JP4337607B2 - Method for analyzing Ni concentration in alkaline solution - Google Patents

Method for analyzing Ni concentration in alkaline solution Download PDF

Info

Publication number
JP4337607B2
JP4337607B2 JP2004120068A JP2004120068A JP4337607B2 JP 4337607 B2 JP4337607 B2 JP 4337607B2 JP 2004120068 A JP2004120068 A JP 2004120068A JP 2004120068 A JP2004120068 A JP 2004120068A JP 4337607 B2 JP4337607 B2 JP 4337607B2
Authority
JP
Japan
Prior art keywords
concentration
solution
alkaline
standard solution
alkaline solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004120068A
Other languages
Japanese (ja)
Other versions
JP2005300450A (en
Inventor
慶和 椎名
モハマッド.ビー.シャバニー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2004120068A priority Critical patent/JP4337607B2/en
Publication of JP2005300450A publication Critical patent/JP2005300450A/en
Application granted granted Critical
Publication of JP4337607B2 publication Critical patent/JP4337607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、直接分析が難しい濃度25ppb以下の不純物Niが含まれるようなアルカリ溶液中に含まれるNi濃度を簡易的に分析する方法に関するものである。   The present invention relates to a method for simply analyzing the concentration of Ni contained in an alkaline solution containing impurity Ni having a concentration of 25 ppb or less which is difficult to directly analyze.

アルカリエッチングに用いられるアルカリ溶液中には、複数種類の不純物金属が含有している。そのため、ポリッシュドウェーハ(Polished Wafer;PWウェーハ)の加工工程において行われるアルカリエッチング工程では金属不純物のウェーハバルク汚染が進行する。従って、エッチング前にアルカリ溶液中に含まれる金属不純物を分析する必要がある。その定量分析方法としては、AAS法やICP−MS法が挙げられる。しかし、これらの方法を用いてアルカリ溶液を直接分析する場合、所定量のアルカリ溶液を採取した後、これらを濃縮し、その後に各種分析方法を適用するという手順を踏む必要がある。このため、多くの量を採取しなければ分析することができず、また得られる結果の検出下限が高くなり、金属不純物濃度が25ppb以下のアルカリ溶液には対応することができない問題があった。
このような上記問題を解決する方策として、アンモニアと過酸化水素と水からなるシリコンウェーハ用アルカリ洗浄液の過酸化水素濃度の使用による経時変化を測定し、過酸化水素濃度減少率により洗浄液の汚染度を評価する方法が開示されている(例えば、特許文献1参照。)。
特許第2789287号公報(請求項1)
The alkaline solution used for alkaline etching contains a plurality of types of impurity metals. For this reason, in the alkaline etching process performed in the polishing wafer (Polished Wafer) process, the wafer bulk contamination of the metal impurities proceeds. Therefore, it is necessary to analyze metal impurities contained in the alkaline solution before etching. Examples of the quantitative analysis method include an AAS method and an ICP-MS method. However, when an alkaline solution is directly analyzed using these methods, it is necessary to take a procedure of collecting a predetermined amount of the alkaline solution, concentrating them, and then applying various analysis methods. For this reason, analysis cannot be performed unless a large amount is collected, and there is a problem that the lower limit of detection of the obtained result is high, and it is not possible to cope with an alkali solution having a metal impurity concentration of 25 ppb or less.
As a measure to solve the above-mentioned problems, the time-dependent change of the hydrogen peroxide concentration in the alkaline cleaning solution for silicon wafers composed of ammonia, hydrogen peroxide and water is measured, and the contamination degree of the cleaning solution is determined by the reduction rate of the hydrogen peroxide concentration. Is disclosed (for example, see Patent Document 1).
Japanese Patent No. 2789287 (Claim 1)

しかしながら、上記特許文献1に示される方法では、FeやCu等の金属不純物における洗浄液の汚染度を測定することができるが、Niについては特に言及されておらず、アンモニアと過酸化水素と水からなるアルカリ洗浄液の場合でしかその汚染度を評価することができないため、アルカリエッチング液のようなアルカリ溶液には対応することができない問題があった。実際のアンモニアと過酸化水素水と水からなるアルカリエッチング液では多数の元素が存在するため過酸化水素水の減少率のみで金属汚染を予測するのは難しく実用的ではなかった。
また、アルカリ溶液中に含まれる金属不純物濃度を分析する方法として、樹脂分離などの方法もあるが、この方法は樹脂や系内の汚染が容易に起こり易いため低レベル分析が難しく、また技術的にも難しい問題があった。
本発明の目的は、Ni濃度未知のアルカリ溶液中に含まれるNi濃度を簡易的に分析する方法を提供することにある。
However, in the method disclosed in Patent Document 1, the degree of contamination of the cleaning liquid with metallic impurities such as Fe and Cu can be measured, but Ni is not particularly mentioned, and ammonia, hydrogen peroxide, and water are used. Since the degree of contamination can be evaluated only in the case of an alkaline cleaning solution, there is a problem that it cannot cope with an alkaline solution such as an alkaline etching solution. In an actual alkaline etching solution composed of ammonia, hydrogen peroxide solution, and water, there are many elements, so it is difficult and impractical to predict metal contamination only by the reduction rate of hydrogen peroxide solution.
In addition, as a method of analyzing the concentration of metal impurities contained in an alkaline solution, there is a method such as resin separation. However, this method is difficult to perform low-level analysis because it easily causes contamination of the resin and the system. There was also a difficult problem.
An object of the present invention is to provide a method for simply analyzing the Ni concentration contained in an alkaline solution whose Ni concentration is unknown.

