JPH0819915B2 - Variable speed pump operating device - Google Patents

Variable speed pump operating device

Info

Publication number
JPH0819915B2
JPH0819915B2 JP26929685A JP26929685A JPH0819915B2 JP H0819915 B2 JPH0819915 B2 JP H0819915B2 JP 26929685 A JP26929685 A JP 26929685A JP 26929685 A JP26929685 A JP 26929685A JP H0819915 B2 JPH0819915 B2 JP H0819915B2
Authority
JP
Japan
Prior art keywords
pressure
water supply
pump
water
variable speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26929685A
Other languages
Japanese (ja)
Other versions
JPS62129598A (en
Inventor
幸一 佐藤
忠幸 宝勝
忍 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26929685A priority Critical patent/JPH0819915B2/en
Publication of JPS62129598A publication Critical patent/JPS62129598A/en
Publication of JPH0819915B2 publication Critical patent/JPH0819915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は可変速ポンプを使用した給水装置に係り、特
に給水器具の使用状態を検出して、目標圧力を自動的に
変更してゆくのに好適な前記給水装置の制御装置に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply device using a variable speed pump, and more particularly to detecting a use state of a water supply device and automatically changing a target pressure. The present invention relates to a suitable controller for the water supply device.

〔発明の背景〕[Background of the Invention]

