JPH08325678A - Nonoriented silicon steel sheet excellent in core loss after stress relieving annealing and its production - Google Patents

Nonoriented silicon steel sheet excellent in core loss after stress relieving annealing and its production

Info

Publication number
JPH08325678A
JPH08325678A JP7133264A JP13326495A JPH08325678A JP H08325678 A JPH08325678 A JP H08325678A JP 7133264 A JP7133264 A JP 7133264A JP 13326495 A JP13326495 A JP 13326495A JP H08325678 A JPH08325678 A JP H08325678A
Authority
JP
Japan
Prior art keywords
less
wtppm
annealing
iron loss
strain relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7133264A
Other languages
Japanese (ja)
Other versions
JP3148567B2 (en
Inventor
Masaki Kono
正樹 河野
Susumu Okamura
進 岡村
Minoru Takashima
高島  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13326495A priority Critical patent/JP3148567B2/en
Publication of JPH08325678A publication Critical patent/JPH08325678A/en
Application granted granted Critical
Publication of JP3148567B2 publication Critical patent/JP3148567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To attain low core loss and high magnetic flux density by forming the compsn. of a steel into the one contg. specified amounts of C, Si, Mn, Ti, Sb, Zr, Al and rare earth metals, and the balance iron with inevitable impurities. CONSTITUTION: The componental compsn. of a steel is formed of, by weight, <=0.001% C, 1.0 to 2.5% Si, 0.10 to 1.5% Mn, <=15ppm Ti, 0.002 to 0.5% Sb, <=80ppm Zr, 0.2 to 1.5% Al, 2 to 80ppm rare earth metals, and the balance iron with inevitable impurities. This steel is cast to form into a slab, which is, directly or after cooling, reheated, is thereafter subjected to hot rolling, is subjected to cold rolling for one time or >= two times including process annealing and is subsequently subjected to finish annealing. Thus, it can sufficiently meet the requirement of improving the characteristics of the quality of the nonoriented silicon steel sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁気特性に優れ、かつ
経済性にも優れる無方向性電磁鋼板およびその製造方法
を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention proposes a non-oriented electrical steel sheet which is excellent in magnetic properties and economical and a manufacturing method thereof.

【0002】無方向性電磁鋼板は、回転器や変圧器など
の電気機器類の鉄心等に使用される。近年、これら電気
機器類の高効率化指向が高まり、それらの鉄心材料とし
て使用される無方向性電磁鋼板に対しては、経済性の向
上とともに高磁束密度化および低鉄損化要求が極めて強
くなってきている。
Non-oriented electrical steel sheets are used for iron cores of electric equipment such as rotors and transformers. In recent years, the trend toward higher efficiency of these electric devices has increased, and for non-oriented electrical steel sheets used as their iron core materials, there is a strong demand for higher magnetic flux density and lower iron loss as well as improved economic efficiency. It has become to.

【0003】[0003]

【従来の技術】無方向性電磁鋼板の低鉄損化の手段とし
ては、結晶粒径の最適化、ならびに比抵抗をアップする
方法があり、結晶粒径は150 〜200 μm で鉄損が最小に
なること、および比抵抗の増大にはSiならびにAl含有量
の増加で達成でき、よって鉄損が低減することが知られ
ている。
2. Description of the Related Art As a means of reducing iron loss of non-oriented electrical steel sheets, there is a method of optimizing the crystal grain size and increasing the specific resistance. The crystal grain size is 150 to 200 μm and the core loss is the minimum. It is known that the increase in the specific resistance and the increase in the specific resistance can be achieved by increasing the Si and Al contents, and thus the iron loss is reduced.

【0004】ただし、Si, Al含有量を増加すると ・飽和磁束密度が低下する。 ・打ち抜き性が低下する。 などの問題点があることも従来からよく知られている。However, when the Si and Al contents are increased, the saturation magnetic flux density decreases. -Punching performance is reduced. It is well known that there are problems such as the above.

【0005】特に、打抜き性は、無方向性電磁鋼板に求
められる重要な特性で、需要家で所定の形状に打ち抜か
れたのち歪み取り焼鈍を施すことが通常であり、その際
複雑な形状に打ち抜かれるために、優れた打ち抜き精度
が要求される。この打ち抜き精度は合金成分の増量によ
る硬さの増加や結晶粒径の増大により劣化する。実用上
は、Si含有量が1.0wt %を超えたり、製品板結晶粒径が
40μm を超えると打ち抜き精度が著しく劣化し問題とな
る。
Particularly, the punching property is an important characteristic required for a non-oriented electrical steel sheet, and it is usual for a customer to punch the product into a predetermined shape and then subject it to a strain relief annealing to obtain a complicated shape. Excellent punching accuracy is required for punching. This punching accuracy deteriorates due to an increase in hardness due to an increase in the amount of alloy components and an increase in crystal grain size. Practically, the Si content exceeds 1.0 wt% and the crystal grain size of the product plate is
If it exceeds 40 μm, the punching accuracy will be significantly deteriorated, causing a problem.

【0006】このような、鉄損と打ち抜き精度という相
反する性質を満足させるため、従来は低Si組成で製品板
結晶粒径を20μm 程度として、需要家での打ち抜き後、
歪み取り焼鈍を施すことにより結晶粒を粗大化させて、
低鉄損化を図っていた。
In order to satisfy such contradictory properties of iron loss and punching precision, conventionally, a product sheet crystal grain size of about 20 μm was used for a low Si composition, and after punching by a customer,
The grain is coarsened by applying strain relief annealing,
It was trying to reduce iron loss.

【0007】前記したように、近年回転器等において高
効率化指向が高まり、打ち抜き性を多少犠牲にしても、
高磁束密度でかつ最終的に非常に低い鉄損が得られる歪
み取り焼鈍時の結晶粒成長性に優れる材料を望む声が強
くなってきた。この要求にこたえるには、 ・Si, Al含有量の適度な増量 ・歪み取り焼鈍後の鉄損のさらなる低減(結晶粒径粗大
化) が重要である。このうち、結晶粒径粗大化には、歪み取
り焼鈍温度アップが効果的であるが、コスト的に問題と
なり実用上は750 ℃を超える焼鈍温度は採用されない。
As described above, in recent years, there has been an increasing trend toward higher efficiency in rotating machines and the like, and even if punching performance is sacrificed to some extent,
There has been a strong demand for a material having a high magnetic flux density and an excellent crystal grain growth property during strain relief annealing that can finally obtain a very low iron loss. In order to meet this requirement, it is important to moderately increase the Si and Al contents and to further reduce the iron loss after the stress relief annealing (coarse grain size coarsening). Among them, increasing the strain relief annealing temperature is effective for coarsening the crystal grain size, but this is a cost problem, and the annealing temperature exceeding 750 ° C is not practically adopted.

【0008】このような状況のもと、高磁束密度でかつ
最終的に低鉄損が得られる、歪み取り焼鈍時に結晶粒成
長性に優れることによって低温短時間焼鈍が可能な無方
向性電磁鋼板を製造する技術はこれまで皆無であった。
Under these circumstances, a non-oriented electrical steel sheet capable of high-temperature magnetic flux density and finally low iron loss, and having excellent grain growth during strain relief annealing, which enables low-temperature short-time annealing. Until now, there has been no technology to manufacture.

【0009】ところで、結晶粒成長を阻害する原因は基
地鉄中に微細に分散した介在物や析出物であることはよ
く知られている。無方向性電磁鋼板中に分散する介在物
や析出物としては、各種の酸化物(たとえば、SiO2, Mn
O, Al2O3など)や各種の窒化物および硫化物(たとえ
ば、AlN, TiN, ZrN, MnSなど)が挙げられる。以下、こ
れらの酸化物、窒化物および硫化物について言及する。
By the way, it is well known that the cause of inhibiting crystal grain growth is inclusions or precipitates finely dispersed in matrix iron. Inclusions and precipitates dispersed in the non-oriented electrical steel sheet include various oxides (for example, SiO 2 , Mn
O, Al 2 O 3, etc.) and various nitrides and sulfides (eg, AlN, TiN, ZrN, MnS, etc.). Hereinafter, reference will be made to these oxides, nitrides and sulfides.

