポンプ運転の
切換時における負荷側圧力調整弁9の開度制御を
円滑に行なうに好適な装置回路図であり、リレー
回路20、レシオバイアス21、定電流発生器2
2、圧力指示調節器23、アイソレーター24、
ローセレクター25を図示のような回路で自動制
御盤に組み込んだものである。この制御態様を説
明すると、バイパス運転時におけるリレー20
は、レシオバイアス21を介して流量計7の信号
を受ける接点bと定電流発生器22の接点aとが
閉成し、定電流発生器22とローセレクター25
とが接続されている。定電流発生器22は信号電
流の最大値(例えば20mA)を常に出力している
ので、ローセレクター25では圧力指示調節計2
3からの信号(例えば、4〜20mAの範囲、4mA
で調整弁9の開度0%、20mAで調整弁9の開度
100%とする)を通過させる。次に、このバイパ
ス運転からポンプ運転への切換時においては、こ
の切換時(直前)の調整弁9の開度は100%近く
にあるはずであるから、電流信号も先の例で言え
ば20mA近くにある。ここで切換信号が入信する
と、リレー20はb−cの接点間を所定時間(タ
イマー設定により約3秒間)閉成させる。これに
より調流計7からの信号と圧力指示調節計23か
らの信号との低い方を選択して、調整弁9を絞
る。この信号は同時に外部帰還付の調節計23に
入力され、この調節計23からの出力も流量計7
からの信号に代わるようになつている。ここで、
リレー20の接点はa−cが閉成し、調節計23
は差圧発信器12の信号によつて制御させる。第
3図は、この制御を行なわない場合のバイパス運
転→ポンプ運転切換時における調整弁9の入力信
号の変動の様子と差圧(往還管の差圧)の変動の
様子を示し、第4図は本制御を行なつた場合の同
様の様子を示しているが、本制御による場合には
変動巾が著しく緩和されていることがわかる。す
なわち、本制御では、ポンプ投入後の弁9の開度
を予め考慮に入れて外部から強制的に瞬時制御を
加えるようにしたので、負荷差圧の変動を最小限
に抑えることができる。
FIG. 2 is a circuit diagram of a device suitable for smoothly controlling the opening of the load-side pressure regulating valve 9 when switching between bypass operation and pump operation, including a relay circuit 20, ratio bias 21, and constant current generator. Vessel 2
2, pressure indicating regulator 23, isolator 24,
The low selector 25 is incorporated into an automatic control panel using a circuit as shown in the figure. To explain this control mode, the relay 20 during bypass operation
In this case, the contact b that receives the signal from the flowmeter 7 via the ratio bias 21 and the contact a of the constant current generator 22 are closed, and the constant current generator 22 and the low selector 25 are closed.
are connected. Since the constant current generator 22 always outputs the maximum value of the signal current (for example, 20 mA), the low selector 25
Signal from 3 (e.g. 4-20mA range, 4mA
The opening of the regulating valve 9 is 0% at 20mA, and the opening of the regulating valve 9 is 0% at 20mA.
100%) is passed. Next, when switching from this bypass operation to pump operation, the opening degree of the regulating valve 9 at the time of this switching (just before) should be close to 100%, so the current signal is also 20 mA in the previous example. Near. When the switching signal is received here, the relay 20 closes the contacts b and c for a predetermined time (about 3 seconds depending on the timer setting). As a result, the lower one of the signal from the flow regulator 7 and the signal from the pressure indicating regulator 23 is selected, and the regulating valve 9 is throttled. This signal is simultaneously input to the controller 23 with external feedback, and the output from this controller 23 is also input to the flowmeter 7.
It has come to replace the signal from here,
The contacts a to c of the relay 20 are closed, and the controller 23
is controlled by the signal from the differential pressure transmitter 12. Figure 3 shows the fluctuations in the input signal of the regulating valve 9 and the fluctuations in the differential pressure (differential pressure in the return pipe) when switching from bypass operation to pump operation when this control is not performed. shows a similar situation when this control is performed, and it can be seen that the range of fluctuation is significantly relaxed when this control is applied. That is, in this control, since the opening degree of the valve 9 after the pump is turned on is taken into consideration in advance and instantaneous control is forcibly applied from the outside, fluctuations in the load differential pressure can be minimized.