請求項1に係る発明は、図1に示すように、(a) ウェーハ全体の抵抗率が5〜100mΩcmとなるようにボロンが添加されたP型シリコンウェーハ群を作製する工程と、(b) 上記(a)工程のP型ウェーハ群から参照用サンプルを採取する工程と、(c) Ni濃度既知のNi含有アルカリ標準液に参照用サンプルを接触させる工程と、(d) アルカリ標準液に接触させた参照用サンプル全体におけるNi濃度を測定する工程と、(e) 上記(c)工程のアルカリ標準液中に含まれるNi濃度と(d)工程の測定結果から、アルカリ標準液に接触させた参照用サンプル中に含まれるNi濃度とアルカリ標準液中のNi濃度との相関直線を作成する工程と、(f) 上記(a)工程のP型ウェーハ群から測定用サンプルを採取する工程と、(g) Ni濃度未知のNi含有アルカリ溶液に測定用サンプルを接触させる工程と、(h) アルカリ溶液に接触させた測定用サンプル全体におけるNi濃度を測定する工程と、(i) 上記(h)工程の測定結果を相関直線に照合することにより、アルカリ溶液中に含まれるNi濃度を推定する工程とを含むことを特徴とするアルカリ溶液中のNi濃度を分析する方法である。
請求項1に係る発明は次の知見によりなされた。本発明者らは、KOHやNaOHなどのアルカリ溶液中に含まれるNi濃度とこのアルカリ溶液を用いてエッチングした後のP型ウェーハへのNi吸着濃度とが相関関係にあることに着目した。即ち、参照用サンプルで濃度既知におけるアルカリ標準液と接触させた後におけるNi濃度を測定し、この相関関係から検量線を作成する。測定用サンプルで濃度未知のアルカリ溶液と接触させた後におけるNi濃度を測定し、その測定値を検量線に当てはめて、アルカリ溶液中に含まれるNiを求める。上記工程(a)〜工程(i)を経ることにより、直接分析が難しい濃度25ppb以下の不純物Niが含まれるようなアルカリ溶液中に含まれるNi濃度であっても簡易的に分析することができる。また、直接分析法とは異なり、間接的にサンプル全体におけるNi濃度を測定するため、Ni濃度測定の際に汚染する問題がなく、また低い検出下限での分析が可能となる利点がある。
As shown in FIG. 1, the invention according to claim 1 includes: (a) a step of producing a P-type silicon wafer group to which boron is added so that the resistivity of the entire wafer is 5 to 100 mΩcm; and (b) A step of taking a reference sample from the P-type wafer group in step (a), a step of contacting a reference sample with a Ni-containing alkaline standard solution having a known Ni concentration, and (d) contacting the alkaline standard solution. A step of measuring the Ni concentration in the entire reference sample, and (e) the Ni concentration contained in the alkali standard solution of the step (c) and the measurement result of the step (d). A step of creating a correlation line between the Ni concentration contained in the reference sample and the Ni concentration in the alkaline standard solution; (f) a step of collecting a measurement sample from the P-type wafer group in the step (a); (g) Ni-containing alkaline solution with unknown Ni concentration A step of contacting the regular sample, (h) a step of measuring the Ni concentration in the entire measurement sample brought into contact with the alkaline solution, and (i) by collating the measurement result of the step (h) with a correlation line And a step of estimating the Ni concentration contained in the alkaline solution. The method for analyzing the Ni concentration in the alkaline solution is characterized by comprising:
The invention according to claim 1 has been made based on the following findings. The present inventors paid attention to the correlation between the Ni concentration contained in an alkaline solution such as KOH and NaOH and the Ni adsorption concentration on the P-type wafer after etching using this alkaline solution. That is, the Ni concentration after the sample is brought into contact with an alkaline standard solution with a known concentration is measured, and a calibration curve is created from this correlation. The Ni concentration after contact with an alkali solution of unknown concentration is measured with a measurement sample, and the measured value is applied to a calibration curve to obtain Ni contained in the alkali solution. By performing the above steps (a) to (i), it is possible to easily analyze even the Ni concentration contained in an alkaline solution that contains impurities Ni having a concentration of 25 ppb or less, which is difficult to analyze directly. . Further, unlike the direct analysis method, since the Ni concentration in the entire sample is indirectly measured, there is no problem of contamination during the Ni concentration measurement, and there is an advantage that analysis with a low detection limit is possible.

請求項に係る発明は、請求項1に係る発明であって、アルカリ標準液及びアルカリ溶液中に含まれるNi濃度が25ppb以下である方法である。 The invention according to claim 2 is the invention according to claim 1, wherein the Ni concentration contained in the alkali standard solution and the alkali solution is 25 ppb or less.