従来から、可変速ポンプを使用した給水装置の制御方
式としてポンプの吐出し側の圧力を一定に保って給水を
行う吐出し圧力一定制御方式やポンプの吐出し側の圧力
を給水管路の抵抗曲線に沿って制御し給水を行ってゆく
末端圧力一定制御方式とがある。前者は制御系が簡単で
設備費を安価にまとめることができるため、一般的に採
用されている。後者は制御系が複雑となり、設備費は高
くなるが、実揚程に対して配管損失が比較的大きいと変
速範囲が広くなるため省エネルギー効果をより一層だせ
るために、このような用途に採用される。これらの制御
方式では目標圧力が全揚程を基準としているため、どん
な使用状態であっても固定あるいは定めた関係で一定で
あり、使用状態つまり建物の低,中,高層ゾーンに分け
たり、給水器具の種類によりこの目標圧力を適正に変え
て制御するということが認識されていなかった。このこ
とをさらに詳しく説明する。第5図は給水装置のシステ
ム系統図を示し、1は受水槽、2は吸水管、3−1,3−
2は仕切弁、4はポンプ、5は逆止め弁、6は給水管、
7は圧力センサー、8は流量センサーで末端圧力一定制
御方式の場合に使用する。9a〜9cは末端の水栓である。
つまり給水は受水槽よりポンプ4によって、末端の水栓
9a〜9cへ送られる。この際のポンプの運転方式には前述
の二方式があり、図示しない制御系統により制御され
る。第6図は吐出し圧力一定制御方式の場合の運転特性
図であり、横軸に水量Q、縦軸に圧力Hを取って示す。
曲線Aはポンプの運転速度が最高速度NMAXで運転してい
る場合のQ−H性能を、同様に曲線B,C,Dはそれぞれポ
ンプの運転速度がNイ,Nロ、最低速度NMINの時のQ−H
性能を示す。又、Hoは目標圧力(全揚程に相当する。)
で実揚程(吸水面を基準に最高位水栓までの実高さ)H
a、所要末端圧力(最高位水栓で所望な圧力)Hp、最高
位水栓までの配管などの損失Hをそれぞれ加えたもの
である。そして、この方式ではたとえば需要水量が
QMAX,→Qイ→Qロと変動した場合、これに伴ってポン
プの運転速度をNMAX,→Nイ→Nロ→NMINと制御し、ポ
ンプの吐出し側の圧力をHoに一定に保つ。第7図は末端
圧力一定制御方式の場合の運転特性図であり、第6図と
同じ符号で示すものは同じ意味を持つものである。同図
に於いてFは管路などの抵抗曲線でHは管路抵抗HT
全揚程である。又、目標圧力は流量Qを与えれば抵抗曲
線Fに基づきHo=(Q)の関係で定まるように、図示
しない演算器に予め設定しておくものである。この方式
ではたとえば需要水量がQMAX,→Qハに変化した場合を
考える。この時第5図に示す流量センサー8でこれを検
出し、この信号を前述した図示しない演算器に送り、こ
こで予じめ設定され、管路などの抵抗曲線F上のO2点で
定まる目標圧力を設定する。次に、この設定圧力と圧力
センサー7の検出する給水管6(ポンプ吐出し圧力)内
の圧力とを比較し、等しくなるようにポンプの運転速度
を制御する。この場合、運転速度はNハとなる。このよ
うに需要水量の変動に応じ、ポンプ吐出し側の圧力が管
路の抵抗曲線F上に沿うようにポンプの運転速度を制御
し給水を行ってゆくものである。しかし、従来技術に於
いては低,中層ゾーンのみの給水であっても、それ程高
い所要末端圧力を有しない給水器具であっても実揚程H
a、所要末端圧力Hpが一定であった。給水対象器具が第
5図に於ける9c又9bであれば実揚程はHb,Hcでよく、従
来一定としていた目標値もこの分だけ下げることができ
るため変速範囲が広くなる。又、末端の水栓の所要圧力
もたとえば大体、フラッシュ弁及びシャワーでは0.7kg
/cm2一般の蛇口では0.3kg/cm2、湯沸器では0.4〜
0.5kg/cm2となっているが一般的には安全を見て1kg
/cm2程度としている。給水対象によりこれに所要な
末端圧力とすることにより従来一定としていた目標圧力
を下げることができ同様に変速範囲を広くすることがで
きる。変速範囲を広くすることにより一層省エネルギー
となるが、従来このことの認識がなされていなかった。
Conventionally, as a control system for a water supply device using a variable speed pump, water is supplied while keeping the pressure on the discharge side of the pump constant, and the pressure on the discharge side of the pump is controlled by the resistance of the water supply line. There is a constant end pressure control method in which water is supplied by controlling along a curve. The former is generally adopted because the control system is simple and the equipment cost can be reduced. The latter requires a complicated control system and high equipment costs, but it is used for such an application in order to further enhance the energy-saving effect because the speed change range becomes wider if the piping loss is relatively large relative to the actual head. . In these control methods, since the target pressure is based on the total head, it is fixed or constant in any usage condition, and it is used, that is, divided into low, middle, and high rise zones of the building, and water supply equipment. It has not been recognized that the target pressure is appropriately changed and controlled depending on the type. This will be described in more detail. Fig. 5 shows the system diagram of the water supply system, 1 is a water receiving tank, 2 is a water absorption pipe, 3-1 and 3-
2 is a gate valve, 4 is a pump, 5 is a check valve, 6 is a water supply pipe,
Reference numeral 7 is a pressure sensor, and 8 is a flow sensor, which is used in the case of a constant end pressure control system. 9a to 9c are water faucets at the ends.
In other words, water is supplied from the receiving tank by the pump 4 at the end faucet.
Sent to 9a-9c. At this time, there are the above-mentioned two operation modes of the pump, which are controlled by a control system (not shown). FIG. 6 is an operation characteristic diagram in the case of the constant discharge pressure control system, in which the horizontal axis represents water amount Q and the vertical axis represents pressure H.
Curve A shows the QH performance when the pump is operating at the maximum speed N MAX . Similarly, curves B, C and D show the pump operating speeds N, N and minimum speed N MIN, respectively. Q-H when
Show performance. Ho is the target pressure (corresponds to the total head).
Actual lift (actual height up to the highest faucet based on the water absorption surface) H
a, the required terminal pressure (the desired pressure at the highest water faucet) Hp, and the loss H of the piping to the highest water faucet, etc., respectively. And in this method, for example,
When it fluctuates from Q MAX , → Q a → Q b, the operating speed of the pump is controlled to N MAX , → N a → N b → N MIN, and the pressure on the discharge side of the pump is kept constant at Ho. Keep on. FIG. 7 is an operating characteristic diagram in the case of the constant end pressure control system, and the same reference numerals as those in FIG. 6 have the same meaning. In the figure, F is a resistance curve of a pipeline or the like, H is a pipeline resistance H T, and the total head. Further, the target pressure is set in advance in an arithmetic unit (not shown) so that it is determined by the relationship of Ho = (Q) based on the resistance curve F when the flow rate Q is given. In this method, for example, demand for water is considered a case in which the change in Q MAX, → Q c. At this time, this is detected by the flow rate sensor 8 shown in FIG. 5, and this signal is sent to the above-mentioned calculator (not shown), which is preset and is determined by the O 2 point on the resistance curve F such as the pipeline. Set the target pressure. Next, this set pressure is compared with the pressure in the water supply pipe 6 (pump discharge pressure) detected by the pressure sensor 7, and the operating speed of the pump is controlled to be equal. In this case, the operating speed is N ha. As described above, water is supplied by controlling the operating speed of the pump so that the pressure on the pump discharge side follows the resistance curve F of the pipeline according to the fluctuation of the demanded water amount. However, according to the conventional technology, even if the water is supplied only to the low and middle zone, the actual pump head H
a, the required end pressure Hp was constant. If the equipment to be supplied with water is 9c or 9b in FIG. 5, the actual lift may be Hb, Hc, and the target value that was conventionally constant can be lowered by this amount, so the gear shift range is widened. Also, the required pressure of the faucet at the end is, for example, about 0.7 kg for the flush valve and shower.
/ Cm 2 in general faucet 0.3 kg / cm 2, 0.4 to the water heater
0.5kg / cm 2 and going on is to look at safety in general, 1kg
It is about / cm 2 . By setting the terminal pressure required for this depending on the water supply target, the target pressure, which was conventionally constant, can be lowered, and the gear shift range can be similarly widened. Energy saving is further achieved by widening the shift range, but this has not been recognized in the past.

