JPH08321535A - Recovery method of impurities - Google Patents

Recovery method of impurities

Info

Publication number
JPH08321535A
JPH08321535A JP17468796A JP17468796A JPH08321535A JP H08321535 A JPH08321535 A JP H08321535A JP 17468796 A JP17468796 A JP 17468796A JP 17468796 A JP17468796 A JP 17468796A JP H08321535 A JPH08321535 A JP H08321535A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
impurities
gas
decomposition
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17468796A
Other languages
Japanese (ja)
Inventor
Yoshitaka Dansui
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17468796A priority Critical patent/JPH08321535A/en
Publication of JPH08321535A publication Critical patent/JPH08321535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE: To easily recover inside impurities of depth direction from the surface of a semiconductor substrate without contamination from circumstance, for the purpose of very small amount impurity analysis of impurities of the surface of a semiconductor substrate. CONSTITUTION: Hydrogen peroxide gas and hydrofluoric acid gas of high purity are supplied from storing vessels 2, 3 installed outside an airtight vessel 1 to the inside of the airtight vessel 1. An oxidation process with the hydrogen peroxide gas, a decomposition process with the hydrofluoric acid gas, and a decomposition liquid recovering process are repeatedly performed. Thereby, analysis of inside very small amount impurities of depth direction is enabled from the surface of a semiconductor substrate 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板の表面
の不純物の超微量不純物分析用の試料を調整するための
半導体基板の表面の不純物回収方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering impurities from the surface of a semiconductor substrate for preparing a sample for analysis of ultratrace impurities of impurities on the surface of a semiconductor substrate.

【0002】[0002]

【従来の技術】従来の半導体基板の表面の不純物回収装
置としては、例えば特開昭60−69531号公報に示
されている。図2はこの従来の半導体基板の表面の不純
物回収装置の概略縦断面図であり、図において、31は
密閉容器、32はその密閉容器31内に配設されたフッ
化水素ガス発生用フッ化水素酸貯蔵容器、33はウエハ
キャリアであり、半導体基板を保持するためにある。3
4は分解液受容器であり、貯蔵容器32を加熱すること
によりフッ化水素ガスを発生させて半導体薄膜を分解
し、分解された分解液を受容するためにある。
2. Description of the Related Art A conventional device for recovering impurities from the surface of a semiconductor substrate is disclosed in, for example, Japanese Patent Laid-Open No. 60-69531. FIG. 2 is a schematic vertical cross-sectional view of the conventional impurity recovery device for the surface of a semiconductor substrate. In the figure, 31 is a closed container, and 32 is a fluoride for generating hydrogen fluoride gas arranged in the closed container 31. The hydrogen acid storage container 33 is a wafer carrier for holding a semiconductor substrate. Three
Reference numeral 4 denotes a decomposed liquid receiver, which is used to generate hydrogen fluoride gas by heating the storage container 32 to decompose the semiconductor thin film, and to receive the decomposed decomposed liquid.

【0003】[0003]

【発明が解決しようとする課題】このような従来の半導
体基板の表面の不純物回収装置では、フッ化水素ガスの
発生量を制御することができない。また、貯蔵容器32
を密閉容器31内に設置するため、密閉容器31の容積
を大きくする必要がある。またフッ化水素ガスを半導体
基板の表面で結露させ分解液を回収するために、多量の
フッ化水素ガスが必要である。さらに半導体基板の表面
から内部の深さ方向に分布する不純物を回収することが
できないという課題を有していた。
In such a conventional apparatus for collecting impurities on the surface of a semiconductor substrate, the amount of hydrogen fluoride gas generated cannot be controlled. In addition, the storage container 32
Since it is installed in the closed container 31, it is necessary to increase the volume of the closed container 31. Further, a large amount of hydrogen fluoride gas is necessary to collect the decomposed liquid by causing the hydrogen fluoride gas to condense on the surface of the semiconductor substrate. Further, there is a problem that impurities distributed in the depth direction inside the semiconductor substrate cannot be recovered.