本発明のアルカリ溶液中のNi濃度を分析する方法は、上記工程(a)〜工程(i)を経ることにより、直接分析が難しい濃度25ppb以下の不純物Niが含まれるようなアルカリ溶液中に含まれるNi濃度であっても簡易的に分析することができる。また、直接分析方法とは異なり、間接溶解法によりサンプル全体におけるNi濃度を測定するため、Ni濃度測定の際に汚染する問題がなく、また低い検出下限での分析が可能となる利点がある。アルカリに接触することで液中のNiがウェーハ中に数桁濃縮されるので汚染する問題もなく、低い検出下限での分析が可能となる。   The method for analyzing the Ni concentration in the alkaline solution of the present invention is included in the alkaline solution containing impurities Ni having a concentration of 25 ppb or less, which is difficult to directly analyze, through the steps (a) to (i). Even if it is Ni concentration to be able to be analyzed, it can analyze simply. In addition, unlike the direct analysis method, the Ni concentration in the entire sample is measured by the indirect dissolution method, so that there is no problem of contamination during Ni concentration measurement, and there is an advantage that analysis with a low detection limit is possible. Contact with alkali concentrates Ni in the liquid several orders of magnitude in the wafer, so there is no problem of contamination, and analysis with a low detection limit becomes possible.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明のアルカリ溶液中のNi濃度を分析する方法は、以下の工程を含むことを特徴とする。
先ず、図1に示すように、ウェーハ全体の抵抗率が5〜100mΩcmとなるようにボロンが添加されたP型シリコンウェーハ群を作製する((a)工程)。P型シリコンウェーハ群におけるウェーハ全体の抵抗率を5〜100mΩcmの範囲内に規定したのは、抵抗率が100mΩcmを越えると、後に続く工程においてアルカリ標準液やアルカリ溶液をウェーハに接触させても、P型ウェーハバルク内へのNi汚染が進行しないためである。抵抗率が5mΩcm未満であってもその効果は変わらない。P型シリコンウェーハ群の好ましい抵抗率は10〜20mΩcmである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The method for analyzing the Ni concentration in the alkaline solution of the present invention comprises the following steps.
First, as shown in FIG. 1, a P-type silicon wafer group to which boron is added so that the resistivity of the entire wafer is 5 to 100 mΩcm is manufactured (step (a)). The resistivity of the entire wafer in the P-type silicon wafer group is defined within a range of 5 to 100 mΩcm. When the resistivity exceeds 100 mΩcm, even if an alkali standard solution or an alkali solution is brought into contact with the wafer in the subsequent process, This is because Ni contamination does not progress into the P-type wafer bulk. Even if the resistivity is less than 5 mΩcm, the effect is not changed. A preferable resistivity of the P-type silicon wafer group is 10 to 20 mΩcm.

次いで、上記(a)工程のP型シリコンウェーハ群から参照用サンプルを採取する((b)工程)。後に続く工程において推定可能な相関直線を得るためには、少なくとも3枚以上参照用サンプルを採取することが好ましい。
次に、Ni濃度既知のNi含有アルカリ標準液に上記(b)工程で採取した参照用サンプルを接触させる((c)工程)。Ni濃度既知のNi含有アルカリ標準液は、NaOHであれば51重量%、KOHであれば48重量%の濃度がそれぞれ好適である。アルカリ標準液中に含まれるNi濃度は25ppb以下が好ましい。Ni濃度が25ppbを越えるとP型ウェーハバルク中へのNi汚染濃度が飽和してしまうため、後に続く工程において推定可能な相関直線が得られず、また直接分析でもNi濃度の測定が可能となる。なお、上記(b)工程で採取したサンプルの枚数に対応するNi濃度の異なるアルカリ標準液をそれぞれ用意する。この(c)工程では、Ni濃度既知のNi含有アルカリ標準液を40〜90℃に維持し、アルカリ標準液に参照用サンプルを3〜20分間接触させることが好ましい。アルカリ標準液の維持温度が40℃未満であると、P型ウェーハバルク内へのNi汚染が十分に進行しない。維持温度が90℃を越えてもその効果は変わらない。接触時間が3分間未満であると、P型ウェーハバルク内へのNi汚染が十分に進行しない。接触時間が20分間を越えてもその効果は変わらない。好ましいアルカリ標準液の維持温度は60〜80℃であり、好ましい接触時間は5〜10分間である。アルカリ標準液とサンプルとの接触方法は、液相にアルカリ標準液を貯留し、この貯留したアルカリ標準液にサンプルを浸漬させる方法が好適である。
この(c)工程でアルカリ標準液に接触させた参照用サンプルはその表面をHF溶液により洗浄して表面に存在するNiを洗浄除去した後、HF溶液により洗浄したサンプルを純水により洗浄する。
Next, a reference sample is collected from the P-type silicon wafer group in the step (a) (step (b)). In order to obtain a correlation line that can be estimated in a subsequent process, it is preferable to collect at least three reference samples.
Next, the reference sample collected in the step (b) is brought into contact with a Ni-containing alkaline standard solution having a known Ni concentration (step (c)). The Ni-containing alkaline standard solution having a known Ni concentration is preferably 51% by weight for NaOH and 48% by weight for KOH. The Ni concentration contained in the alkali standard solution is preferably 25 ppb or less. If the Ni concentration exceeds 25 ppb, the Ni contamination concentration in the P-type wafer bulk becomes saturated, so that a correlation line that can be estimated in the subsequent process cannot be obtained, and the Ni concentration can also be measured by direct analysis. . Note that alkaline standard solutions having different Ni concentrations corresponding to the number of samples collected in the step (b) are prepared. In the step (c), it is preferable to maintain a Ni-containing alkaline standard solution having a known Ni concentration at 40 to 90 ° C., and contact the reference sample with the alkaline standard solution for 3 to 20 minutes. If the maintenance temperature of the alkaline standard solution is less than 40 ° C., Ni contamination in the P-type wafer bulk does not proceed sufficiently. The effect does not change even if the maintenance temperature exceeds 90 ° C. If the contact time is less than 3 minutes, Ni contamination into the P-type wafer bulk does not proceed sufficiently. The effect does not change even if the contact time exceeds 20 minutes. A preferable maintenance temperature of the alkali standard solution is 60 to 80 ° C., and a preferable contact time is 5 to 10 minutes. As a method for contacting the alkali standard solution with the sample, a method in which the alkali standard solution is stored in the liquid phase and the sample is immersed in the stored alkali standard solution is suitable.
The reference sample brought into contact with the alkaline standard solution in the step (c) is cleaned with HF solution to remove Ni present on the surface, and then the sample washed with the HF solution is washed with pure water.