【0010】 酸化物 Alを0.2wt %以上添加すれば、十分に溶鋼段階で凝集、
浮上させることができるため、問題はなくなっている。
If the oxide Al is added in an amount of 0.2 wt% or more, it is sufficiently agglomerated in the molten steel stage,
Since it can be brought up, the problem is gone.

【0011】 硫化物 γ→α変態点の高いSi:1.0wt %以上の無方向性電磁鋼
板では、希土類成分(REM :原子番号57〜71までの15元
素ならびにSc, Yの2元素を加えた17元素の総称)を含
む合金やCaを添加することにより、安定で、しかも粗大
な硫化物としてSを固定できることが知られていて、そ
の技術は、特開昭51−62115 号(鉄損の低い無方向性珪
素鋼板)、同52−2824号(希土類金属で処理された冷間
圧延非配向珪素鋼とその製法)、同55−34675 号(リジ
ングの少ない無方向性珪素鋼板の製造方法)、同56−10
2550号(磁気特性の安定した無方向性珪素鋼板)、同57
−192219号(鉄損の低い無方向性けい素鋼板の製造方
法)、同58−164724号(磁気特性の優れた無方向性電磁
鋼板の製造方法)公報などに開示されている通りであ
る。
Si: High sulfide γ → α transformation point: In a non-oriented electrical steel sheet of 1.0 wt% or more, rare earth components (REM: 15 elements up to atomic number 57 to 71 and 2 elements of Sc and Y) were added. It is known that S can be fixed as a stable and coarse sulfide by adding an alloy containing 17 elements (general term of 17 elements) or Ca, and the technique is disclosed in JP-A-51-62115 (in Japanese). Low non-oriented silicon steel sheet), No. 52-2824 (Cold rolled non-oriented silicon steel treated with rare earth metal and its manufacturing method), No. 55-34675 (Method for producing non-oriented silicon steel sheet with less ridging) , Ibid 56-10
No. 2550 (non-oriented silicon steel sheet with stable magnetic properties), 57
No. 192219 (method for producing non-oriented silicon steel sheet with low iron loss), No. 58-164724 (method for producing non-oriented electrical steel sheet having excellent magnetic properties), and the like.

【0012】 窒化物 これまで、無方向性電磁鋼板では、窒化物固定のため0.
2wt %以上のAl添加やB添加が行われているが、このよ
うな鋼板は低温短時間の歪み取り焼鈍での結晶粒成長が
ほとんどなく、その鉄損特性は全く満足できるものでは
なかった。
Nitride Until now, in the non-oriented electrical steel sheet, it is necessary to fix the nitride to 0.
Although 2 wt% or more of Al or B is added, such a steel sheet has almost no crystal grain growth by strain relief annealing at a low temperature for a short time, and its iron loss characteristics are not completely satisfactory.

【0013】以上、従来からの知見の範囲では、低温短
時間(例えば725 ℃・1時間)の歪み取り焼鈍での結晶
粒成長性は不十分であり、得られる鉄損は全く不十分で
あった。
As described above, in the range of conventional knowledge, the crystal grain growth property at low temperature for a short time (for example, 725 ° C. for 1 hour) for strain relief annealing is insufficient, and the obtained iron loss is not sufficient at all. It was

【0014】[0014]

【発明が解決しようとする課題】この発明は、前記した
事情に鑑み、経済性に優れるとともに、歪み取り焼鈍時
の粒成長性に優れしたがって歪み取り焼鈍後に低鉄損
で、かつ高磁束密度を有する無方向性電磁鋼板とその製
造方法を提案することを目的とする。
In view of the above-mentioned circumstances, the present invention is excellent in economic efficiency, and is excellent in grain growth during strain relief annealing. Therefore, low iron loss and high magnetic flux density are obtained after the strain relief annealing. It is an object of the present invention to propose a non-oriented electrical steel sheet and a manufacturing method thereof.

【0015】なお、前記したように、Si, Al等の含有量
を増量して低鉄損化をはかることは、一般に磁束密度や
打ち抜き性が低下するが、この発明では、磁束密度や打
ち抜き性を損なうことなく低鉄損化を達成させようとす
るものである。
As described above, increasing the content of Si, Al or the like to reduce the iron loss generally lowers the magnetic flux density and the punchability, but in the present invention, the magnetic flux density and the punchability are reduced. It is intended to achieve a low iron loss without damaging the steel.

【0016】[0016]

【課題を解決するための手段】近年、分析精度の向上に
より、微量成分についてもPPm オーダーで定量的に分析
が可能となってきた。そこで、発明者らは、鋼中の微量
成分ならびにSiおよびAl含有量が低温短時間の歪み取り
焼鈍後の磁気に及ぼす影響について種々検討を行った。
その結果、10wtPPm 程度の微量のTiおよびZrが低温短時
間の歪み取り焼鈍後の鉄損に著しく影響を及ぼしている
こと、加えて高Si量領域ではAl量が上記影響に関与する
ことの知見を得た。
[Means for Solving the Problems] In recent years, it has become possible to quantitatively analyze even minor components in the PPm order by improving the accuracy of analysis. Therefore, the inventors conducted various studies on the effects of trace components and Si and Al contents in steel on the magnetism after low-temperature and short-time strain relief annealing.
As a result, it was found that trace amounts of Ti and Zr of about 10 wtPPm significantly affect the iron loss after low-temperature and short-time strain relief annealing, and in addition, the Al amount contributes to the above influence in the high Si amount region. Got

【0017】さらに、発明者らは、高Si材においてAl量
を制御しTi, Zrを低減するとともに、微量の希土類成分
を共存させることにより、歪み取り焼鈍時の結晶粒成長
性を著しく改善し、従来不可能であった低温短時間の歪
み取り焼鈍後の鉄損に優れる無方向性電磁鋼板を工業的
に製造できることを見出し、この発明を達成したもので
ある。
Further, the inventors have remarkably improved the crystal grain growth property during strain relief annealing by controlling the Al amount in a high Si material to reduce Ti and Zr and coexisting with a trace amount of a rare earth component. The present invention has been accomplished by finding that a non-oriented electrical steel sheet having excellent iron loss after low-temperature and short-time strain relief annealing, which has been impossible in the past, can be industrially produced.

【0018】すなわち、この発明の要旨とするところは
以下の通りである。 C:0.01wt%以下、Si:1.0 wt%以上、2.5wt %以
下、Mn:0.10wt%以上、1.5wt %以下、Ti:15wtPPm 以
下、Sb:0.002wt %以上、0.5wt %以下、Zr:80wtPPm
以下、Al:0.2wt %以上、1.5wt %以下およびREM :2
wtPPm 以上、80wtPPm 以下を含有し、残部は鉄および不
可避的不純物の組成になることを特徴とする歪み取り焼
鈍後鉄損に優れる無方向性電磁鋼板である(第1発
明)。
That is, the gist of the present invention is as follows. C: 0.01 wt% or less, Si: 1.0 wt% or more, 2.5 wt% or less, Mn: 0.10 wt% or more, 1.5 wt% or less, Ti: 15 wtPPm or less, Sb: 0.002 wt% or more, 0.5 wt% or less, Zr: 80wtPPm
Below, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2
A non-oriented electrical steel sheet excellent in iron loss after strain relief annealing, characterized by containing wtPPm or more and 80wtPPm or less and the balance being a composition of iron and unavoidable impurities (first invention).

【0019】 第1発明に記載の成分組成になる鋼を
鋳造してスラブとなし、直接あるいは冷却後再加熱した
のち熱間圧延し、1回または中間焼鈍を挟む2回以上の
冷間圧延を行ったのち、仕上焼鈍を施すことを特徴とす
る歪み取り焼鈍後鉄損に優れる無方向性電磁鋼板の製造
方法である(第2発明)。
The steel having the chemical composition described in the first aspect of the invention is cast into a slab, which is hot-rolled directly or after cooling and then re-heating, followed by one or two or more cold-rolling steps with intermediate annealing. This is a method for producing a non-oriented electrical steel sheet having excellent iron loss after strain relief annealing, which is characterized by performing finish annealing after performing (second invention).