〔発明の目的〕[Object of the Invention]

従来のシステムでは給水箇所や給水対象にかかわら
ず、実揚程や所要末端圧力を固定しているが、常に高層
ゾーンに給水するのではなく、低層ゾーンや中層ゾーン
のみに給水場合もある。又、給水系の中で使用している
給水器具もこれに所望な圧力も種々変わる。本発明はこ
のような点に鑑み成されたもので、本発明の目的は給水
箇所(建物の高さなど)に応じて、従来固定していた実
揚程や所要末端圧力を可変にし、変速ポンプの変速範囲
を広くして、より省エネルギーを図っていくことのでき
る前記可変速ポンプの運転制御装置を提供することにあ
る。
In the conventional system, the actual head and the required terminal pressure are fixed regardless of the water supply location and the water supply target, but water is not always supplied to the high-rise zone, but water may be supplied only to the low-rise zone or the middle-rise zone. Also, the water supply equipment used in the water supply system has various desired pressures. The present invention has been made in view of such a point, and an object of the present invention is to change the conventionally fixed actual head and required terminal pressure according to a water supply point (height of a building, etc.), and to provide a variable speed pump. It is an object of the present invention to provide an operation control device for the variable speed pump, which is capable of widening the speed change range and further saving energy.

〔発明の概要〕[Outline of Invention]

本発明は、可変速ポンプと、前記可変速ポンプの速度
を制御する制御装置と、前記可変速ポンプの吐出し側に
配設した給水管と、前記給水管の末端に備えられた水栓
と、前記給水管に設けられ該給水管の水圧を検出し前記
制御装置に出力する圧力センサーとを備え、前記圧力セ
ンサの検出した圧力が予め記憶した前記ポンプの吐出し
側の目標圧力になるように前記可変速ポンプの速度制御
を行ってゆく可変速ポンプの運転装置において、前記水
栓の開状態を検出し該水栓の建物における設置高さに応
じて予め定めた設置ゾーンに対応する信号を発する検出
手段を備え、前記制御装置は、前記設置ゾーンに応じて
変えた複数の目標圧力を記憶する記憶手段と、前記検出
手段から前記設置ゾーンに対応する信号を受信し前記記
憶手段に記憶された複数の目標圧力の中から受信された
設置ゾーン対応信号に基づき目標圧力を選択する手段を
備え、前記制御装置は該選択された目標圧力にしたがっ
て前記ポンプを速度制御してゆくように構成されたこと
を特徴とするものである。
The present invention relates to a variable speed pump, a control device for controlling the speed of the variable speed pump, a water supply pipe arranged on the discharge side of the variable speed pump, and a faucet provided at the end of the water supply pipe. A pressure sensor provided on the water supply pipe for detecting the water pressure of the water supply pipe and outputting the water pressure to the control device, so that the pressure detected by the pressure sensor becomes a pre-stored target pressure on the discharge side of the pump. In a variable speed pump operating device for performing speed control of the variable speed pump, a signal corresponding to a predetermined installation zone is detected in accordance with the installation height of the faucet in the building by detecting the open state of the faucet. And a storage unit for storing a plurality of target pressures changed according to the installation zone and a signal corresponding to the installation zone from the detection unit and stored in the storage unit. Was done Means for selecting a target pressure based on a received zone-corresponding signal received from a number of target pressures, and the controller is configured to speed control the pump according to the selected target pressure. It is characterized by that.