次に、(c)工程でアルカリ標準液に接触させた参照用サンプル全体におけるNi濃度を測定する((d)工程)。参照用サンプル全体におけるNi濃度を測定する方法として間接溶解法である気相分解法(Vapor Phase Decomposition:VPD法)を用いることが濃度測定の際に汚染の問題がなく、低い検出下限での分析が可能なため好ましい。
図2(a)及び図2(b)に示すように、反応容器10は参照用サンプル15の分解液11を収容する収容容器12と、この収容容器12を密閉する蓋13とを有する。この容器12と蓋13はそれぞれ縦100〜400mm、横100〜400mm、高さ100〜200mm、厚さ2mmのポリプロピレン、フッ素樹脂の一種であるポリテトラフルオロエチレン(商品名:テフロン、以下PTFEという。)等のプラスチック製のボックスが好適である。この収容容器12内には支持台14が配置される。支持台14はPTFEから作られ、スタンド部14aとテーブル14bを有する。スタンド部14aは収容容器12の底面に置かれ、分解液11の液面より上に突出しかつ容器12の深さの半分程度の高さを有する。テーブル14bはスタンド部14aの上部にこのスタンド部14aと一体的に形成され、上面に参照用サンプル15が置かれる。テーブル14bの周縁の大部分にはフランジ14cが突設される。収容容器12、蓋13及び支持台14は参照用サンプル15を分解する前に十分に清浄にしておく必要がある。
Next, the Ni concentration in the entire reference sample brought into contact with the alkaline standard solution in step (c) is measured (step (d)). Vapor Phase Decomposition (VPD method), which is an indirect dissolution method, is used as a method for measuring the Ni concentration in the entire reference sample. Is preferable because it is possible.
As shown in FIGS. 2A and 2B, the reaction container 10 includes a storage container 12 that stores the decomposition solution 11 of the reference sample 15 and a lid 13 that seals the storage container 12. The container 12 and the lid 13 are 100 to 400 mm in length, 100 to 400 mm in width, 100 to 200 mm in height, 2 mm in thickness, and polytetrafluoroethylene (trade name: Teflon, hereinafter referred to as PTFE), which is a kind of fluororesin. A plastic box such as) is preferred. A support base 14 is disposed in the storage container 12. The support base 14 is made of PTFE and has a stand portion 14a and a table 14b. The stand portion 14 a is placed on the bottom surface of the container 12, protrudes above the liquid surface of the decomposition solution 11, and has a height that is about half the depth of the container 12. The table 14b is formed integrally with the stand portion 14a on the upper portion of the stand portion 14a, and the reference sample 15 is placed on the upper surface. A flange 14c protrudes from most of the peripheral edge of the table 14b. The container 12, the lid 13 and the support base 14 need to be sufficiently cleaned before the reference sample 15 is disassembled.

参照用サンプルの分解液11はテーブル14bより僅かに下方にその液面とするように収容容器12に貯えられる。この分解液11はHFとHNO3の混酸にH2SO4を加えたものである。具体的には濃度38重量%のHFと濃度68重量%のHNO3と濃度98重量%のH2SO4を重量濃度比でHF:HNO3:H2SO4=0.76:0.7:1.96の割合で均一に混合して調製される。
図2(a)に示すように、分解液11を収容容器12に貯え、テーブル14bの上面に参照用サンプル15を水平に置き、蓋を被せて反応容器10を密閉状態にすると、分解液11中のH2SO4が分解液中のHFとHNO3の各水分を吸収するとともに、反応容器10内の密閉された空気中の水分を吸収し、密閉空間16の湿度を低くする。これにより分解液を加熱しなくても、また密閉された反応容器を特別に加圧しなくても分解液の気化が促進され、その気化した高濃度のHF−HNO3ガス17がテーブル14b上の参照用サンプル15に接触し、図2(b)に示すようにこのサンプル15を比較的短時間で分解昇華させる。
The reference sample decomposition solution 11 is stored in the container 12 so as to have a liquid level slightly below the table 14b. This decomposition solution 11 is a mixture of HF and HNO 3 and H 2 SO 4 . Specifically, HF: HNO 3 : H 2 SO 4 = 0.76: 0.7 in a weight concentration ratio of HF having a concentration of 38% by weight, HNO 3 having a concentration of 68% by weight, and H 2 SO 4 having a concentration of 98% by weight. Prepared by mixing uniformly at a ratio of 1.96.
As shown in FIG. 2 (a), when the decomposition solution 11 is stored in the storage container 12, the reference sample 15 is horizontally placed on the upper surface of the table 14b, and the reaction vessel 10 is sealed with a cover, the decomposition solution 11 H 2 SO 4 therein absorbs moisture of HF and HNO 3 in the decomposition solution, absorbs moisture in the sealed air in the reaction vessel 10, and lowers the humidity of the sealed space 16. This facilitates vaporization of the cracked liquid without heating the cracked liquid and without specially pressurizing the sealed reaction vessel, and the vaporized high-concentration HF-HNO 3 gas 17 is on the table 14b. The sample 15 is contacted and decomposed and sublimated in a relatively short time as shown in FIG. 2B.