【0020】 第1発明に記載の成分組成になる鋼を
鋳造してスラブとなし、直接あるいは冷却後再加熱した
のち熱間圧延し、800 〜1100℃の温度範囲での熱延板焼
鈍を経て、1回または中間焼鈍を挟む2回以上の冷間圧
延を行ったのち、仕上焼鈍を施すことを特徴とする歪み
取り焼鈍後鉄損に優れる無方向性電磁鋼板の製造方法で
ある(第3発明)。
The steel having the composition as described in the first aspect of the invention is cast into a slab, which is either directly or after cooling, reheating, hot rolling, and hot-rolled sheet annealing in the temperature range of 800 to 1100 ° C. A method for producing a non-oriented electrical steel sheet having excellent core loss after strain relief annealing, which comprises performing cold annealing at least once or at least two times with intermediate annealing sandwiched, and then performing finish annealing (3rd invention).

【0021】[0021]

【作用】この発明の作用を実験例を交えて以下に述べ
る。発明者らは、従来の知見よりさらに詳しく無方向性
電磁鋼板の低温歪み取り焼鈍時の結晶粒成長性につい
て、実験・検討を行った。その結果、極微量のZr, Ti,
REM が低温短時間歪み取り焼鈍時の結晶粒成長性に著し
い影響を与え、なおかつ高Si量領域においてAl添加がそ
の結晶粒成長に有効であることが明らかとなった。
The operation of the present invention will be described below with reference to experimental examples. The inventors conducted experiments and studies on the crystal grain growth property of the non-oriented electrical steel sheet during low temperature strain relief annealing in more detail than the conventional knowledge. As a result, trace amount of Zr, Ti,
It was clarified that REM significantly affects the crystal grain growth during low temperature short time strain relief annealing, and that Al addition is effective for the crystal grain growth in the high Si content region.

【0022】それらの実験結果を成分別に以下に順に述
べる。なおこれらの実験は研究室的規模で行ったもので
ある。 Zr Zrが低温短時間歪み取り焼鈍時の粒成長性に及ぼす影響
について調査した。種々のZr濃度を有するSi:1.5wt
%, Mn:0.55wt%, Ti:5wtPPm およびAl:0.5wt %を
含有する鋼を熱間圧延したのち冷間圧延し、その後790
℃・30秒間の仕上げ焼鈍を施してそれぞれ製品板とし
た。これら製品板の結晶粒径は25〜27μm の範囲であっ
た。その後これらの製品板に750 ℃・2時間および725
℃・1時間の歪み取り焼鈍を施し鉄損(W15/50) ならび
に結晶粒径を調査した。それらの調査結果を図1および
図2に示す。
The experimental results will be described in order below for each component. These experiments were conducted on a laboratory scale. The effect of Zr Zr on grain growth during low temperature short time strain relief annealing was investigated. Si with various Zr concentrations: 1.5 wt
%, Mn: 0.55wt%, Ti: 5wtPPm and Al: 0.5wt% steel hot-rolled, then cold-rolled, then 790
Finished annealing was performed at ℃ for 30 seconds to make each product plate. The crystal grain size of these product plates was in the range of 25 to 27 μm. Afterwards, apply these product plates to 750 ° C for 2 hours and 725
Strain relief annealing was carried out at ℃ for 1 hour, and iron loss (W15 / 50) and crystal grain size were investigated. The results of those investigations are shown in FIGS. 1 and 2.

【0023】図1は750 ℃・2時間および725 ℃・1時
間の歪み取り焼鈍後の鉄損(W15/50)に及ぼすZr濃度の
影響を示すグラフである。図1から明らかなように725
℃・1時間の歪み取り焼鈍ではZr濃度が5wtPPm 未満で
のみ良好な鉄損が得られている。そして、Zr濃度が5wt
PPm 以上では、歪み取り焼鈍条件が750 ℃・2時間から
725 ℃・1時間に低温短時間化することで、約0.7W/kg
もの鉄損の劣化を生じている。
FIG. 1 is a graph showing the effect of Zr concentration on the iron loss (W15 / 50) after strain relief annealing at 750 ° C. for 2 hours and 725 ° C. for 1 hour. 725 as is clear from FIG.
In the stress relief annealing at 1 ° C for 1 hour, good iron loss was obtained only when the Zr concentration was less than 5wtPPm. And the Zr concentration is 5wt
For PPm and above, strain relief annealing conditions are from 750 ° C for 2 hours
Approximately 0.7W / kg by reducing the temperature to 725 ° C for 1 hour
Deterioration of iron loss has occurred.

【0024】一方、図2は750 ℃・2時間および725 ℃
・1時間の歪み取り焼鈍後の結晶粒径に及ぼすZr濃度の
影響を示すグラフである。図2から明らかなように、72
5 ℃・1時間の歪み取り焼鈍では、Zr濃度が5wtPPm 未
満でのみ良好な結晶粒成長性が得られ、これらの結果か
ら低温短時間焼鈍時の鉄損劣化の原因が結晶粒径の成長
性不良にあることが分る。
On the other hand, FIG. 2 shows 750 ° C. for 2 hours and 725 ° C.
-A graph showing the effect of Zr concentration on the crystal grain size after 1 hour of strain relief annealing. As is clear from FIG. 2, 72
In the strain relief annealing at 5 ° C for 1 hour, good grain growth was obtained only when the Zr concentration was less than 5 wtPPm. From these results, the cause of iron loss deterioration during low temperature short time annealing is the growth of grain size. I know that it is defective.

【0025】このような歪み取り焼鈍条件による結晶粒
成長性の相違は、低温短時間歪み取り焼鈍においてとく
に結晶粒成長阻害因子であるZrを含む微細析出物の影響
を強く受けたためと考えられる。
It is considered that the difference in the crystal grain growth property depending on the strain relief annealing conditions is strongly influenced by the fine precipitates containing Zr which is a grain growth inhibitor in the low temperature short time strain relief annealing.

【0026】上記したように、Zr濃度を5wtPPm 未満と
すれば、低温短時間歪み取り焼鈍後の鉄損は良好になる
ことが明らかとなったが、0.2wt %超えのAlを含有する
鋼の工場規模での溶製では、Zr濃度を5wtPPm 未満にす
ることは極めて困難である。その理由は、溶鋼に添加さ
れる合金鉄中のZrを低減しても、スラグや耐火物中のZr
化合物がAlによって還元され、鋼中のZr濃度が5wtPPm
以上となってしまうことにある。
As described above, when the Zr concentration was less than 5 wtPPm, it was revealed that the iron loss after the low temperature short-time strain relief annealing was good, but the steel containing Al of more than 0.2 wt% was found. It is extremely difficult to reduce the Zr concentration to less than 5 wtPPm in the smelting on a factory scale. The reason is that even if Zr in ferroalloy added to molten steel is reduced, Zr in slag and refractories is reduced.
The compound is reduced by Al and the Zr concentration in steel is 5wtPPm
That is all.

【0027】そこで、発明者らは種々の添加成分が低温
短時間の歪み取り焼鈍後の鉄損に及ぼす影響について調
査した。調査結果の1例を以下に記す。
Therefore, the inventors investigated the effect of various additive components on the iron loss after strain relief annealing at low temperature for a short time. An example of the survey results is shown below.

【0028】種々のZr濃度を有するSi:1.5wt %, Mn:
0.55wt%, Ti:5wtPPm およびAl:0.5wt %になる成分
組成にREM を濃度20wtPPm で添加した鋼と無添加の鋼と
について、それぞれ熱間圧延したのち冷間圧延し、その
後、790 ℃・30秒間の仕上げ焼鈍を施し製品板とした。
これらの製品板の結晶粒径は24〜26μm の範囲であっ
た。
Si having various Zr concentrations: 1.5 wt%, Mn:
Steel with 0.55wt%, Ti: 5wtPPm and Al: 0.5wt% with REM added at 20wtPPm and steel without additive were each hot-rolled and then cold-rolled, then 790 ℃ Finish annealing was performed for 30 seconds to obtain a product plate.
The crystal grain size of these product plates was in the range of 24-26 μm.