〔作用〕[Action]

給水管の末端に備えられた水栓が開状態になると、こ
の開状態を上記検出手段が検出し、該検出手段は上記設
置ゾーンに対応する信号を発する。この設置ゾーン対応
信号を受信した制御装置はこの設置ゾーンに応じて、ポ
ンプの吐出し側の目標圧力を予め記憶した複数種類の目
標圧力の中から選択し、該選択した目標圧力にしたがっ
て前記ポンプを速度制御する。これにより使用状態にあ
る水栓の建物における設置高さに合わせてポンプの運転
速度は下げられる。
When the faucet provided at the end of the water supply pipe is opened, the detecting means detects the opened state, and the detecting means emits a signal corresponding to the installation zone. The control device which has received the installation zone corresponding signal selects a target pressure on the discharge side of the pump from a plurality of target pressures stored in advance according to the installation zone, and the pump according to the selected target pressure. Control the speed. As a result, the operating speed of the pump can be reduced according to the installation height of the faucet in use.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を第1〜第2図により説明す
る。第1図は第5図に示す給水管の詳細図を示し、本実
施例の場合にはたとえば各給水器具9a〜9cの使用状態を
検出するためこの給水器具又は近くにセンサーSa〜Scを
設ける。又、この給水器具9a〜9cの所要末端圧力はそれ
ぞれHpa,Hpb,Hpcとする。第2図は本実施例の運転制御
を行うためのブロック図を示し、Pwは電源、MCBは配線
用しゃ断器、INVはインバータ、IMは第5図では図示し
ていないが可変速ポンプ4を駆動するモーター、Xは受
信器であり、センサーSa,Sb,Scにより給水器具の使用状
態を検出し、この信号に応じて発する信号(たとえば無
線式信号など)を受信する。たとえば給水器具9aが使用
されている時にはセンサーSaが信号を発する。受信器X
がこの信号を受けた場合には実揚程はHaa、所要末端圧
力はHpaとなる。給水器具9aは使用されず9b又は9bと9c
が使用されている場合にはセンサーSb又はセンサーSbと
Scの信号により、実揚程はHab、所要末端圧力はHpb、給
水器具9cだけ使用されている場合にはセンサーScの信号
により実揚程はHac、所要末端圧力Hpcに対応する信号を
受信器Xは制御装置CTLに発する演算部を有する。この
演算部はたとえばマイコンや電子回路などにより構成す
ることができる。又、PS,FSはそれぞれ第5図に示す圧
力センサー7、流量センサー8の信号発振部を示す。
尚、この実施例をそれぞれの制御方式の例で具体的に説
明すると次の通りとなる。第3図は第1の実施例である
吐出し圧力一定制御方式の場合の運転特性図を示し、第
6図と同一符号で示すものは同様の意味を持つものであ
る。加えて、第2図に示す受信部Xの演算回路部はこの
制御の時には制御部CTLに目標値として次のステップで
指令するように予じめ設定されていものである。センサ
ーSaが信号を発する→実揚程Haa→所要末端圧力Hpa→管
路抵抗Ha→目標圧力Hoa、センサーSbが信号を発す
る→実揚程Hab→所要末端圧力Hpb→管路抵抗Hb→目
標圧力Hob、センサーScが信号を発する→実揚程Hac→所
要末端圧力→Hpc→管路抵抗Hc→目標圧力Hoc 同図
に於ける圧力を第1図の関係に照合して示すとHoaは給
水器具9aを使用している場合の目標圧力(全揚程)であ
り、実揚程Haa、所要末端圧力Hpa、管路などの抵抗H
aから成る。そして、たとえば、負荷水量が最大値QMAX
であればQ−H曲線A上のOoの点で、運転速度NMAXで運
転される。これらの給水器具のうち9aが最後まで使用さ
れ、需要水量が変動すると前述したようにセンサーSAが
信号を発しているので、目標圧力Hoa一定で、この直線
上をOo点からOs点の間で、運転速度もNMAXからNMINまで
変えて給水を続ける。給水器具9aが使用されず9bが最後
まで使用され需要量変化が生じると、センサーSbの信号
が発しているので今度は目標圧力はHob(内訳は実揚程H
ab、所要末端圧力Hpb、管路などの抵抗Hb)一定で
この直線上をOl′点からOs′点間で、運転速度もNイ′
からNMIN′と変えて給水を続ける。給水器具9cだけとな
った場合も同様にセンサーScの信号が発せられることに
より、目標圧力はHoc(内訳は実揚程Hac、所要末端圧力
Hpc、管路などの抵抗Hc)一定でこの直線上を、需
要量変化に応じこの器具が開閉されて、O2″点からOs
点の間、運転速度もNロ″からNMIN″と変えて給水を続
ける。このように従来例を示す第6図と比較し、変速範
囲が広くなることが顕著である。第4図は第2の実施例
である末端圧力一定制御方式の場合の運転特性図を示
し、第7図と同一符号で示すものは同様の意味を持つも
のである。加えて第2図に示す受信部Xの演算回路部は
この制御の時は流量センサーFSの信号との組合せによ
り、制御部CTLに目標値として次のステップで指令する
ように予じめ設定されているものである。センサーSaが
信号を発する→実揚程Haa→所要末端圧力Hpa→全揚程HT
a→管路抵抗曲線Fa(目標値)、センサーSbが信号を発
する→実揚程Hab→所要末端圧力Hpb→全揚程HTb→管路
抵抗曲線Fb(目標値)、センサーScが信号を発する→実
揚程Hac→所要末端圧力Hpc→全揚程HTc(目標値))同
図には第1図に於ける各給水器具に対応する実揚程、所
要末端圧力、管路抵抗などの圧力を示してある。たとえ
ば、この実施例の場合には、負荷水量が最大値QMAXであ
れば、即ち、給水器具9aが使用されている場合にはセン
サーSaが信号を発するので受信部Xの演算回路部は予じ
め定めている水量0の時圧力Haa+Hpa、と水量QMAXの時
HTaを結ぶ曲線Faを目標値の信号として制御部CTLに送
る。そして、これらの給水器具のうち9aが最後まで使用
され、需要水量が変動すると前述したようにセンサーSa
が信号を発しているので目標値は曲線Faとこれによって
定まる関数Ho=(Q)に流量センサー8の検出した流
量信号を与えて求め、この曲線Fa上をOo点からOs点の間
で、運転速度もNMAXからNMINに変えて給水を続ける。給
水器具9aが使用されず9bが使用され需要量変化が生じる
と、センサーSbの信号が発しているので受信部Xの演算
回路部は予じめ定めている水量Oの時の圧力Hab+Hpbと
水量2/3QMAXの時の圧力HTbを結ぶ曲線Fbをあらためて目
標値の信号として制御部CTLに送る。そして、需要水量
が変動すると前述と同様にこの曲線上をOl′点からOs
点の間で、運転速度もNハ′〜NMIN′の間で変えて給水
を続ける。給水器具が9cだけとなった場合も同様にセン
サーScの信号が発せられることにより受信部Xの演算回
路部は予じめ定めている水量0の時の圧力Hac+Hpcと水
量QMAX/3の時の圧力HTcを結ぶ曲線Fcを改めて目標値の
信号として制御部CTLに送る。この場合も前述と同様に
需要水量が変動すると前述と同様にこの曲線をO2″点か
らOs″点の間で、運転速度もNニ″からNMIN″の間で変
えて給水を続ける。尚この実施例に於いて、受信部Xの
演算回路部に抵抗曲線とポンプの運転速度との関係を予
じめ設定させておくことにより流量センサーを省略する
ことも可能である。このように従来例を示す第7図と比
較し、変速範囲が広くなることが顕著である。