この参照用サンプルの分解反応は次のように行われる。まず、HNO3ガス又はNO2ガスによるSiの酸化と、HFガスによるSiO2の除去が式(1)及び(2)に示すように同時に行われる。
Si + 4HNO3↑ → SiO2 + 4NO↑ + 2H2O ……(1)
SiO2 + 4HF↑ → SiF4↑ + 2H2O ……(2)
反応容器内に不安定なガスは全くなく、式(3)に示すように上記反応後直ちにNOガスは反応容器内の酸素と反応する。
2NO↑ + O2↑ → 2NO2↑ ……(3)
式(1)及び式(2)で生じた水蒸気が容器内面に付着して微小な液滴になった後、式(4)に示すようにSiF4ガスはこの液滴と反応してゲル状のオルトケイ酸(H4SiO4)を生じる。
SiF4↑ + 4H2O → H4SiO4↓ + 4HF↑ ……(4)
式(3)及び式(4)でそれぞれ生じたNO2ガスとHFガスにより、上記式(1)及び式(2)の反応が繰返され、このNO2ガスとHFガスの再循環は反応容器内の圧力を減じる。上記式(1)及び式(3)に示したように、HNO3によるSiの酸化はNO2を生じる一方、極めて僅かながらNH3ガスも生じる。HFとHNO3によりSiはその97%以上が分解してSiF4を生成し、一方その3%以下がジアンモニウムヘキサフルオロシリケート((NH4)2SiF6)を生成する。この(NH4)2SiF6は白い結晶であり、残渣18として残る。
The decomposition reaction of the reference sample is performed as follows. First, the oxidation of Si with HNO 3 gas or NO 2 gas and the removal of SiO 2 with HF gas are simultaneously performed as shown in equations (1) and (2).
Si + 4HNO 3 ↑ → SiO 2 + 4NO ↑ + 2H 2 O ...... (1)
SiO 2 + 4HF ↑ → SiF 4 ↑ + 2H 2 O (2)
There is no unstable gas in the reaction vessel, and NO gas reacts with oxygen in the reaction vessel immediately after the reaction as shown in the formula (3).
2NO ↑ + O 2 ↑ → 2NO 2 ↑ (3)
After the water vapor generated in the formulas (1) and (2) adheres to the inner surface of the container to form minute droplets, the SiF 4 gas reacts with the droplets as shown in the formula (4) to form a gel. Of orthosilicic acid (H 4 SiO 4 ).
SiF 4 ↑ + 4H 2 O → H 4 SiO 4 ↓ + 4HF ↑ (4)
The equation (3) and NO 2 gas and HF gas generated respectively by the formula (4), the above reaction formula (1) and (2) are repeated, recycled reaction vessel of the NO 2 gas and HF gas Reduce the pressure inside. As shown in the above formulas (1) and (3), the oxidation of Si by HNO 3 produces NO 2 , while very little NH 3 gas is also produced. With HF and HNO 3, 97% or more of Si decomposes to produce SiF 4 , while 3% or less forms diammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ). This (NH 4 ) 2 SiF 6 is a white crystal and remains as a residue 18.

次に図2(c)及び図2(d)に示すように、支持台14を反応容器10から取出し、テーブル上14bでこのサンプルの残渣18にHFとHNO3の混酸溶液19を滴下することによりこの残渣18を溶解し、この溶解液21をフランジのない部分からPTFE製のビーカ22に集める。このHFとHNO3の混合比は、重量比で濃度38重量%のHF:濃度68重量%のHNO3=2:1である。この混酸溶液19の滴下量は残渣1g当り1mlの割合である。このビーカ22内の溶解液21を150〜220℃の温度で加熱することにより、残渣に含まれる(NH4)2SiF6がケイフッ化水素酸(H2SiF6)、四フッ化ケイ素(SiF4)になって、比較的短時間で分解昇華する。ビーカ内には(NH4)2SiF6以外の残渣が残る。なお、HFとHNO3の混酸の代わりにHClとHNO3の混酸を滴下して残渣を溶解してもよい。この場合の溶解液の加熱温度は60〜90℃がよい。 Next, as shown in FIG. 2 (c) and FIG. 2 (d), the support 14 is taken out of the reaction vessel 10, and a mixed acid solution 19 of HF and HNO 3 is dropped onto the residue 18 of this sample on the table 14b. The residue 18 is dissolved by this, and the solution 21 is collected in a PTFE beaker 22 from a portion without a flange. The mixing ratio of HF and HNO 3 is HF with a concentration of 38% by weight: HNO 3 with a concentration of 68% by weight = 2: 1. The amount of the mixed acid solution 19 dropped is 1 ml per 1 g of residue. By heating the solution 21 in the beaker 22 at a temperature of 150 to 220 ° C., (NH 4 ) 2 SiF 6 contained in the residue becomes hydrofluoric acid (H 2 SiF 6 ), silicon tetrafluoride (SiF 4 ) and then sublimate and decompose in a relatively short time. Residues other than (NH 4 ) 2 SiF 6 remain in the beaker. In addition, instead of the mixed acid of HF and HNO 3, a mixed acid of HCl and HNO 3 may be dropped to dissolve the residue. In this case, the heating temperature of the solution is preferably 60 to 90 ° C.