【0029】その後これらの製品板に725 ℃・1時間の
歪み取り焼鈍を施したのち鉄損 (W/15/50)を調査した。
それらの調査結果を図3に示す。図3はREM 添加有り無
しにおける725 ℃・1時間の歪み取り焼鈍後の鉄損(W/
15/50)に及ぼすZr濃度の影響を示すグラフである。図3
から明らかなように低温短時間の歪み取り焼鈍であって
も、REM の添加によってZr濃度が80wtPPm まで良好な鉄
損を得ることができた。
Thereafter, these product sheets were subjected to strain relief annealing at 725 ° C. for 1 hour, and then the iron loss (W / 15/50) was investigated.
The results of those investigations are shown in FIG. Fig. 3 shows the iron loss (W /
15 is a graph showing the influence of Zr concentration on 15/50). FIG.
As is clear from the above, even when strain relief annealing was carried out at a low temperature for a short time, good iron loss up to a Zr concentration of 80 wtPPm could be obtained by adding REM.

【0030】このように、極微量(2〜80wtPPm ) のRE
M を含有させることにより、低温短時間歪み取り焼鈍後
の鉄損へのZrの悪影響を除くことができることを新規に
知見した。
Thus, a very small amount (2-80 wtPPm) of RE
It was newly found that the inclusion of M can eliminate the adverse effect of Zr on iron loss after low temperature short time strain relief annealing.

【0031】 Ti 種々のTi濃度を有するSi:1.5wt %, Mn:0.55wt%, Z
r:5wtPPm およびAl:0.5wt %になる成分組成にREM
を濃度20wtPPm で添加した鋼と無添加の鋼とについて、
それぞれ熱間圧延したのち冷間圧延し、その後、790 ℃
・30秒間の仕上げ焼鈍を施して製品板とした。これらの
製品板の結晶粒径は23〜27μm の範囲であった。
Ti Si having various Ti concentrations: 1.5 wt%, Mn: 0.55 wt%, Z
REM for the composition of ingredients: r: 5wtPPm and Al: 0.5wt%
For steel with and without addition of 20 wtPPm
Each is hot-rolled, then cold-rolled, then 790 ° C
・ Finished annealing was performed for 30 seconds to make a product plate. The grain size of these product plates ranged from 23 to 27 μm.

【0032】その後これらの製品板に725 ℃・1時間の
歪み取り焼鈍を施したのち鉄損(W/15/50)を調査した。
それらの調査結果を図4に示す。図4はREM 添加有り無
しにおける725 ℃・1時間の歪み取り焼鈍後の鉄損(W/
15/50)に及ぼすTi濃度の影響を示すグラフである。図4
から明らかなように、Ti濃度が増加すると鉄損は劣化
し、とくにREM を添加しない場合その傾向は顕著になる
が、REM を添加し、かつTi濃度を15wtPPm 以下、とくに
10wtPPm 以下とすることにより、良好な鉄損が得られる
ことが分る。
After that, these product sheets were subjected to strain relief annealing at 725 ° C. for 1 hour, and then the iron loss (W / 15/50) was investigated.
The results of those investigations are shown in FIG. Fig. 4 shows the iron loss (W / W) after strain relief annealing at 725 ° C for 1 hour with and without REM addition.
15 is a graph showing the effect of Ti concentration on 15/50). FIG.
As is clear from the above, the iron loss deteriorates as the Ti concentration increases, and this tendency becomes remarkable especially when REM is not added, but when REM is added and the Ti concentration is 15 wtPPm or less,
It can be seen that good iron loss can be obtained by setting the content to 10 wtPPm or less.

【0033】 REM 種々のREM 濃度を有するSi:1.5wt %, Mn:0.55wt%,
Ti:8wtPPm ,Zr :42wtPPm およびAl:0.5wt %を含有
する鋼を熱間圧延したのち冷間圧延し、その後、それぞ
れ790 ℃・30秒間の仕上げ焼鈍を施し製品板とした。こ
れらの製品板の結晶粒径は24〜47μm であった。
REM Si having various REM concentrations: 1.5 wt%, Mn: 0.55 wt%,
Steel containing Ti: 8 wtPPm, Zr: 42 wtPPm and Al: 0.5 wt% was hot-rolled, then cold-rolled, and then finish-annealed at 790 ° C for 30 seconds to obtain a product sheet. The grain size of these product plates was 24-47 μm.

【0034】その後これらの製品板に725 ℃・1時間の
歪み取り焼鈍を施したのち鉄損(W15/50)を調査した。そ
れらの結果を図5に示す。図5は725 ℃・1時間の歪み
取り焼鈍後の鉄損(W15/50) に及ぼすREM 濃度の影響を
示すグラフである。図5から明らかなように、REM 濃度
が2〜80wtPPm 、とくに5〜50wtPPm にて著しく良好な
鉄損が得られることが分る。
After that, these product sheets were subjected to strain relief annealing at 725 ° C. for 1 hour and then the iron loss (W15 / 50) was investigated. The results are shown in FIG. Fig. 5 is a graph showing the effect of REM concentration on iron loss (W15 / 50) after strain relief annealing at 725 ° C for 1 hour. As is clear from FIG. 5, it is clear that remarkably good iron loss can be obtained when the REM concentration is 2 to 80 wtPPm, particularly 5 to 50 wtPPm.

【0035】 Sb Si:1.5wt %, Mn:0.55wt%, Ti:5wtPPm 、Zr:15wt
PPm 、Al:0.5wt %およびREM :20wtPPm になる成分組
成にSbを濃度0.05wt%で添加した鋼と無添加の鋼とにつ
いて、それぞれ熱間圧延したのち冷間圧延し、その後、
790 ℃・30秒間の仕上げ焼鈍を施し製品板とした。
Sb Si: 1.5 wt%, Mn: 0.55 wt%, Ti: 5 wtPPm, Zr: 15 wt
PPm, Al: 0.5 wt% and REM: 20 wtPPm of the composition with Sb added at a concentration of 0.05 wt% and the additive-free steel were hot-rolled and cold-rolled, respectively, and then
Finished annealing was performed at 790 ° C for 30 seconds to obtain a product plate.

【0036】これらの製品板について結晶粒径を測定す
るとともに磁束密度(B50) および鉄損(W15/50) を測定
した。その結果結晶粒径は25〜27μm の範囲にあり、磁
束密度および鉄損は表1に示す値が得られた。
The crystal grain size of these product plates was measured, and the magnetic flux density (B 50 ) and iron loss (W 15/50) were measured. As a result, the crystal grain size was in the range of 25 to 27 μm, and the magnetic flux density and iron loss were the values shown in Table 1.

【0037】[0037]

【表1】 表1から明らかなように、Sbを添加することにより磁束
密度(B50) が向上することがわかる。
[Table 1] As is clear from Table 1, the magnetic flux density (B 50 ) is improved by adding Sb.

【0038】このように、1.5 %Si−0.5 %Alを含む無
方向性電磁鋼板において、REM を2〜80wtPPm の範囲で
含有させ、かつTi含有量を15wtPPm 以下とすることによ
り、Zr含有量が80wtPPm まで、低温短時間の歪み取り焼
鈍後にて良好な鉄損が得られることが明らかとなった。
したがって、この発明では、従来不可能であった、低温
短時間歪み取り焼鈍後に優れる鉄損を有す無方向性電磁
鋼板の工業的規模での生産が可能になる。
As described above, in the non-oriented electrical steel sheet containing 1.5% Si-0.5% Al, REM is contained in the range of 2 to 80 wtPPm and the Ti content is set to 15 wtPPm or less, so that the Zr content is It was revealed that up to 80 wtPPm, good iron loss can be obtained after low temperature and short time strain relief annealing.
Therefore, the present invention enables industrial-scale production of a non-oriented electrical steel sheet having excellent iron loss after low-temperature short-time strain relief annealing, which has been impossible in the past.

【0039】ここで、この発明と前記した従来技術との
関係についてその相違を以下に列記する。特開昭51−62
115 号、同55−34675 号、同56−102550号および同57−
192219号公報等は、γ→α変態点の高い(もしくは変態
しない)Si:1.0wt %以上の中高Si鋼における、低S
化、S固定のための希土類成分添加に関する技術であ
る。しかしながら、Tiを15wtPPm 以下とすることと、希
土類成分添加との複合効果により、低温短時間歪み取り
焼鈍に著しく良好な鉄損が得られることは、これら従来
公知技術からは何ら示唆されるものはない。
The differences between the present invention and the above-mentioned prior art will be listed below. JP-A-51-62
115, 55-34675, 56-102550 and 57-
Japanese Patent No. 192219 discloses that Si having a high γ → α transformation point (or no transformation): 1.0% by weight or more of low-S
It is a technology related to the addition of rare-earth components for liquefying and fixing S. However, it is suggested from these conventionally known techniques that, by setting Ti to 15 wtPPm or less and the combined effect of adding a rare earth component, a remarkably good iron loss can be obtained in low-temperature short-time strain relief annealing. Absent.