An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a detailed view of the water supply pipe shown in FIG. 5, and in the case of the present embodiment, for example, sensors Sa to Sc are provided in or near the water supply equipment 9a to 9c for detecting the usage state of the water supply equipment. . The required terminal pressures of the water supply devices 9a to 9c are Hpa, Hpb, and Hpc, respectively. FIG. 2 shows a block diagram for performing the operation control of the present embodiment. Pw is a power source, MCB is a circuit breaker for wiring, INV is an inverter, IM is a variable speed pump 4 although not shown in FIG. The driving motor, X, is a receiver, which detects the usage state of the water supply equipment by the sensors Sa, Sb, Sc and receives a signal (for example, a wireless signal) emitted in response to this signal. For example, when the water supply device 9a is used, the sensor Sa emits a signal. Receiver X
When receiving this signal, the actual head is Haa and the required terminal pressure is Hpa. Water supply equipment 9a is not used 9b or 9b and 9c
Sensor Sb or sensor Sb
According to the signal from Sc, the actual head is Hab, the required terminal pressure is Hpb, and when only the water supply device 9c is used, the signal from the sensor Sc gives the signal corresponding to the actual head Hac and the required terminal pressure Hpc by the receiver X. It has a calculation unit which is issued to the control device CTL. This arithmetic unit can be composed of, for example, a microcomputer or an electronic circuit. Further, PS and FS respectively represent the signal oscillating parts of the pressure sensor 7 and the flow sensor 8 shown in FIG.
It should be noted that this embodiment will be described in detail below with reference to examples of respective control methods. FIG. 3 shows an operation characteristic diagram in the case of the constant discharge pressure control system according to the first embodiment, and the same reference numerals as those in FIG. 6 have the same meaning. In addition, the arithmetic circuit section of the receiving section X shown in FIG. 2 is preset so as to instruct the control section CTL as a target value in the next step during this control. Sensor Sa gives a signal → Actual head Haa → Required end pressure Hpa → Line resistance Ha → Target pressure Hoa, Sensor Sb gives a signal → Actual head Hab → Required end pressure Hpb → Line resistance Hb → Target pressure Hob, Sensor Sc emits a signal → Actual head Hac → Required end pressure → Hpc → Pipe line resistance Hc → Target pressure Hoc When comparing the pressure in the figure with the relationship in Fig. 1, Hoa uses water supply equipment 9a Target pressure (total head) when operating, actual head Haa, required end pressure Hpa, resistance H of pipe line, etc.
It consists of a. Then, for example, the load water amount is the maximum value Q MAX.
If the point of O o on Q-H curve A, is driven at a driving speed N MAX. Of these water supply equipment, 9a is used up to the end, and when the demand water volume fluctuates, the sensor SA emits a signal as described above, so the target pressure Hoa is constant and the line from O o point to O s point In the meantime, the operating speed is also changed from N MAX to N MIN and water supply is continued. When the water supply device 9a is not used and 9b is used to the end and the demand amount changes, the signal from the sensor Sb is emitted, so the target pressure is Hob (the breakdown is the actual head H
ab, required end pressure Hpb, resistance Hb of the pipeline, etc., is constant and the operating speed is N'on this straight line between points O l ′ and O s ′.
To N MIN ′ and continue to supply water. Even when only the water supply device 9c is used, the signal from the sensor Sc is similarly emitted, so that the target pressure is Hoc (the breakdown is the actual head Hac and the required end pressure).
The resistance Hc of the Hpc, the conduit, etc. is constant. On this straight line, this device is opened and closed according to the change in demand, and the O 2 ″ point to O s ″.