続いて図2(e)に示すように、HFとHNO3とH2SO4の混酸溶液23を滴下して残渣を溶解する。このHFとHNO3とH2SO4の混合比は、濃度38重量%のHF:濃度68重量%のHNO3:濃度98重量%のH2SO4=10〜100:10〜100:1〜10である。この混酸溶液23の滴下量は残渣1g当り100〜200μlの割合である。このビーカ22内の溶解液を150〜220℃の温度で加熱することにより、下記式(5)に示すような反応が起き、残渣に含まれるボロン成分が分解昇華する。

Figure 0004337607
ボロンは比較的短時間で分解昇華し、ビーカ22内に不純物からなる残留物24が残る。ボロン除去後の残留物24にはH2SO4が含まれており、このH2SO4は後述する定量分析に影響(例えば、AAS法のデータにブランクピークを発生させる。)を与えるので好ましくない。このためボロン除去後の残留物24に熱処理を施す。この熱処理ではH2SO4は粘性が高いため200〜250℃で5〜30分間熱処理する必要がある。定量分析法にAAS法を用いる場合には、残留物中のH2SO4の残存量は1μl以下でよいが、ICP-MS法を用いる場合には、残留物に含まれているほとんど全てのH2SO4を除去する必要がある。H2SO4除去後の残留物はHF、HNO3の混酸で希釈され、この希釈液に含まれる微量不純物はAAS法、ICP−MS法又はICP−AES法で定量的に分析される。
なお、本実施の形態では分解液11をHFとHNO3の混酸にH2SO4を加えたものとしたが、HFとHNO3の混酸を用いてもよい。HFとHNO3の混酸を分解液11とする場合では、分解液の気化を促進するために反応容器10を加熱、或いは加圧する必要がある。 Subsequently, as shown in FIG. 2E, a mixed acid solution 23 of HF, HNO 3 and H 2 SO 4 is dropped to dissolve the residue. The mixing ratio of HF, HNO 3 and H 2 SO 4 is as follows: HF with a concentration of 38% by weight: HNO 3 with a concentration of 68% by weight: H 2 SO 4 with a concentration of 98% by weight = 10-100: 10-100: 1 10. The drop amount of the mixed acid solution 23 is 100 to 200 μl per 1 g of the residue. By heating the solution in the beaker 22 at a temperature of 150 to 220 ° C., a reaction shown in the following formula (5) occurs, and the boron component contained in the residue is decomposed and sublimated.
Figure 0004337607
Boron decomposes and sublimates in a relatively short time, and a residue 24 made of impurities remains in the beaker 22. The residue 24 after removing boron contains H 2 SO 4 , and this H 2 SO 4 is preferable because it affects the quantitative analysis described later (for example, a blank peak is generated in the data of the AAS method). Absent. For this reason, the residue 24 after the boron removal is subjected to heat treatment. In this heat treatment, H 2 SO 4 has a high viscosity, so it is necessary to perform heat treatment at 200 to 250 ° C. for 5 to 30 minutes. When the AAS method is used for the quantitative analysis method, the residual amount of H 2 SO 4 in the residue may be 1 μl or less. However, when the ICP-MS method is used, almost all of the residue contained in the residue is contained. It is necessary to remove H 2 SO 4 . The residue after removal of H 2 SO 4 is diluted with a mixed acid of HF and HNO 3 , and trace impurities contained in this diluted solution are quantitatively analyzed by the AAS method, ICP-MS method or ICP-AES method.
Incidentally, in this embodiment it is assumed that the decomposition liquid 11 was added H 2 SO 4 in a mixed acid of HF and HNO 3, may be used mixed acid of HF and HNO 3. When the mixed acid of HF and HNO 3 is used as the decomposition solution 11, the reaction vessel 10 needs to be heated or pressurized in order to promote vaporization of the decomposition solution.

次に、図1に戻って、上記(c)工程のアルカリ標準液中に含まれるNi濃度と(d)工程の測定結果から、アルカリ標準液に接触させた参照用サンプル中に含まれるNi濃度とアルカリ標準液中のNi濃度との相関直線を作成する((e)工程)。上記(c)工程のアルカリ標準液中に含まれるNi濃度と(d)工程の測定結果は相関があることが推察され、上記(c)工程のNi濃度と上記(d)工程の測定値とをプロットすると図3が得られる。この図3は、Ni濃度を0.5ppb、1ppb、2.5ppb、10ppb、20ppb及び100ppb含有させた濃度48重量%のKOH溶液をそれぞれ用意し、これらKOH溶液を抵抗率が14mΩcmのP型シリコンウェーハと接触させた後に、P型シリコンウェーハ中に含まれるNi濃度を測定し、KOH溶液中に含まれるNi濃度とKOH溶液と接触させた後のP型ウェーハ中に含まれるNi濃度とをプロットした図である。図3から両者に一次の相関関係にあることが判り、この相関による直線から検量線を作成する。   Next, referring back to FIG. 1, the Ni concentration contained in the reference sample brought into contact with the alkaline standard solution from the Ni concentration contained in the alkaline standard solution in the step (c) and the measurement result in the step (d). A correlation straight line is created between the Ni concentration in the alkaline standard solution (step (e)). It is inferred that the Ni concentration contained in the alkaline standard solution in the step (c) and the measurement result in the step (d) are correlated, and the Ni concentration in the step (c) and the measurement value in the step (d) Is plotted to obtain FIG. This FIG. 3 shows the preparation of 48 wt% KOH solutions containing Ni concentrations of 0.5 ppb, 1 ppb, 2.5 ppb, 10 ppb, 20 ppb and 100 ppb, respectively, and these KOH solutions are P-type silicon having a resistivity of 14 mΩcm. After contacting with the wafer, the Ni concentration contained in the P-type silicon wafer is measured, and the Ni concentration contained in the KOH solution and the Ni concentration contained in the P-type wafer after contacting with the KOH solution are plotted. FIG. It can be seen from FIG. 3 that both have a first-order correlation, and a calibration curve is created from a straight line based on this correlation.