【0040】特開昭52−2824号公報はSi:0.5 〜4.0 %
鋼、同58−164724号公報は4%以下のSi鋼における希土
類成分添加の技術で、γ→α変態点の高い、中高Si鋼に
おける低S化、S固定のための希土類成分添加に関する
技術である。しかしながら、この発明における希土類成
分添加の目的がZrの無害化にあることから、この発明と
は異なる技術であると解される。さらに、Tiを15wtPPm
以下とすることと、希土類成分添加との複合効果によ
り、低温短時間歪み取り焼鈍後に著しく良好な鉄損が得
られることは、これら従来公知技術から示唆されるもの
はない。
JP-A-52-2824 discloses that Si: 0.5-4.0%
Steel, No. 58-164724, is a technique for adding rare earth elements in Si steel of 4% or less, which is a technology for reducing S and fixing S in medium and high Si steels having a high γ → α transformation point. is there. However, since the purpose of adding the rare earth component in the present invention is to render Zr harmless, it is understood that this is a technique different from the present invention. Furthermore, Ti is 15wtPPm
There is no suggestion from these prior arts that a remarkably good iron loss can be obtained after low temperature and short time strain relief annealing due to the combined effect of the following and addition of a rare earth component.

【0041】特開平3−215627号公報はSi:0.1 〜1.4
%, Al:0.2 %未満の無方向性電磁鋼板における、希土
類成分添加の技術である。これに対し、この発明の特徴
はAlを0.2 〜1.5 wt%とし、Tiを15wtPPm 以下とするこ
とと、希土類成分添加との複合効果により、低温短時間
歪み取り焼鈍時に著しく良好な粒成長性、ならびに良好
な鉄損が得られることであり、その効果は上記特開平3
−215627号公報からは到底示唆されるものではなく、こ
の発明はさらに進んだ技術と云える。
Japanese Unexamined Patent Publication No. 3-215627 discloses Si: 0.1 to 1.4.
%, Al: This is a technology for adding rare earth components in non-oriented electrical steel sheets of less than 0.2%. On the other hand, the feature of the present invention is that Al is 0.2 to 1.5 wt% and Ti is 15 wtPPm or less, and due to the combined effect of the addition of a rare earth component, remarkably good grain growth during low temperature short time strain relief annealing, In addition, good iron loss can be obtained, and the effect thereof is described in the above-mentioned JP-A No.
It is not suggested at all from the publication of -215627, and it can be said that the present invention is a further advanced technology.

【0042】なお、Sb添加による集合組織の改善(磁束
密度の向上)は公知であるが、この発明の成分系でのSb
の集合組織の適正化への寄与はこれまで確認されていな
く、この成分系にてSb添加の効果が現出したのは新規知
見である。
It is known that the addition of Sb improves the texture (improves the magnetic flux density).
The contribution to the optimization of the texture has not been confirmed so far, and it is a new finding that the effect of Sb addition appeared in this component system.

【0043】つぎに、この発明の成分組成について、そ
れらの限定理由と好適範囲について述べる。 C:0.01wt%以下 Cは、炭化物の析出により、磁気特性を劣化させるの
で、製品のC含有量は0.01wt%以下とする。
Next, with respect to the component composition of the present invention, the reasons for limitation and the preferable ranges will be described. C: 0.01 wt% or less C deteriorates the magnetic properties due to the precipitation of carbides, so the C content of the product is 0.01 wt% or less.

【0044】Si:1.0 〜2.5wt % Siは、固有抵抗を高めることによって鉄損を低減する有
用な成分である。含有量が多ければ多いほど鉄損の低減
には効果があるが、その反面硬度を高め打ち抜き精度を
劣化させる。含有量が1.0wt %未満では鉄損の低下が不
十分であり、2.5wt %を超えると打ち抜き性が劣化す
る。したがって、その含有量は1.0wt %以上、2.5wt %
以下とする。
Si: 1.0 to 2.5 wt% Si is a useful component for reducing iron loss by increasing the specific resistance. The higher the content, the more effective the iron loss is, but on the other hand, it increases the hardness and deteriorates the punching accuracy. If the content is less than 1.0 wt%, the decrease in iron loss is insufficient, and if it exceeds 2.5 wt%, the punchability deteriorates. Therefore, its content is 1.0 wt% or more, 2.5 wt%
Below.

【0045】Mn:0.10〜1.5wt % Mnは、Sを粗大MnS として固定するという鉄損の低減に
対し有利な働きがあり、そのために含有量は0.10wt%以
上とするが望ましくは0.5wt %以上がよい。一方、Mn含
有量の増加は磁束密度を劣化させるためその含有量の上
限は、1.5wt %とするが好ましくは1.0wt %である。
Mn: 0.10 to 1.5 wt% Mn has an advantageous function for fixing iron loss by fixing S as coarse MnS. Therefore, the content is set to 0.10 wt% or more, preferably 0.5 wt%. The above is good. On the other hand, an increase in the Mn content deteriorates the magnetic flux density, so the upper limit of the Mn content is 1.5 wt%, but preferably 1.0 wt%.

【0046】Ti:15wtPPm 以下 Tiは、極微量で低温短時間歪み取り焼鈍時の粒成長性の
劣化ひいては鉄損を著しく劣化させるので、良好な鉄損
を得るためにその含有量は15wtPPm 以下とするが、さら
に良好な鉄損を得るためには10wtPPm 以下とすることが
望ましい。
Ti: 15 wtPPm or less Ti has a very small amount of 15 wtPPm or less in order to obtain good iron loss because it deteriorates the grain growth property during low-temperature short-time stress relief annealing and remarkably deteriorates iron loss. However, in order to obtain a better iron loss, it is desirable to set it to 10 wtPPm or less.

【0047】なお、Tiは単独で15wtPPm 以下としてもそ
の効果は小さく、REM の添加を同時に行うことによっ
て、低温短時間歪み取り焼鈍時の粒成長性は良好にな
る。
The effect is small even if Ti alone is 15 wtPPm or less, and by adding REM at the same time, the grain growth property during low temperature short time strain relief annealing becomes good.

【0048】Sb:0.002 〜0.5wt % Sbは、粒界偏析成分で、高磁束密度を得るための集合組
織として、(110) 方位増、(111) 方位減に寄与する成分
として知られている。この発明の成分系において、磁束
密度の顕著な向上をはかるためには、含有量が0.002wt
%未満ではその効果に乏しく、0.5wt %を超えるとその
効果は飽和する。したがって、その含有量は0.002wt %
以上、0.5wt %以下とする。
Sb: 0.002 to 0.5 wt% Sb is a grain boundary segregation component and is known as a component that contributes to (110) orientation increase and (111) orientation reduction as a texture for obtaining a high magnetic flux density. . In the component system of the present invention, in order to significantly improve the magnetic flux density, the content is 0.002 wt.
If it is less than%, the effect is poor, and if it exceeds 0.5 wt%, the effect is saturated. Therefore, its content is 0.002 wt%
It should be above 0.5wt%.

【0049】なお、上記のSb添加の効果は、Ti, Zrおよ
びREM の含有量を制御することにより発現するもので、
その理由は明らかでないが、集合組織形成に寄与するSb
が、結晶粒成長性を阻害する因子の働きを抑制すること
により、その潜在効果が顕著になったものと考えられ
る。
The effect of adding Sb is manifested by controlling the contents of Ti, Zr and REM.
The reason is not clear, but Sb that contributes to texture formation
However, it is considered that the latent effect becomes remarkable by suppressing the action of the factor that inhibits the grain growth.