このようにして本発明は、地域冷暖房システム
において従来ポンプ稼動によつて不必要に高い返
送圧力としていたのを、系内に圧力変動を起すこ
となくスムースにバイパス制御できるようにした
ものであり、ポンプ駆動時間の短縮化により動力
低減を達成した省エネルギーシステムを提供する
ものである。
In this way, the present invention makes it possible to smoothly bypass control the unnecessarily high return pressure caused by conventional pump operation in district heating and cooling systems without causing pressure fluctuations within the system. The present invention provides an energy-saving system that achieves power reduction by shortening pump drive time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の機器配置系統図、第2図
は制御回路図、第3図は本発明に従う制御を行な
わない場合の差圧変動図、第4図は本発明に従う
制御を行なつた場合の差圧変動図第5図は負荷側
の総流量と地域配管の受入・返送圧力差からポン
プにON,OFF信号を出力するための減算器にお
ける制御動作の一例を示す図である。 1……地域往管、2……地域還管、3……負
荷、4……ポンプ、5……バイパス管、6……バ
イパス弁、7……流量計、8……供給側差圧発信
器、9……負荷側圧力調整弁、12……負荷側差
圧調節器、13,23……負荷側差圧調節器、1
4……減算器、15……モニタースイツチ、20
……リレー、21……レシオバイアス、22……
定電流発生源、24……アイソレータ、25……
ローセレクター。
Fig. 1 is an equipment layout system diagram of the device of the present invention, Fig. 2 is a control circuit diagram, Fig. 3 is a differential pressure fluctuation diagram when the control according to the present invention is not performed, and Fig. 4 is a diagram when the control according to the present invention is performed. Figure 5 shows an example of the control operation of the subtractor for outputting ON/OFF signals to the pump based on the total flow rate on the load side and the difference in reception/return pressure in the local piping. 1... Regional outgoing pipe, 2... Regional return pipe, 3... Load, 4... Pump, 5... Bypass pipe, 6... Bypass valve, 7... Flow meter, 8... Supply side differential pressure transmission device, 9... Load side pressure regulating valve, 12... Load side differential pressure regulator, 13, 23... Load side differential pressure regulator, 1
4...Subtractor, 15...Monitor switch, 20
...Relay, 21...Ratio bias, 22...
Constant current source, 24... Isolator, 25...
Low selector.

Claims (1)

【特許請求の範囲】[Claims] 1 建物内の負荷側回路に地域配管の往管から所
定範囲内圧力の熱源水を供給し、地域配管の還管
に所定範囲内圧力の熱源水を返送する地域冷暖房
システムの建物側配管系において、この配管系に
介装したポンプをバイパスするバイパス管を設け
ると共にこのバイパス管に弁を取付けたうえ、該
配管系の総流量の検出手段、地域配管からの供給
圧と地域配管への返送圧との差圧検出手段、該総
流量検出手段と該差圧検出手段の両検出値を比較
する手段、および該比較手段の比較結果に応じて
前記のポンプの発停と前記の弁の開閉の選択制御
を行う手段、を設けたことを特徴とする地域冷暖
房システムの建物内ポンプ制御装置。
1. In the building-side piping system of a district heating and cooling system that supplies heat source water with a pressure within a specified range from the outgoing pipe of the local piping to the load side circuit in the building, and returns the heat source water with a pressure within the specified range to the return pipe of the local piping. A bypass pipe is provided to bypass the pump installed in this piping system, a valve is attached to this bypass pipe, and a means for detecting the total flow rate of the piping system, supply pressure from the local piping and return pressure to the local piping is installed. a means for comparing the detected values of the total flow rate detecting means and the differential pressure detecting means, and a means for starting/stopping the pump and opening/closing the valve according to the comparison result of the comparing means. An in-building pump control device for a district heating and cooling system, characterized by comprising means for performing selective control.
JP12367179A 1979-09-26 1979-09-26 Pump controller for pump in housing of regional cooling and heating system Granted JPS5646939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12367179A JPS5646939A (en) 1979-09-26 1979-09-26 Pump controller for pump in housing of regional cooling and heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12367179A JPS5646939A (en) 1979-09-26 1979-09-26 Pump controller for pump in housing of regional cooling and heating system

Publications (2)

Publication Number Publication Date
JPS5646939A JPS5646939A (en) 1981-04-28
JPS6321097B2 true JPS6321097B2 (en) 1988-05-02

Family

ID=14866405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12367179A Granted JPS5646939A (en) 1979-09-26 1979-09-26 Pump controller for pump in housing of regional cooling and heating system

Country Status (1)

Country Link
JP (1) JPS5646939A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165831A1 (en) * 2015-11-04 2017-05-10 E.ON Sverige AB A district thermal energy distribution system
EP3399246A1 (en) * 2017-05-02 2018-11-07 E.ON Sverige AB District energy distributing system and method of providing mechanical work and heating heat transfer fluid of a district thermal energy circuit
EP3399247A1 (en) * 2017-05-02 2018-11-07 E.ON Sverige AB District energy distributing system

Also Published As

Publication number Publication date
JPS5646939A (en) 1981-04-28

Similar Documents

Publication Publication Date Title
US4373349A (en) Heat pump system adaptive defrost control system
JPH08254275A (en) Automatic hydrant having temperature control function
JPS6115967B2 (en)
US10337763B2 (en) Water heating system
US4468171A (en) Method of controlling air flow rate of fan
US4253130A (en) Method and apparatus for heat pump system protection
KR100330759B1 (en) Feedwater control over full power range for pressurized water reactor steam generators
JP3287528B2 (en) Water supply device
JPS6321097B2 (en)
US4311497A (en) Method and apparatus for heat pump system protection
JP3649897B2 (en) Direct water supply system
EP0104872A2 (en) Air conditioning and compressor control system
US2596691A (en) Sheetsxsheet z
JPH0263119B2 (en)
JP4759822B2 (en) Flow measuring device
JP2539403B2 (en) Process control equipment
JP2574779B2 (en) Water level control device for feed water heater
JPS6343590B2 (en)
KR20000017405A (en) A control device of proportional valves
JP2675670B2 (en) Gas pressure control method for gas pipeline
JPH055548A (en) Air conditioner
JP2697269B2 (en) Electrical equipment
JPH0444711B2 (en)
JP2003138609A (en) Method and system for on-off-controlling valve in pumped water supply line
JPH07269891A (en) Heat insulation circulation apparatus in centralized hot water supply system