次に、図1に戻って、上記(a)工程のP型シリコンウェーハ群から測定用サンプルを採取する((f)工程)。
次に、Ni濃度未知のNi含有アルカリ溶液に上記(f)工程で採取した測定用サンプルを接触させる((g)工程)。アルカリ溶液の濃度は上記(c)工程のアルカリ標準液の濃度と同程度の濃度が好ましい。アルカリ溶液中に含まれるNi濃度は25ppb以下が好ましい。Ni濃度が25ppbを越えるとP型ウェーハバルク中へのNi汚染濃度が飽和してしまうため、後に続く工程において相関直線からNi含有アルカリ溶液中に含まれるNi濃度を推定することができず、また直接分析でもNi濃度の測定が可能となる。この(g)工程では、Ni濃度未知のNi含有アルカリ溶液を40〜90℃に維持し、アルカリ溶液に測定用サンプルを3〜20分間接触させることが好ましい。アルカリ溶液の維持温度が40℃未満であると、P型ウェーハバルク内へのNi汚染が十分に進行しない。維持温度が90℃を越えてもその効果は変わらない。接触時間が3分間未満であると、P型ウェーハバルク内へのNi汚染が十分に進行しない。接触時間が20分間を越えてもその効果は変わらない。好ましいアルカリ溶液の維持温度は60〜80℃であり、好ましい接触時間は5〜10分間である。
Next, returning to FIG. 1, a measurement sample is collected from the P-type silicon wafer group in the step (a) (step (f)).
Next, the measurement sample collected in the step (f) is brought into contact with a Ni-containing alkaline solution with an unknown Ni concentration (step (g)). The concentration of the alkaline solution is preferably the same as the concentration of the alkaline standard solution in the step (c). The Ni concentration contained in the alkaline solution is preferably 25 ppb or less. If the Ni concentration exceeds 25 ppb, the Ni contamination concentration in the P-type wafer bulk will be saturated, so that the Ni concentration contained in the Ni-containing alkaline solution cannot be estimated from the correlation line in the subsequent process. Ni concentration can also be measured by direct analysis. In this step (g), it is preferable to maintain a Ni-containing alkaline solution with an unknown Ni concentration at 40 to 90 ° C., and bring the measurement sample into contact with the alkaline solution for 3 to 20 minutes. If the maintenance temperature of the alkaline solution is lower than 40 ° C., Ni contamination into the P-type wafer bulk does not proceed sufficiently. The effect does not change even if the maintenance temperature exceeds 90 ° C. If the contact time is less than 3 minutes, Ni contamination into the P-type wafer bulk does not proceed sufficiently. The effect does not change even if the contact time exceeds 20 minutes. A preferable maintenance temperature of the alkaline solution is 60 to 80 ° C., and a preferable contact time is 5 to 10 minutes.

続いて、(g)工程でアルカリ溶液に接触させた測定用サンプル全体におけるNi濃度を測定する((h)工程)。この(h)工程は、前述した(d)工程のVPD法のような間接溶解法により行うことが好ましい。
更に、上記(h)工程の測定結果を相関直線に照合することにより、アルカリ溶液中に含まれるNi濃度を推定する((i)工程)。(h)工程で得られた測定用サンプル全体におけるNi濃度の測定値を図3に示される検量線に当てはめることで、Ni濃度未知のアルカリ溶液中に含まれるNi濃度を推定する。
Subsequently, the Ni concentration in the entire measurement sample brought into contact with the alkaline solution in the step (g) is measured (step (h)). This step (h) is preferably performed by an indirect dissolution method such as the VPD method of step (d) described above.
Furthermore, the Ni concentration contained in the alkaline solution is estimated by collating the measurement result of the step (h) with a correlation line (step (i)). By applying the measured value of the Ni concentration in the entire measurement sample obtained in the step (h) to the calibration curve shown in FIG. 3, the Ni concentration contained in the alkaline solution with the unknown Ni concentration is estimated.

このように上記工程(a)〜工程(i)を経ることにより、直接分析が難しい濃度25ppb以下の不純物Niが含まれるようなアルカリ溶液中に含まれるNi濃度であっても簡易的に分析することができる。また、直接分析方法とは異なり、間接溶解法によりサンプル全体におけるNi濃度を測定するため、Ni濃度測定の際に汚染する問題がなく、また低い検出下限での分析が可能となる利点がある。   Thus, even if it is Ni density | concentration contained in the alkaline solution in which impurity Ni of the density | concentration of 25 ppb or less which is difficult to analyze directly is contained by passing through the said process (a)-process (i), it analyzes simply. be able to. In addition, unlike the direct analysis method, the Ni concentration in the entire sample is measured by the indirect dissolution method, so that there is no problem of contamination during Ni concentration measurement, and there is an advantage that analysis with a low detection limit is possible.

本発明のアルカリ溶液中のNi濃度を分析する方法を示す図。The figure which shows the method of analyzing Ni density | concentration in the alkaline solution of this invention. サンプル全体におけるNi濃度を測定する方法を示す構成図。The block diagram which shows the method of measuring Ni density | concentration in the whole sample. KOH溶液中に含まれるNi濃度とKOH溶液と接触させた後のウェーハ中に含まれるNi濃度とをプロットした図。The figure which plotted Ni density | concentration contained in a KOH solution, and Ni density | concentration contained in the wafer after making it contact with KOH solution.