【0050】Zr:80wtPPm 以下 Zrは、極微量で低温短時間歪み取り焼鈍後の鉄損を劣化
させるので、できるだけ低減することが望ましいが、5
wtPPm 以下を工業的に安定して達成することは著しいコ
スト高を招く。そこで、この発明では、工業的に安定し
て達成可能なZr:5〜80wtPPm の範囲においてREM を添
加することによりZrを無害化する。したがって、REM の
添加と併せてZrを80wtPPm 以下にすることにより低鉄損
化の効果が顕著となるのでその含有量は80wtPPm 以下と
する。
Zr: 80 wtPPm or less Zr deteriorates the iron loss after low temperature and short time strain relief annealing in a very small amount, so it is desirable to reduce it as much as possible.
Achieving industrial stability below wtPPm will lead to significant cost increase. Therefore, in the present invention, Zr is rendered harmless by adding REM within the range of Zr: 5 to 80 wtPPm, which can be achieved industrially stably. Therefore, the effect of reducing iron loss becomes remarkable by adding Zr to 80 wtPPm or less together with the addition of REM, so the content should be 80 wtPPm or less.

【0051】Al:0.2 〜1.5wt % Alは、Siと同様に鋼の比抵抗を高め低鉄損化に寄与する
成分である。そのため含有量が多ければ多いほど低鉄損
化への寄与も大きくなるが、1.5wt %を超えると磁束密
度や打ち抜き性を劣化させる。また、含有量が0.2wt %
未満では生成するAlN が微細となり、結晶粒の成長性を
劣化させ鉄損の向上がはかれなくなる。したがって、そ
の含有量は0.2wt %以上、1.5wt %以下とする。
Al: 0.2 to 1.5 wt% Al, like Si, is a component that increases the specific resistance of steel and contributes to lower iron loss. Therefore, the larger the content, the greater the contribution to the reduction of iron loss, but if it exceeds 1.5 wt%, the magnetic flux density and the punchability are deteriorated. In addition, the content is 0.2 wt%
When the amount is less than the above, the AlN generated becomes fine, the growth property of the crystal grains is deteriorated, and the iron loss cannot be improved. Therefore, its content should be 0.2 wt% or more and 1.5 wt% or less.

【0052】REM :2〜80wtPPm REM は、これらの成分の内から1種または2種以上を合
計で2〜80wtPPm の範囲で含有させることにより、工業
的規模での製鋼において不可避的に混入するZrの低温短
時間歪み取り焼鈍時の結晶粒の成長性への悪影響を回避
することができる。上記において、REM の含有量は2wt
PPm 以上でその効果が発揮されるが、望ましくは5wtPP
m 以上含有させることがよい。一方、過度の添加は、RE
M が形成する介在物の増加を招き、REM 系介在物そのも
のによる結晶粒成長の阻害が問題となることからその含
有量は80wtPPm 以下とするが、望ましくは50wtPPm 以下
がよい。
REM: 2 to 80 wtPPm REM is a Zr compound which is unavoidably mixed in steelmaking on an industrial scale by containing one or more of these components in a total amount of 2 to 80 wtPPm. It is possible to avoid adverse effects on the crystal grain growth during low temperature short time strain relief annealing. In the above, the content of REM is 2wt
The effect is exhibited at PPm or more, but preferably 5 wtPP
It is better to contain m or more. On the other hand, excessive addition causes RE
Since the inclusions formed by M increase and the problem of the inhibition of the crystal grain growth by the REM inclusions themselves becomes a problem, the content is set to 80 wtPPm or less, preferably 50 wtPPm or less.

【0053】この発明は上記以外の成分については特に
限定するものではないが、好適範囲は以下の通りであ
る。
The present invention is not particularly limited to the components other than those mentioned above, but the preferred ranges are as follows.

【0054】P:0.2wt %以下Pは、打ち抜き性改善の
ため添加することができるが、含有量が0.2wt %を超 える添加は冷間圧延性を劣化させるので、その含有量は
0.2wt %以下とすることが望ましい。
P: 0.2 wt% or less P can be added in order to improve the punching property, but if the content exceeds 0.2 wt%, the cold rolling property deteriorates, so the content is P.
It is desirable to set it to 0.2 wt% or less.

【0055】S:0.01wt%以下 Sは、MnとともにMnS を形成し、磁壁移動、結晶粒成長
の障害となり磁気特性を劣化させる。したがって、その
含有量の上限は0.01wt%とすることが望ましい。
S: 0.01 wt% or less S forms MnS together with Mn, which becomes an obstacle to domain wall movement and crystal grain growth and deteriorates magnetic properties. Therefore, the upper limit of its content is preferably 0.01 wt%.

【0056】N:0.01wt%以下 Nは、窒化物を生成し、磁壁移動、結晶粒成長の障害と
なり磁気特性を劣化させる。したがって、その含有量の
上限は0.01wt%とすることが望ましい。
N: 0.01 wt% or less N forms a nitride, which interferes with domain wall movement and crystal grain growth and deteriorates magnetic properties. Therefore, the upper limit of its content is preferably 0.01 wt%.

【0057】O:50wtPPm 以下 Oは、50wtPPm 以上含有させると、磁壁移動、結晶粒成
長の障害となり磁気特性を劣化させる。したがって、そ
の含有量は50wtPPm 以下とすることが好ましい。
O: 50 wtPPm or Less If O is contained in an amount of 50 wtPPm or more, it becomes an obstacle to domain wall movement and crystal grain growth and deteriorates magnetic properties. Therefore, its content is preferably 50 wtPPm or less.

【0058】ついで、この発明の製造条件の限定理由な
らびに好適な製造条件について説明する。
Next, the reasons for limiting the manufacturing conditions of the present invention and suitable manufacturing conditions will be described.

【0059】転炉、脱ガスなど、常法の製鋼方法により
溶製し、連続鋳造あるいは鋳造−造塊法によりスラブと
する。
The steel is melted by a conventional steel-making method such as a converter and degassing, and is made into a slab by continuous casting or a casting-ingot-making method.

【0060】その後スラブを熱間圧延するが、スラブを
再加熱したのち熱間圧延する方法、あるいはスラブを再
加熱せずに直接熱間圧延する方法のいずれもが適用でき
る。
Thereafter, the slab is hot-rolled, and either a method of reheating the slab and then hot-rolling it, or a method of directly hot-rolling the slab without reheating it can be applied.

【0061】磁気特性として、特に高い磁束密度を得よ
うとする場合には、熱延板焼鈍、もしくは熱間圧延後巻
き取り時の自己焼鈍により、熱延板の結晶粒を粗大化さ
せ、集合組織を改善することが有効である。熱延板焼鈍
は、箱焼鈍(例えば850 ℃・1時間)あるいは連続焼鈍
(例えば950 ℃・2分間)のいずれもが適用しうる。
In order to obtain a particularly high magnetic flux density as the magnetic property, the crystal grains of the hot-rolled sheet are coarsened by hot-rolled sheet annealing or self-annealing during winding after hot rolling. It is effective to improve the organization. As the hot-rolled sheet annealing, either box annealing (for example, 850 ° C. for 1 hour) or continuous annealing (for example, 950 ° C. for 2 minutes) can be applied.

【0062】ここで、熱延板焼鈍条件を変化した実験例
について述べる。表2に示す成分組成のスラブを熱間圧
延し、950 ℃の温度にて種々の均熱時間の熱延板焼鈍を
施したのち冷間圧延し、その後仕上げ焼鈍を施したのち
725 ℃・1時間の歪み取り焼鈍を施した鋼板について磁
束密度を調査した。
Here, an experimental example in which the hot-rolled sheet annealing conditions are changed will be described. A slab having the composition shown in Table 2 was hot-rolled, annealed at a temperature of 950 ° C for various soaking times, cold-rolled, and then finish-annealed.
The magnetic flux density was investigated for the steel sheet that had been subjected to strain relief annealing at 725 ° C for 1 hour.

【0063】[0063]

【表2】 これらの熱延板焼鈍条件および調査結果を表2に併記し
た。
[Table 2] Table 2 also shows these hot rolled sheet annealing conditions and investigation results.

【0064】表2から明らかなように、この発明の成分
系(試料NO.1)においては、歪み取り焼鈍時の結晶粒成
長性に著しくすぐれているため、従来、良好な密束密度
を得るために5分間を要していた熱延板焼鈍を40秒間以
下にできることが分る。その結果低コストで磁束密度、
鉄損ともに優れる製品を得ることができる。
As is clear from Table 2, in the component system of the present invention (Sample No. 1), since the crystal grain growth property during strain relief annealing is remarkably excellent, a good close packing density is conventionally obtained. It can be seen that the hot-rolled sheet annealing that required 5 minutes for 40 seconds or less can be achieved. As a result, magnetic flux density at low cost,
A product with excellent iron loss can be obtained.