【0004】本発明は上記課題を解決するもので、環境
からの汚染なしに容易に半導体基板の表面から内部の深
さ方向に分布する不純物の回収ができる半導体基板の表
面の不純物回収方法および不純物回収装置を提供するこ
とを目的とする。
An object of the present invention is to solve the above-mentioned problems, and a method and a method for collecting impurities distributed on the surface of a semiconductor substrate from the surface of the semiconductor substrate easily without contaminating the environment. An object is to provide a recovery device.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、半導体基板を酸化雰囲気に曝して酸化する
酸化工程と、上記半導体基板表面に形成された酸化膜を
酸化膜分解雰囲気に曝して分解する分解工程と、分解液
を回収する回収工程と、上記酸化雰囲気を上記分解雰囲
気に置換する置換工程とを有し、上記4工程を含む回収
サイクルを繰り返す半導体基板表面の不純物回収方法と
する。
In order to achieve the above object, the present invention provides an oxidizing step of oxidizing a semiconductor substrate by exposing it to an oxidizing atmosphere, and an oxide film formed on the surface of the semiconductor substrate into an oxide film decomposing atmosphere. A method for recovering impurities on the surface of a semiconductor substrate, which has a decomposition step of exposing and decomposing, a recovery step of recovering a decomposition solution, and a replacement step of replacing the oxidizing atmosphere with the decomposition atmosphere, and repeating a recovery cycle including the four steps. And

【0006】本発明は上記した構成により、不純物を含
まない高純度の過酸化水素ガスが半導体基板の表面を酸
化し、引き続き酸化膜を分解する高純度のフッ化水素ガ
スを供給し半導体基板の表面の不純物を溶かした分解液
が得られることになる。
According to the present invention, the high purity hydrogen peroxide gas containing no impurities oxidizes the surface of the semiconductor substrate, and subsequently the high purity hydrogen fluoride gas which decomposes the oxide film is supplied to supply the high purity hydrogen fluoride gas to the semiconductor substrate. A decomposition liquid in which impurities on the surface are dissolved can be obtained.

【0007】[0007]

【発明の実施の形態】図1は本発明の一実施例における
半導体基板の表面の不純物回収装置の概略構成図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic configuration diagram of an impurity recovery device for a surface of a semiconductor substrate according to an embodiment of the present invention.

【0008】図において、1は密閉容器、2,3は薬品
を貯蔵する貯蔵容器であり、貯蔵容器2,3と密閉容器
1はガス供給管4,5により接続されている。また貯蔵
容器2,3は不活性ガス配管6,7を備えている。半導
体基板8を半導体基板支持部9にのせ半導体基板押さえ
10で固定する。11は不活性ガス供給配管で、12は
排出配管である。13は純水を半導体基板の表面に定量
的に供給するための定量ポンプで、配管14から純水を
供給して配管15により密閉容器1内の半導体基板8上
に滴下する。16は分解液16aを採取する治具であ
る。なお図において、17,18は貯蔵容器2,3の加
熱手段、19,20はガス供給管4,5のバルブ、21
は不活性ガス供給配管11のバルブ、22は半導体基板
支持部9の回転手段である。
In the figure, 1 is a closed container, 2 and 3 are storage containers for storing chemicals, and the storage containers 2 and 3 and the closed container 1 are connected by gas supply pipes 4 and 5. The storage containers 2 and 3 are provided with inert gas pipes 6 and 7. The semiconductor substrate 8 is placed on the semiconductor substrate supporting portion 9 and fixed by the semiconductor substrate retainer 10. Reference numeral 11 is an inert gas supply pipe, and 12 is a discharge pipe. Reference numeral 13 denotes a metering pump for quantitatively supplying pure water to the surface of the semiconductor substrate. Pure water is supplied from a pipe 14 and dropped on the semiconductor substrate 8 in the closed container 1 through the pipe 15. Reference numeral 16 is a jig for collecting the decomposition liquid 16a. In the figure, 17 and 18 are heating means of the storage containers 2 and 3, 19 and 20 are valves of the gas supply pipes 4 and 5, and 21.
Is a valve of the inert gas supply pipe 11, and 22 is a rotating means of the semiconductor substrate supporting portion 9.

【0009】以上のように構成されたこの実施例の半導
体基板の表面の不純物回収装置において、以下にその動
作を説明する。
The operation of the apparatus for recovering impurities on the surface of a semiconductor substrate according to this embodiment constructed as described above will be described below.

【0010】例えば、薬品を貯蔵する貯蔵容器2にフッ
化水素酸を満たしておき、貯蔵容器3に過酸化水素水を
満たしておく。加熱手段17,18によって加熱する。
加熱温度は30℃程度が好ましい。温度を上げ過ぎると
ガスの発生量は増加するが、ミストも発生しやすくな
り、不純物がそのミストと共に密閉容器1へ導入されて
しまうからである。まずバルブ19は閉めておき、不活
性ガスN2の供給も行なわない。バルブ20を開き配管
7よりN2を流し密閉容器1内に過酸化水素ガスを供給
する。過酸化水素ガスにより半導体基板8は酸化され
る。このとき半導体基板8の酸化速度は約0.5A/時
間である。ある時間過酸化水素ガスを供給した後、バル
ブ20を閉じる。次にバルブ21を開けN2ガスを密閉
容器1内に供給して密閉容器内の過酸化水素ガスをN2
で置換する。過酸化水素ガスとフッ酸ガスが共存される
と半導体基板の表面の過酸化水素ガスの濃度とフッ酸ガ
スの濃度の違いにより半導体基板8の位置によるエッチ
ング速度が異なり深さ方向の不純物測定が困難となる。
過酸化水素ガスを完全に置換した後バルブ21を閉じ、
バルブ19を開き分解ガスであるフッ酸ガスを密閉容器
1内へ供給する。フッ酸ガスにより酸化膜分解完了後、
バルブ19を閉じ、バルブ21を開き密閉容器1内のフ
ッ酸ガスをN2で置換する。次に回転手段22により半
導体基板支持部9を回転させる。続いて、配管15より
半導体基板8上に純水を滴下させる。従来フッ酸ガスを
半導体基板8の表面で結露させるために多量のフッ酸ガ
スを供給する必要があったが、純水によってフッ酸ガス
で分解された不純物を溶解させることによりフッ酸ガス
の供給を減少させることができる。滴下させた後回転を
止め遠心力により半導体基板8の外周に集まった分解液
16aを治具16により採取する。その後、例えばフレ
ームレス原子吸光でこの分解液16aの不純物を測定す
ることにより半導体基板8の表面の不純物濃度の測定を
行なうことができる。
For example, the storage container 2 for storing chemicals is filled with hydrofluoric acid, and the storage container 3 is filled with hydrogen peroxide solution. It is heated by the heating means 17 and 18.
The heating temperature is preferably about 30 ° C. This is because if the temperature is raised too high, the amount of gas generated increases, but mist also tends to be generated, and impurities are introduced into the closed container 1 together with the mist. First, the valve 19 is closed and the inert gas N 2 is not supplied. The valve 20 is opened and N 2 is flown from the pipe 7 to supply hydrogen peroxide gas into the closed container 1. The semiconductor substrate 8 is oxidized by the hydrogen peroxide gas. At this time, the oxidation rate of the semiconductor substrate 8 is about 0.5 A / hour. After supplying hydrogen peroxide gas for a certain period of time, the valve 20 is closed. Next, the valve 21 is opened and N 2 gas is supplied into the closed container 1 to remove the hydrogen peroxide gas in the closed container from N 2.
Replace with. When the hydrogen peroxide gas and the hydrofluoric acid gas coexist, the etching rate varies depending on the position of the semiconductor substrate 8 due to the difference between the concentration of the hydrogen peroxide gas and the concentration of the hydrofluoric acid gas on the surface of the semiconductor substrate. It will be difficult.
After completely replacing the hydrogen peroxide gas, close the valve 21,
The valve 19 is opened, and hydrofluoric acid gas which is a decomposition gas is supplied into the closed container 1. After completion of oxide film decomposition with hydrofluoric acid gas,
The valve 19 is closed and the valve 21 is opened to replace the hydrofluoric acid gas in the closed container 1 with N 2 . Next, the semiconductor substrate supporting portion 9 is rotated by the rotating means 22. Then, pure water is dropped on the semiconductor substrate 8 from the pipe 15. Conventionally, a large amount of hydrofluoric acid gas had to be supplied in order to cause the hydrofluoric acid gas to condense on the surface of the semiconductor substrate 8, but the supply of hydrofluoric acid gas was accomplished by dissolving impurities decomposed by hydrofluoric acid gas with pure water. Can be reduced. After the dropping, the rotation is stopped and the decomposition liquid 16a collected on the outer periphery of the semiconductor substrate 8 is collected by the jig 16 by the centrifugal force. After that, the impurity concentration of the surface of the semiconductor substrate 8 can be measured by measuring the impurities in the decomposition liquid 16a by, for example, flameless atomic absorption.

【0011】以上のような構成および操作により密閉容
器1内で反応させるため、環境からの不純物による汚染
を低減することができ、微量の不純物量を測定が可能と
なる。また上記の過酸化水素ガスによる酸化工程、フッ
酸ガスによる分解工程、純水による分解液回収工程を繰
り返し行なうことにより、半導体基板8の表面から内部
の深さ方向の不純物濃度を知ることができる。
Since the reaction is carried out in the closed container 1 by the configuration and operation as described above, contamination by impurities from the environment can be reduced and a trace amount of impurities can be measured. Further, by repeating the above-mentioned oxidation step with hydrogen peroxide gas, decomposition step with hydrofluoric acid gas, and decomposition solution recovery step with pure water, it is possible to know the impurity concentration in the depth direction from the surface of the semiconductor substrate 8 to the inside. .

【0012】なお、本発明の不純物回収装置を構成する
材料は、半導体基板8の表面の不純物を測定する場合に
妨害となる不純物を含まないものであればいかなるもの
でもよいが、特に酸性やアルカリ性のガスを用いること
から、フッ素系樹脂やその他高分子樹脂、例えばポリエ
チレンやポリプロピレン、またセラミックスや不動態化
処理を行なったステンレスで構成するのがよい。
Any material may be used as the material for the impurity recovery device of the present invention, as long as it does not contain impurities that interfere with the measurement of impurities on the surface of the semiconductor substrate 8, but is particularly acidic or alkaline. Since this gas is used, it is preferable to use a fluororesin or other polymer resin such as polyethylene or polypropylene, ceramics, or passivated stainless steel.

【0013】また過酸化水素ガスによる酸化工程を省い
て、フッ酸ガスのみを供給することにより、半導体基板
8の表面に付着した不純物のみを回収することができ
る。なお本実施例では酸化性ガスの原料として過酸化水
素を用いているが、酸化速度を変えるためにアンモニア
水、硝酸等を用いてもよいことは言うまでもない。
Further, by omitting the step of oxidizing with hydrogen peroxide gas and supplying only hydrofluoric acid gas, only impurities attached to the surface of the semiconductor substrate 8 can be recovered. Although hydrogen peroxide is used as a raw material for the oxidizing gas in this embodiment, it goes without saying that ammonia water, nitric acid, or the like may be used to change the oxidation rate.

【0014】[0014]

【発明の効果】以上の実施例から明らかなように本発明
によれば、密閉容器外に設置された貯蔵容器から純度の
高い過酸化水素ガスとフッ素酸ガスを密閉容器内に供給
し、過酸化水素ガスによる酸化工程、フッ酸ガスによる
分解工程、分解液回収工程を繰り返し行なうことによ
り、半導体基板の表面から内部の深さ方向の微量な不純
物の分析が可能となる半導体基板の表面不純物回収方法
を提供できる。
As is apparent from the above embodiments, according to the present invention, hydrogen peroxide gas and fluoric acid gas of high purity are supplied from the storage container installed outside the closed container into the closed container, and By repeating the oxidation process with hydrogen oxide gas, the decomposition process with hydrofluoric acid gas, and the decomposition liquid recovery process, it is possible to analyze a minute amount of impurities from the surface of the semiconductor substrate to the inside depth direction. A method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体基板の表面の
不純物回収装置の概略構成図
FIG. 1 is a schematic configuration diagram of an impurity recovery device for a surface of a semiconductor substrate according to an embodiment of the present invention.

【図2】従来の半導体基板の表面の不純物回収装置の概
略構成図
FIG. 2 is a schematic configuration diagram of a conventional impurity recovery device for the surface of a semiconductor substrate.

【符号の説明】[Explanation of symbols]

1 密閉容器 2,3 貯蔵容器 4,5 ガス供給管 6,7 不活性ガスを供給する配管 8 半導体基板 9 半導体基板支持部 10 半導体基板押さえ 11 密閉容器内に不活性ガスを供給する配管 12 排出配管 13 定量ポンプ 17,18 加熱手段 22 回転手段 1 Airtight container 2,3 Storage container 4,5 Gas supply pipe 6,7 Pipe for supplying inert gas 8 Semiconductor substrate 9 Semiconductor substrate support 10 Semiconductor substrate retainer 11 Pipe for supplying inert gas in airtight container 12 Emission Piping 13 Metering pump 17,18 Heating means 22 Rotating means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板を酸化雰囲気に曝して酸化する
酸化工程と、上記半導体基板表面に形成された酸化膜を
酸化膜分解雰囲気に曝して分解する分解工程と、分解液
を回収する回収工程と、上記酸化雰囲気を上記分解雰囲
気に置換する置換工程とを有し、上記4工程を含む回収
サイクルを繰り返すことを特徴とする半導体基板表面の
不純物回収方法。
1. An oxidation step of exposing a semiconductor substrate to an oxidizing atmosphere to oxidize it, a decomposition step of exposing an oxide film formed on the surface of the semiconductor substrate to an atmosphere for decomposition of an oxide film to decompose it, and a recovery step of recovering a decomposition solution. And a replacement step of replacing the oxidizing atmosphere with the decomposition atmosphere, and a collection cycle including the above-mentioned four steps is repeated to collect impurities on the surface of the semiconductor substrate.
JP17468796A 1996-07-04 1996-07-04 Recovery method of impurities Pending JPH08321535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17468796A JPH08321535A (en) 1996-07-04 1996-07-04 Recovery method of impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17468796A JPH08321535A (en) 1996-07-04 1996-07-04 Recovery method of impurities

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2408117A Division JP2568756B2 (en) 1990-12-27 1990-12-27 Semiconductor substrate surface impurity recovery system

Publications (1)

Publication Number Publication Date
JPH08321535A true JPH08321535A (en) 1996-12-03

Family

ID=15982935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17468796A Pending JPH08321535A (en) 1996-07-04 1996-07-04 Recovery method of impurities

Country Status (1)

Country Link
JP (1) JPH08321535A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933811A1 (en) * 2008-07-09 2010-01-15 Soitec Silicon On Insulator Silicon material etching method for use during fabrication of e.g. opto-electronic component, involves utilizing solutions of each of mixture constituents, mixing solutions in vapor phase, and etching material using acid base mixture
KR101523943B1 (en) * 2013-12-24 2015-06-01 주식회사 엘지실트론 Method for analyzing pollution induced by manufacture of wafer
JP2021063588A (en) * 2019-10-16 2021-04-22 ダリオン インコーポレイテッド Balanced exhaust valve for corrosive gas and acidic and alkaline gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933811A1 (en) * 2008-07-09 2010-01-15 Soitec Silicon On Insulator Silicon material etching method for use during fabrication of e.g. opto-electronic component, involves utilizing solutions of each of mixture constituents, mixing solutions in vapor phase, and etching material using acid base mixture
KR101523943B1 (en) * 2013-12-24 2015-06-01 주식회사 엘지실트론 Method for analyzing pollution induced by manufacture of wafer
JP2021063588A (en) * 2019-10-16 2021-04-22 ダリオン インコーポレイテッド Balanced exhaust valve for corrosive gas and acidic and alkaline gas

Similar Documents

Publication Publication Date Title
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
US5395482A (en) Ultra high purity vapor phase treatment
US6174740B1 (en) Method for analyzing impurities within silicon wafer
JPH08321535A (en) Recovery method of impurities
JP3473699B2 (en) Silicon wafer etching method and apparatus and impurity analysis method
JP5120789B2 (en) Method for evaluating contamination of semiconductor manufacturing equipment
JP4514267B2 (en) Impurity extraction method and impurity extraction apparatus for semiconductor substrate
JP2568756B2 (en) Semiconductor substrate surface impurity recovery system
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
JP4732908B2 (en) Substrate processing method and substrate processing apparatus
JP2004212261A (en) Method of analyzing metal impurities on silicon substrate surface
EP0339561B1 (en) Impurity measuring method
JP6399141B1 (en) Method for analyzing metal contamination of silicon wafer and method for manufacturing silicon wafer
JP4337607B2 (en) Method for analyzing Ni concentration in alkaline solution
JP2004109072A (en) Analysis method for metal impurity in solution
JPH05283381A (en) Recovery of contaminant metal element on silicon wafer surface
JP3065824B2 (en) Trace substance extraction method and extraction device
JP4204434B2 (en) Method and apparatus for recovering object to be measured around wafer
JPH10253511A (en) Container for sample for impurity analysis
JP2005326219A (en) Analysis sample preparing apparatus, analysis sample preparing method and semiconductor sample analysis method
JP5369514B2 (en) Method for analyzing metal contamination of silicon wafer and method for manufacturing silicon wafer
JP3373019B2 (en) Semiconductor wafer vapor processing equipment
JP3415273B2 (en) Method and apparatus for etching silicon or silicon oxide and method and apparatus for preparing sample for impurity analysis
JPS61144545A (en) Device for dissolving thin film or thin sheet
JPH01189559A (en) Analyzing method of surface of si semiconductor substrate