During the period, change the operating speed from N ”to N MIN ” and continue water supply. As described above, it is remarkable that the shift range becomes wider than that in FIG. 6 showing the conventional example. FIG. 4 shows an operation characteristic diagram in the case of the constant terminal pressure control system according to the second embodiment, and the same reference numerals as those in FIG. 7 have the same meaning. In addition, the arithmetic circuit section of the receiving section X shown in FIG. 2 is preliminarily set to command the control section CTL as a target value in the next step in combination with the signal of the flow rate sensor FS during this control. It is what Sensor Sa gives a signal → Actual head Haa → Required end pressure Hpa → Total head HT
a → Pipe resistance curve Fa (target value), sensor Sb gives a signal → Actual head Hab → Required end pressure Hpb → Total head HTb → Pipe resistance curve Fb (target value), sensor Sc gives a signal → Actual Head Hac → Required end pressure Hpc → Total head HTc (target value)) The figure shows the actual head, the required end pressure, and the line resistance, etc. corresponding to each water supply device in FIG. For example, in the case of this embodiment, when the load water amount is the maximum value Q MAX , that is, when the water supply device 9a is used, the sensor Sa emits a signal, so that the arithmetic circuit unit of the receiving unit X is preliminarily set. When the prescribed water amount is 0, the pressure is Haa + Hpa, and the water amount is Q MAX .
A curve Fa connecting HTa is sent to the control unit CTL as a target value signal. Then, if 9a of these water supply equipment is used up to the end and the demand water volume fluctuates, the sensor Sa
, The target value is obtained by giving the flow rate signal detected by the flow rate sensor 8 to the curve Fa and the function Ho = (Q) determined by this, and on this curve Fa between the points O o and O s. Then, change the operating speed from N MAX to N MIN and continue supplying water. When the water supply device 9a is not used and 9b is used and the demand amount changes, the signal from the sensor Sb is emitted, so that the arithmetic circuit unit of the receiving unit X causes the pressure Hab + Hpb and the water amount at the predetermined water amount O to be predetermined. The curve Fb connecting the pressure HTb at the time of 2 / 3Q MAX is sent again to the control unit CTL as a target value signal. Then, when the demand water volume fluctuates, on this curve, from the O l ′ point to the O s ′, as described above.
Between the points, the operating speed is also changed between N'and N MIN 'to continue water supply. Even when the water supply device is only 9c, the signal from the sensor Sc is similarly emitted, and the arithmetic circuit unit of the receiving unit X predetermines the pressure when the water amount is 0 Hac + Hpc and the water amount is Q MAX / 3. The curve Fc connecting the pressure HTc of 1 is sent again to the control unit CTL as a signal of the target value. In this case as well, if the demanded water volume fluctuates in the same manner as above, water supply is continued by changing this curve between the O 2 ″ and O s ″ points and the operating speed between N ″ and N MIN ″ as described above. . In this embodiment, the flow rate sensor can be omitted by preliminarily setting the relationship between the resistance curve and the operating speed of the pump in the arithmetic circuit section of the receiving section X. As described above, it is remarkable that the shift range becomes wider than that in FIG. 7 showing the conventional example.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明は給水器具の建物における
設定高さの設置ゾーンとこの設置ゾーンに対応するポン
プの吐出し側の目標圧力を複数予め記憶し、水栓が開状
態にある給水器具に対応した設置ゾーンを検出手段によ
り検出し、この検出した設置ゾーンに基づいてポンプの
吐出し側の目標圧力を予め記憶した複数の目標値の中か
ら選択し、該選択した目標圧力にしたがって前記ポンプ
を速度制御するものであり、これにより使用状態にある
水栓の圧力を設置ゾーンに合わせて下げることができ、
ポンプの運転速度を下げることができる。ポンプの必要
動力は運転速度の三乗にほぼ比例するから本発明によれ
ば大きな省エネルギーを図れる効果がある。