【0065】上記において、熱延板焼鈍温度は800 ℃未
満では熱延板結晶粒の粗大化の効果が小さく、また1100
℃を超えると経済的に不利になるので、その温度は800
℃以上、1100℃以下とすることがよい(第3発明)。
In the above, when the hot-rolled sheet annealing temperature is less than 800 ° C., the effect of coarsening the hot-rolled sheet crystal grains is small,
Since it is economically disadvantageous to exceed ℃, the temperature is 800
It is preferable that the temperature is not less than 0 ° C and not more than 1100 ° C (third invention).

【0066】その後、冷間圧延を行ったのち仕上げ焼鈍
を施し製品板とする。その際、1回の冷間圧延により製
品板厚とし仕上げ焼鈍する方法、中間焼鈍を挟む2回以
上の冷間圧延により製品板厚とし仕上げ焼鈍する方法の
いずれかにより行う。
Then, after cold rolling, finish annealing is performed to obtain a product plate. At that time, it is carried out by one of a method of performing final annealing by one cold rolling to obtain a product sheet thickness and a method of performing final annealing by performing cold rolling two or more times with intermediate annealing interposed therebetween to obtain a product sheet thickness.

【0067】仕上げ焼鈍は、常法のいずれもが適応しう
るが、製品板の結晶粒径が大きすぎると、著しく打ち抜
き精度が損なわれるので、結晶粒径が40μm 未満、好ま
しくは10〜30μm の範囲とする焼鈍条件(温度と時間)
を選択することがよい。また、公知の方法により鋼板表
面に絶縁被膜を被成しても一向に差支えない。
Any of the usual methods can be applied to the finish annealing, but if the crystal grain size of the product plate is too large, the punching precision is remarkably impaired. Therefore, the crystal grain size of less than 40 μm, preferably 10 to 30 μm. Annealing conditions (temperature and time)
Should be selected. Further, there is no problem even if an insulating coating is formed on the surface of the steel sheet by a known method.

【0068】[0068]

【実施例】【Example】

実施例1 転炉で種々の成分組成に溶製し、脱ガス処理後連続鋳造
によりそれぞれスラブとし、冷却することなしに直接熱
間圧延を施し熱延板とした。その後、920 ℃・2分間の
熱延板焼鈍ののち、酸洗を経て冷間圧延を行い板厚0.5m
m の冷延板とし、800 ℃・15秒間の仕上げ焼鈍後絶縁被
膜を被成しそれぞれ製品板とした。その際、各製品板の
結晶粒径は全て35μm 以下であった。しかるのち、各製
品板をせん断後、窒素雰囲気中で725 ℃・1時間の歪み
取り焼鈍を施し、得られた焼鈍板について、それぞれ25
cmエプスタイン法により磁気特性を調査した。各製品板
の分析成分ならびに歪み取り焼鈍後の磁気特性の調査結
果を表3にまとめて示す。
Example 1 A slab was prepared by melting in a converter in various component compositions, degassing, and continuous casting to form slabs, which were directly hot-rolled without cooling to form hot-rolled sheets. Then, after hot-rolled sheet annealing at 920 ° C for 2 minutes, it is pickled and cold-rolled to give a sheet thickness of 0.5 m.
A cold-rolled sheet of m was prepared, and after finishing annealing at 800 ° C for 15 seconds, an insulating coating was applied to each of the product sheets. At that time, the crystal grain size of each product plate was 35 μm or less. After that, each product plate was sheared and then subjected to strain relief annealing at 725 ° C for 1 hour in a nitrogen atmosphere.
The magnetic properties were investigated by cm Epstein method. Table 3 shows the analysis results of the analysis components of each product plate and the magnetic properties after the strain relief annealing.

【0069】[0069]

【表3】 表3から明らかなように、この発明に適合する適合例
(試料NO.1,2) は、打ち抜き精度は良好であり、比較例
に比し磁束密度、鉄損ともに優れている。
[Table 3] As is clear from Table 3, the conforming examples (Samples No. 1 and 2) conforming to the present invention have good punching accuracy and are superior in magnetic flux density and iron loss to the comparative examples.

【0070】実施例2 転炉で種々の成分組成に溶製し、脱ガス処理後連続鋳造
によりそれぞれスラブとし、冷却することなしに直接熱
間圧延を施し熱延板とした。その後、酸洗を経て冷間圧
延を行い板厚0.5mm の冷延板としたのち、800 ℃・15秒
間の仕上げ焼鈍を施し、絶縁被膜を被成してそれぞれ製
品板とした。その際、各製品板の結晶粒径は全て35μm
以下であった。しかるのち、各製品板をせん断後、窒素
雰囲気中で725 ℃・1時間の歪み取り焼鈍を施し、得ら
れた焼鈍板について、それぞれ25cmエプスタイン法によ
り磁気特性を調査した。各製品板の分析成分、打ち抜き
精度ならびに歪み取り焼鈍後の磁気特性の調査結果を表
4にまとめて示す。
Example 2 Various components were melted in a converter, degassed and continuously cast into slabs, which were directly hot-rolled without cooling to obtain hot-rolled sheets. Then, after pickling, cold rolling was performed to obtain a cold rolled sheet having a sheet thickness of 0.5 mm, then finish annealing was performed at 800 ° C. for 15 seconds, and an insulating coating was applied to each to obtain a product sheet. At that time, the crystal grain size of each product plate is 35 μm
It was below. After that, each product plate was sheared and then subjected to strain relief annealing at 725 ° C. for 1 hour in a nitrogen atmosphere, and the magnetic properties of the obtained annealed plates were investigated by the 25 cm Epstein method. Table 4 shows the analysis results of the analytical components, punching accuracy, and magnetic properties after strain relief annealing of each product plate.

【0071】[0071]

【表4】 表4から明らかなように、この発明に適合する適合例
(試料NO.1,2)は、打ち抜き精度は良好であり、比較例
に比し磁束密度、鉄損ともに優れている。
[Table 4] As is apparent from Table 4, the conforming examples (Samples No. 1 and 2) conforming to the present invention have good punching accuracy and are superior in magnetic flux density and iron loss to the comparative examples.

【0072】[0072]

【発明の効果】この発明は、REM の添加と不純物として
のTiおよびZrの規制とによって結晶粒成長性を向上さ
せ、かつ、Sb添加による集合組織の改善により、歪み取
り焼鈍後にて低鉄損化、高磁束密度化を達成できるSi:
1.0wt %以上の無方向性電磁鋼板であって、この発明に
よれば、打ち抜き加工性を阻害することなく、低温短時
間の歪み取り焼鈍にて、高磁束密度で良好な鉄損が得ら
れ、電気機器類の高効率化指向に伴い、それらの鉄心材
料として用いられる無方向性電磁鋼板の品質特性向上要
請に十分応じることができ、かつ、経済性にも優れるこ
とから、その工業的効果は極めて多大である。
EFFECTS OF THE INVENTION The present invention improves grain growth by adding REM and controlling Ti and Zr as impurities, and improves texture by adding Sb to reduce iron loss after strain relief annealing. And high magnetic flux density Si:
A non-oriented electrical steel sheet of 1.0 wt% or more. According to the present invention, good iron loss with high magnetic flux density can be obtained by strain relief annealing at low temperature for a short time without impeding punching workability. With the trend toward higher efficiency of electrical equipment, it is possible to fully meet the demands for improving the quality characteristics of the non-oriented electrical steel sheet used as the iron core material, and because it is also economically advantageous, its industrial effect Is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】750 ℃・2時間および725 ℃・1時間の歪み取
り焼鈍後の鉄損(W15/50) に及ぼすZr濃度の影響を示す
グラフである。
FIG. 1 is a graph showing the effect of Zr concentration on iron loss (W15 / 50) after strain relief annealing at 750 ° C. for 2 hours and 725 ° C. for 1 hour.

【図2】750 ℃・2時間および725 ℃・1時間の歪み取
り焼鈍後の結晶粒径に及ぼすZr濃度の影響を示すグラフ
である。
FIG. 2 is a graph showing the effect of Zr concentration on the crystal grain size after strain relief annealing at 750 ° C. for 2 hours and 725 ° C. for 1 hour.