Claims (2)

(a) ウェーハ全体の抵抗率が5〜100mΩcmとなるようにボロンが添加されたP型シリコンウェーハ群を作製する工程と、
(b) 前記(a)工程のP型ウェーハ群から参照用サンプルを採取する工程と、
(c) Ni濃度既知のNi含有アルカリ標準液に前記参照用サンプルを接触させる工程と、
(d) 前記アルカリ標準液に接触させた参照用サンプル全体におけるNi濃度を測定する工程と、
(e) 前記(c)工程のアルカリ標準液中に含まれるNi濃度と前記(d)工程の測定結果から、アルカリ標準液に接触させた参照用サンプル中に含まれるNi濃度とアルカリ標準液中のNi濃度との相関直線を作成する工程と、
(f) 前記(a)工程のP型ウェーハ群から測定用サンプルを採取する工程と、
(g) Ni濃度未知のNi含有アルカリ溶液に前記測定用サンプルを接触させる工程と、
(h) 前記アルカリ溶液に接触させた測定用サンプル全体におけるNi濃度を測定する工程と、
(i) 前記(h)工程の測定結果を前記相関直線に照合することにより、アルカリ溶液中に含まれるNi濃度を推定する工程とを含む
ことを特徴とするアルカリ溶液中のNi濃度を分析する方法。
(a) producing a P-type silicon wafer group to which boron is added so that the resistivity of the entire wafer is 5 to 100 mΩcm;
(b) collecting a reference sample from the P-type wafer group in the step (a);
(c) contacting the reference sample with a Ni-containing alkaline standard solution having a known Ni concentration;
(d) measuring the Ni concentration in the entire reference sample in contact with the alkaline standard solution;
(e) From the Ni concentration contained in the alkali standard solution of the step (c) and the measurement result of the step (d), the Ni concentration contained in the reference sample brought into contact with the alkali standard solution and the alkali standard solution Creating a correlation line with the Ni concentration of
(f) collecting a measurement sample from the P-type wafer group in the step (a);
(g) contacting the measurement sample with a Ni-containing alkaline solution having an unknown Ni concentration;
(h) measuring the Ni concentration in the entire measurement sample brought into contact with the alkaline solution;
(i) analyzing the Ni concentration in the alkaline solution, comprising the step of estimating the Ni concentration contained in the alkaline solution by collating the measurement result of the step (h) with the correlation line. Method.
アルカリ標準液及びアルカリ溶液中に含まれるNi濃度が25ppb以下である請求項1記載の方法。 The method of claim 1 Symbol placement Ni concentration in the alkaline standard solution and alkaline solution is less than 25 ppb.
JP2004120068A 2004-04-15 2004-04-15 Method for analyzing Ni concentration in alkaline solution Expired - Lifetime JP4337607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004120068A JP4337607B2 (en) 2004-04-15 2004-04-15 Method for analyzing Ni concentration in alkaline solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004120068A JP4337607B2 (en) 2004-04-15 2004-04-15 Method for analyzing Ni concentration in alkaline solution

Publications (2)

Publication Number Publication Date
JP2005300450A JP2005300450A (en) 2005-10-27
JP4337607B2 true JP4337607B2 (en) 2009-09-30

Family

ID=35332134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004120068A Expired - Lifetime JP4337607B2 (en) 2004-04-15 2004-04-15 Method for analyzing Ni concentration in alkaline solution

Country Status (1)

Country Link
JP (1) JP4337607B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278457A (en) * 2013-05-20 2013-09-04 同济大学 Detection agent for determining content of nickel in water
CN103837488A (en) * 2014-03-24 2014-06-04 常熟市金申医化制品有限责任公司 Method for analyzing content of cyclization product
CN104101576B (en) * 2014-07-31 2017-03-01 攀钢集团江油长城特殊钢有限公司 A kind of method of nickel content in mensure steel
CN105004682A (en) * 2015-06-29 2015-10-28 苏州东辰林达检测技术有限公司 Water nickel ion detection reagent and detection method

Also Published As

Publication number Publication date
JP2005300450A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP5720297B2 (en) Method for analyzing metal contamination of silicon wafers
JP3832204B2 (en) Method for analyzing trace impurities in silicon substrates
JP3487334B2 (en) Method for analyzing impurities in silicon substrate
JP4337607B2 (en) Method for analyzing Ni concentration in alkaline solution
CN110223927A (en) The metallic pollution analysis method of silicon wafer
JP3933090B2 (en) Method for recovering metal impurities from silicon substrate
JP3755586B2 (en) Silicon desorption method and silicon wafer impurity analysis method
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
WO2003036706A1 (en) Method and apparatus for etching silicon wafer and method for analysis of impurities
JP4078980B2 (en) Method for analyzing metal impurities on silicon substrate surface
JP2010008048A (en) Method of etching silicon wafer surface oxide film, metal contamination analysis method of silicon wafer with oxide film, and method of manufacturing silicon wafer with oxide film
JP3804864B2 (en) Impurity analysis method
JP2009294091A (en) Analyzing method of contaminant in silicon wafer
KR101064657B1 (en) Apparatus and method for processing poly silicon
JP2004335955A (en) METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
KR102299861B1 (en) Method for analyzing metal contamination of silicon wafer and method for manufacturing silicon wafer
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP5369514B2 (en) Method for analyzing metal contamination of silicon wafer and method for manufacturing silicon wafer
JP5083089B2 (en) Method for analyzing metal impurities in the surface layer of silicon material
JP3477216B2 (en) Etching method for ultra-trace metal analysis on silicon wafer surface
JPH11183342A (en) Sample processing method for high-accuracy impurity analysis of silicon material and processing unit used for it
JP4849117B2 (en) Method for detecting Cu concentration in silicon substrate
JP4232457B2 (en) Method for analyzing metal impurities in surface oxide film on silicon substrate surface
JP2006156766A (en) Impurity analyzing method for silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4337607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250