As described above, the present invention stores in advance a plurality of target zones on the discharge side of the pump corresponding to the installation zones of the set height in the building of the water supply apparatus, and the water supply apparatus in which the faucet is in the open state. Detecting the installation zone corresponding to, the target pressure on the discharge side of the pump is selected from a plurality of target values stored in advance based on the detected installation zone, and the target pressure is selected according to the selected target pressure. It controls the speed of the pump, which allows the pressure of the faucet in use to be reduced to match the installation zone,
The operating speed of the pump can be reduced. Since the required power of the pump is almost proportional to the cube of the operating speed, the present invention has an effect of saving a large amount of energy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す給水管にセンサーを取付
けた詳細図、第2図は本実施例の制御のブロック図、第
3図は第1の実施例を示す吐出し圧力一定制御方式の運
転特性図、第4図は第2の実施例を示す末端圧力一定制
御の運転特性図。第5図は従来の給水装置のシステム系
統図、第6図は吐出し圧力一定制御方式の運転特性図、
第7図は末端圧力一定制御方式の運転特性図。 4…可変速ポンプ 6…給水管 7…圧力センサー 8…流量センサー 9a,9b,9c…給水器具 Sa,Sb,Sc…センサー CTL…制御装置
FIG. 1 is a detailed view showing a sensor of a water supply pipe showing an embodiment of the present invention, FIG. 2 is a block diagram of control of the present embodiment, and FIG. 3 is a constant discharge pressure control of the first embodiment. Fig. 4 is an operating characteristic diagram of the system, and Fig. 4 is an operating characteristic diagram of the terminal pressure constant control showing the second embodiment. FIG. 5 is a system diagram of a conventional water supply device, FIG. 6 is an operation characteristic diagram of a constant discharge pressure control system,
FIG. 7 is an operating characteristic diagram of the constant end pressure control method. 4 ... Variable speed pump 6 ... Water supply pipe 7 ... Pressure sensor 8 ... Flow rate sensor 9a, 9b, 9c ... Water supply equipment Sa, Sb, Sc ... Sensor CTL ... Control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可変速ポンプと、 前記可変速ポンプの速度を制御する制御装置と、 前記可変速ポンプの吐出し側に配設した給水管と、 前記給水管の末端に備えられた水栓と、 前記給水管に設けられ該給水管の水圧を検出し前記制御
装置に出力する圧力センサーとを備え、 前記圧力センサの検出した圧力が予め記憶した前記ポン
プの吐出し側の目標圧力になるように前記可変速ポンプ
の速度制御を行ってゆく可変速ポンプの運転装置におい
て、 前記水栓の開状態を検出し該水栓の建物における設置高
さに応じて予め定めた設置ゾーンに対応する信号を発す
る検出手段を備え、 前記制御装置は、前記設置ゾーンに応じて変えた複数の
目標圧力を記憶する記憶手段と、前記検出手段から前記
設置ゾーンに対応する信号を受信し前記記憶手段に記憶
された複数の目標圧力の中から受信された設置ゾーン対
応信号に基づき目標圧力を選択する手段を備え、 前記制御装置は該選択された目標圧力にしたがって前記
ポンプを速度制御してゆくように構成されたことを特徴
とする可変速ポンプの運転装置。
1. A variable speed pump, a control device for controlling the speed of the variable speed pump, a water supply pipe arranged on the discharge side of the variable speed pump, and a faucet provided at the end of the water supply pipe. And a pressure sensor provided on the water supply pipe to detect the water pressure of the water supply pipe and output the water pressure to the control device, and the pressure detected by the pressure sensor becomes a target pressure on the discharge side of the pump stored in advance. In the operating device of the variable speed pump, which controls the speed of the variable speed pump, the open state of the water faucet is detected and a predetermined installation zone corresponding to the installation height of the water faucet in the building is corresponded. A detection means for emitting a signal, the control device, a storage means for storing a plurality of target pressure changed according to the installation zone, and a signal corresponding to the installation zone from the detection means to the storage means. Memory A plurality of target pressures selected based on the received zone-corresponding signal received, the control device is configured to control the speed of the pump according to the selected target pressures. A variable speed pump operating device characterized in that
JP26929685A 1985-12-02 1985-12-02 Variable speed pump operating device Expired - Lifetime JPH0819915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26929685A JPH0819915B2 (en) 1985-12-02 1985-12-02 Variable speed pump operating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26929685A JPH0819915B2 (en) 1985-12-02 1985-12-02 Variable speed pump operating device

Publications (2)

Publication Number Publication Date
JPS62129598A JPS62129598A (en) 1987-06-11
JPH0819915B2 true JPH0819915B2 (en) 1996-03-04

Family

ID=17470371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26929685A Expired - Lifetime JPH0819915B2 (en) 1985-12-02 1985-12-02 Variable speed pump operating device

Country Status (1)

Country Link
JP (1) JPH0819915B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890669B2 (en) * 2011-12-02 2016-03-22 株式会社日立産機システム Water supply system
JP2013256867A (en) * 2012-06-11 2013-12-26 Hitachi Industrial Equipment Systems Co Ltd Water feed system
JP5976496B2 (en) * 2012-10-18 2016-08-23 株式会社日立産機システム Water supply system

Also Published As

Publication number Publication date
JPS62129598A (en) 1987-06-11

Similar Documents

Publication Publication Date Title
WO2012099242A1 (en) Water supply device
KR101602475B1 (en) The optimal control method of inverter booster pump
JPH0819915B2 (en) Variable speed pump operating device
JP2009008035A (en) Variable speed water supply device
JPH08326109A (en) Water supply direct-connection water service system
JPH08159079A (en) Revolution control water supply system with pressure fluctuation restraining function
JP3649897B2 (en) Direct water supply system
JPH08291798A (en) Water feed device
EP2990652A1 (en) Pump device
JPH07331711A (en) Pressure intensifying water supply system for high middle layer building
JPH08159078A (en) Revolution control water supply system with small water quantity stop function
JPH07268914A (en) Underwater pump and water receiving tank integrated pressurized water supply system
JPH06102909B2 (en) Automatic water supply system
JPH10103251A (en) Automatic water supply device
JPS5885382A (en) Method of driving variable speed pump
KR101605111B1 (en) Apparatus and method of driving booster pump for saving power
JPH0324591B2 (en)
JPS6122157B2 (en)
JP7475658B2 (en) Water supply equipment
JPS584196B2 (en) Pump soil wash
JPS59131784A (en) Control of operating number of pumps
JPH0626081A (en) Water supply pressurizing device
JPS59200096A (en) Method of controllng number of pumps to be operated
JPH08277781A (en) Water feeding device
JPS5847268Y2 (en) Tankless tankless