【図3】REM 添加有り無しにおける725 ℃・1時間の歪
み取り焼鈍後の鉄損(W15/50)に及ぼすZr濃度の影響を
示すグラフである。
FIG. 3 is a graph showing the effect of Zr concentration on iron loss (W15 / 50) after strain relief annealing at 725 ° C. for 1 hour with and without REM addition.

【図4】REM 添加有り無しにおける725 ℃・1時間の歪
み取り焼鈍後の鉄損(W15/50)に及ぼすTi濃度の影響を
示すグラフである。
FIG. 4 is a graph showing the effect of Ti concentration on iron loss (W15 / 50) after strain relief annealing at 725 ° C. for 1 hour with and without REM addition.

【図5】725 ℃・1時間の歪み取り焼鈍後の鉄損(W15/
50) に及ぼすREM 濃度の影響を示すグラフである。
[Fig. 5] Iron loss (W15 / W) after strain relief annealing at 725 ° C for 1 hour
FIG. 50 is a graph showing the effect of REM concentration on 50).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.01wt%以下、 Si:1.0 wt%以上、2.5wt %以下、 Mn:0.10wt%以上、1.5wt %以下、 Ti:15wtPPm 以下、 Sb:0.002wt %以上、0.5wt %以下、 Zr:80wtPPm 以下、 Al:0.2wt %以上、1.5wt %以下およびREM :2wtPPm
以上、80wtPPm 以下を含有し、残部は鉄および不可避的
不純物の組成になることを特徴とする歪み取り焼鈍後鉄
損に優れる無方向性電磁鋼板。
1. C: 0.01 wt% or less, Si: 1.0 wt% or more, 2.5 wt% or less, Mn: 0.10 wt% or more, 1.5 wt% or less, Ti: 15 wtPPm or less, Sb: 0.002 wt% or more, 0.5 wt % Or less, Zr: 80 wtPPm or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2 wtPPm
As described above, a non-oriented electrical steel sheet excellent in iron loss after strain relief annealing, characterized by containing 80 wtPPm or less and the balance being composition of iron and unavoidable impurities.
【請求項2】C:0.01wt%以下、 Si:1.0 wt%以上、2.5wt %以下、 Mn:0.10wt%以上、1.5wt %以下、 Ti:15wtPPm 以下、 Sb:0.002wt %以上、0.5wt %以下、 Zr:80wtPPm 以下、 Al:0.2wt %以上、1.5wt %以下およびREM :2wtPPm
以上、80wtPPm 以下を含有し、残部は鉄および不可避的
不純物の組成になる鋼を鋳造してスラブとなし、直接あ
るいは冷却後再加熱したのち熱間圧延し、1回または中
間焼鈍を挟む2回以上の冷間圧延を行ったのち、仕上焼
鈍を施すことを特徴とする歪み取り焼鈍後鉄損に優れる
無方向性電磁鋼板の製造方法。
2. C: 0.01 wt% or less, Si: 1.0 wt% or more, 2.5 wt% or less, Mn: 0.10 wt% or more, 1.5 wt% or less, Ti: 15 wtPPm or less, Sb: 0.002 wt% or more, 0.5 wt% % Or less, Zr: 80 wtPPm or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2 wtPPm
As a result, a steel containing 80wtPPm or less and the balance of iron and unavoidable impurities is cast into a slab, which is directly or after cooling and reheating, and then hot rolling, once or twice with intermediate annealing. A method for producing a non-oriented electrical steel sheet excellent in iron loss after strain relief annealing, which comprises performing finish annealing after performing the above cold rolling.
【請求項3】C:0.01wt%以下、 Si:1.0 wt%以上、2.5wt %以下、 Mn:0.10wt%以上、1.5wt %以下、 Ti:15wtPPm 以下、 Sb:0.002wt %以上、0.5wt %以下、 Zr:80wtPPm 以下、 Al:0.2wt %以上、1.5wt %以下およびREM :2wtPPm
以上、80wtPPm 以下を含有し、残部は鉄および不可避的
不純物の組成になる鋼を鋳造してスラブとなし、直接あ
るいは冷却後再加熱したのち熱間圧延し、800 〜1100℃
の温度範囲での熱延板焼鈍を経て、1回または中間焼鈍
を挟む2回以上の冷間圧延を行ったのち、仕上焼鈍を施
すことを特徴とする歪み取り焼鈍後鉄損に優れる無方向
性電磁鋼板の製造方法。
3. C: 0.01 wt% or less, Si: 1.0 wt% or more, 2.5 wt% or less, Mn: 0.10 wt% or more, 1.5 wt% or less, Ti: 15 wtPPm or less, Sb: 0.002 wt% or more, 0.5 wt. % Or less, Zr: 80 wtPPm or less, Al: 0.2 wt% or more, 1.5 wt% or less and REM: 2 wtPPm
Above, 80wtPPm or less is contained, and the balance is steel with iron and unavoidable impurities composition cast into a slab, directly or after cooling and reheating, then hot rolling, 800-1100 ℃
Non-oriented with excellent iron loss after strain relief annealing, characterized in that after hot-rolled sheet annealing in the temperature range of 1, the cold rolling is performed once or twice or more with intermediate annealing, and then finish annealing is performed. For manufacturing high-performance electrical steel sheet.
JP13326495A 1995-05-31 1995-05-31 Non-oriented electrical steel sheet excellent in iron loss after low-temperature short-time strain relief annealing and method for producing the same Expired - Fee Related JP3148567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13326495A JP3148567B2 (en) 1995-05-31 1995-05-31 Non-oriented electrical steel sheet excellent in iron loss after low-temperature short-time strain relief annealing and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13326495A JP3148567B2 (en) 1995-05-31 1995-05-31 Non-oriented electrical steel sheet excellent in iron loss after low-temperature short-time strain relief annealing and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08325678A true JPH08325678A (en) 1996-12-10
JP3148567B2 JP3148567B2 (en) 2001-03-19

Family

ID=15100558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13326495A Expired - Fee Related JP3148567B2 (en) 1995-05-31 1995-05-31 Non-oriented electrical steel sheet excellent in iron loss after low-temperature short-time strain relief annealing and method for producing the same

Country Status (1)

Country Link
JP (1) JP3148567B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372964C (en) * 2005-06-30 2008-03-05 宝山钢铁股份有限公司 Non-orientation electrical steel and its making process
CN116426810A (en) * 2023-02-17 2023-07-14 湖南宏旺新材料科技有限公司 Preparation method of high-frequency low-iron-loss non-oriented silicon steel for new energy automobile driving motor
CN118048574A (en) * 2024-04-16 2024-05-17 张家港扬子江冷轧板有限公司 Non-oriented silicon steel and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372964C (en) * 2005-06-30 2008-03-05 宝山钢铁股份有限公司 Non-orientation electrical steel and its making process
CN116426810A (en) * 2023-02-17 2023-07-14 湖南宏旺新材料科技有限公司 Preparation method of high-frequency low-iron-loss non-oriented silicon steel for new energy automobile driving motor
CN118048574A (en) * 2024-04-16 2024-05-17 张家港扬子江冷轧板有限公司 Non-oriented silicon steel and production method thereof
CN118048574B (en) * 2024-04-16 2024-06-11 张家港扬子江冷轧板有限公司 Non-oriented silicon steel and production method thereof

Also Published As

Publication number Publication date
JP3148567B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
KR100658408B1 (en) An electromagnetic steel sheet having superior formability and magnetic properties and a process for the production of the same
KR100655678B1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
US6478892B2 (en) Low iron loss non-oriented electrical steel sheet excellent in workability and method for producing the same
KR910000010B1 (en) Method of producing silicon fron sheet having excellent soft magnetic properties
JP2001303214A (en) Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP3430794B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3430833B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing and method for producing the same
JP3458683B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP3148567B2 (en) Non-oriented electrical steel sheet excellent in iron loss after low-temperature short-time strain relief annealing and method for producing the same
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JP2888324B2 (en) Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
CN115003845B (en) Non-oriented electrical steel sheet and method for manufacturing same
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2647334B2 (en) Manufacturing method of high magnetic flux density, low iron loss grain-oriented electrical steel sheet
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP2752882B2 (en) Method for producing grain-oriented silicon steel sheet with good magnetic properties and few surface defects
JPH0643614B2 (en) Manufacturing method of semi-processed electrical steel sheet
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees