JPH0831954A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0831954A
JPH0831954A JP6167792A JP16779294A JPH0831954A JP H0831954 A JPH0831954 A JP H0831954A JP 6167792 A JP6167792 A JP 6167792A JP 16779294 A JP16779294 A JP 16779294A JP H0831954 A JPH0831954 A JP H0831954A
Authority
JP
Japan
Prior art keywords
region
type
semiconductor
insulator
formation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6167792A
Other languages
Japanese (ja)
Inventor
Kunihiko Yamaguchi
邦彦 山口
Takahide Ikeda
隆英 池田
Yoji Idei
陽治 出井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6167792A priority Critical patent/JPH0831954A/en
Publication of JPH0831954A publication Critical patent/JPH0831954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent leak current between first and second element formation regions and to stabilize electrical characteristics by setting the n-type first semiconductor region and n-type second semiconductor region to the same potential. CONSTITUTION:A semiconductor layer 5 is laminated on the main surface of a support substrate 3 via an insulator 4. First and second element formation regions 6A and 6B of the semiconductor layer 5 are mutually separated by a separation groove 11 reaching the insulator 4 from the main surface of the semiconductor layer 5. N-type first semiconductor region 7A and n-type second semiconductor region 7B are formed between n-type well region 8 of the first element formation region 6A of the semiconductor layer 5 and the insulator and between p-type well region 9 of the second element formation region 6B of the semiconductor layer 5 and the insulator 4, respectively. Especially, the n-type first semiconductor region 7A and the n-type second & semiconductor region 7B are set to the same potential, thus preventing leak current between the first element formation region 6A and the second element formation region 6B even if a small defect occurs at the separation groove 11 and the insulator 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路装置に
関し、特に、絶縁体の主面上に積層された半導体層の第
1素子形成領域と第2素子形成領域とが前記半導体層の
主面から前記絶縁体に到達する分離溝で互いに分離され
る半導体集積回路装置に適用して有効な技術に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor layer having a first element formation region and a second element formation region which are laminated on the main surface of an insulator. The present invention relates to a technique effectively applied to a semiconductor integrated circuit device which is separated from each other by a separation groove reaching a surface of the insulator.

【0002】[0002]

【従来の技術】本発明者が検討中のSRAM(tatic
andom ccess emory)は、支持基板の主面上に絶縁
体を介在して半導体層を積層した所謂SOI(ilicon
n nsulator)構造の半導体基体を主体に構成され
る。この半導体基体のメモリセルアレイ形成領域には複
数のメモリセルが行列状に配置される。
2. Description of the Related Art The SRAM (Static
RandomAccessMemory) is insulated on the main surface of the support substrate
A so-called SOI (layer of semiconductor layers stacked with a body interposed)Silicon
OnInsulator) structure semiconductor substrate
It In the memory cell array forming region of the semiconductor substrate,
A number of memory cells are arranged in a matrix.

【0003】前記メモリセルは、フリップフロップ回路
及び2個の転送用MOSFET(etal xide emic
onductor ield ffect ransistor)で構成される。
フリップフロップ回路は、情報蓄積部として構成され、
2個の駆動用MOSFET及び2個の負荷用MOSFE
Tで構成される。2個の負荷用MOSFETはpチャネ
ル導電型で構成され、2個の転送用MOSFET、2個
の駆動用MOSFETの夫々はnチャネル導電型で構成
される。
[0003] The memory cell includes a flip-flop circuit and two transfer MOSFET (M etal O xide S emic
consisting of onductor F ield E ffect T ransistor) .
The flip-flop circuit is configured as an information storage unit,
Two drive MOSFETs and two load MOSFETs
Composed of T. The two load MOSFETs are of p-channel conductivity type, and the two transfer MOSFETs and the two driving MOSFETs are of n-channel conductivity type.

【0004】前記2個の負荷用MOSFETの夫々は半
導体層のP−MOS形成領域(第1素子形成領域)に塔
載され、2個の転送用MOSFET、2個の駆動用MO
SFETの夫々は半導体層のN−MOS形成領域(第2
素子形成領域)に塔載される。
Each of the two load MOSFETs is mounted in a P-MOS formation region (first element formation region) of the semiconductor layer, and has two transfer MOSFETs and two drive MOs.
Each of the SFETs has an N-MOS formation region (second
It is mounted in the device formation area).

【0005】このP−MOS形成領域、N−MOS形成
領域の夫々は、半導体層の素子分離領域の主面からその
深さ方向に向って絶縁体に到達する分離溝で互いに絶縁
分離される。分離溝内には例えば酸化珪素膜からなる絶
縁体が埋め込まれる。
The P-MOS formation region and the N-MOS formation region are insulated and isolated from each other by an isolation groove which reaches the insulator in the depth direction from the main surface of the element isolation region of the semiconductor layer. An insulator made of, for example, a silicon oxide film is embedded in the isolation trench.

【0006】前記半導体層のP−MOS形成領域の主面
には、負荷用MOSFETのチャネル形成領域として使
用されるn型ウエル領域が形成される。また、半導体層
のP−MOS形成領域のn型ウエル領域と絶縁体との間
には、n型ウエル領域に比べて高い不純物濃度に設定さ
れた埋込型のn型半導体領域が形成される。
An n-type well region used as a channel forming region of the load MOSFET is formed on the main surface of the P-MOS forming region of the semiconductor layer. Further, a buried n-type semiconductor region having a higher impurity concentration than that of the n-type well region is formed between the insulator and the n-type well region in the P-MOS formation region of the semiconductor layer. .

【0007】前記半導体層のN−MOS形成領域の主面
には、転送用MOSFET、駆動用MOSFETの夫々
のチャネル形成領域として使用されるp型ウエル領域が
形成される。また、半導体層のN−MOS形成領域のp
型ウエル領域と絶縁体との間には埋込型のn型半導体領
域が形成される。この埋込型のn型半導体領域は、前述
のウエル電位供給用として使用される埋込型のn型半導
体領域と同一製造プロセスで形成される。
On the main surface of the N-MOS formation region of the semiconductor layer, p-type well regions used as channel formation regions for the transfer MOSFET and the drive MOSFET are formed. In addition, p in the N-MOS formation region of the semiconductor layer
A buried n-type semiconductor region is formed between the type well region and the insulator. The buried n-type semiconductor region is formed in the same manufacturing process as the buried n-type semiconductor region used for supplying the well potential.

【0008】このように構成されるSRAMは、支持基
板と半導体層との間に形成された絶縁体及び分離溝でP
−MOS形成領域、N−MOS形成領域の夫々を完全に
分離することができるので、ラッチアップ耐性、動作速
度、集積密度、耐放射線性等を高めることができる。
The SRAM having the above structure is formed of an insulator and a separation groove formed between the supporting substrate and the semiconductor layer, and has a P shape.
Since the -MOS formation region and the N-MOS formation region can be completely separated from each other, latch-up resistance, operating speed, integration density, radiation resistance, etc. can be improved.

【0009】[0009]

【発明が解決しようとする課題】前記SRAM(半導体
集積回路装置)において、P−MOS形成領域とN−M
OS形成領域との間(素子形成領域間)を絶縁分離する分
離溝は高集積化に伴って微細化の傾向にあり、分離溝や
この分離溝内に埋め込まれる絶縁体に微小欠陥が生じ易
い。このため、P−MOS形成領域とN−MOS形成領
域との間においてリーク電流が発生し、負荷用MOSF
ET、駆動用MOSFET、転送用MOSFETの夫々
の電気的特性が不安定になるので、SRAMの電気的信
頼性が低下するという問題があった。
In the SRAM (semiconductor integrated circuit device), the P-MOS formation region and the N-M are formed.
The isolation groove for insulating isolation from the OS formation area (between the element formation areas) tends to become finer with higher integration, and micro defects are likely to occur in the isolation groove and the insulator embedded in the isolation groove. . Therefore, a leak current is generated between the P-MOS formation region and the N-MOS formation region, and the load MOSF is formed.
Since the electrical characteristics of each of the ET, the driving MOSFET, and the transfer MOSFET become unstable, there is a problem that the electrical reliability of the SRAM decreases.

【0010】本発明の目的は、半導体集積回路装置の電
気的信頼性を高めることが可能な技術を提供することに
ある。
An object of the present invention is to provide a technique capable of improving the electrical reliability of a semiconductor integrated circuit device.

【0011】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
になるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0012】[0012]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記のとおりである。
Of the inventions disclosed in the present application, a representative one will be briefly described below.
It is as follows.

【0013】絶縁体の主面上に積層された半導体層の第
1素子形成領域と第2素子形成領域とが前記半導体層の
主面から前記絶縁体に到達する分離溝で互いに分離さ
れ、前記半導体層の第1素子形成領域の主面にpチャネ
ルMISFETのチャネル形成領域として使用されるn
型ウエル領域、前記半導体層の第2素子形成領域の主面
にnチャネルMISFETのチャネル形成領域として使
用されるp型ウエル領域の夫々が形成され、かつ前記半
導体層の第1素子形成領域のn型ウエル領域と絶縁体と
の間にn型の第1半導体領域、前記半導体層の第2素子
形成領域のp型ウエル領域と絶縁体との間にn型の第2
半導体領域の夫々が形成された半導体集積回路装置にお
いて、前記n型の第1半導体領域と前記n型の第2半導
体領域とを同一の電位に設定する。
The first element formation region and the second element formation region of the semiconductor layer laminated on the main surface of the insulator are separated from each other by a separation groove reaching the insulator from the main surface of the semiconductor layer, N used as the channel formation region of the p-channel MISFET on the main surface of the first element formation region of the semiconductor layer
A p-type well region used as a channel formation region of an n-channel MISFET is formed on the main surface of the second well formation region of the semiconductor layer, and n of the first formation region of the semiconductor layer is formed. An n-type first semiconductor region is provided between the type well region and the insulator, and an n-type second semiconductor region is provided between the p-type well region and the insulator in the second element forming region of the semiconductor layer.
In the semiconductor integrated circuit device in which each of the semiconductor regions is formed, the n-type first semiconductor region and the n-type second semiconductor region are set to the same potential.

【0014】[0014]

【作用】上述した手段によれば、分離溝やこの分離溝内
に埋め込まれる絶縁体に微小欠陥が生じても、n型の第
1半導体領域、n型の第2半導体領域の夫々が同一の電
位に設定されているので、第1素子形成領域と第2素子
形成領域との間におけるリーク電流を防止できる。この
結果、pチャネルMISFET、nチャネルMISFE
Tの夫々の電気的性を安定化することができるので、半
導体集積回路装置の電気的信頼性を高めることができ
る。
According to the above-mentioned means, even if a minute defect occurs in the isolation trench or the insulator embedded in the isolation trench, the n-type first semiconductor region and the n-type second semiconductor region are the same. Since the potential is set, the leak current between the first element formation region and the second element formation region can be prevented. As a result, p-channel MISFET, n-channel MISFE
Since the electrical properties of each T can be stabilized, the electrical reliability of the semiconductor integrated circuit device can be improved.

【0015】[0015]

【実施例】以下、本発明の構成について、SRAMに本
発明を適用した実施例とともに説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below together with an embodiment in which the present invention is applied to an SRAM.

【0016】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
In all the drawings for explaining the embodiments, parts having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted.

【0017】(実 施 例 1)本発明の実施例1である
SRAMの概略構成を図1(要部平面図)に示す。
(Embodiment 1) FIG. 1 (plan view of a main portion) shows a schematic structure of an SRAM which is Embodiment 1 of the present invention.

【0018】図1に示すように、SRAMは半導体チッ
プ1のメモリセルアレイ形成領域に複数個のメモリセル
2を配置する。この複数個のメモリセル2は、ワード
線、データ線の夫々の延在方に向って行列状に規則的に
配列される。
As shown in FIG. 1, the SRAM has a plurality of memory cells 2 arranged in a memory cell array forming region of a semiconductor chip 1. The plurality of memory cells 2 are regularly arranged in a matrix in the respective extending directions of the word lines and the data lines.

【0019】前記メモリセル2は、図2(等価回路図)に
示すように、第1データ線DL1、第2データ線DL2
の夫々とワード線WLとの交差部に配置される。このメ
モリセル2は、2つのインバータ回路からなるフリップ
フロップ回路と2個の転送用MISFET(etal In
sulator emiconductor ield ffect ransistor)
Qt1、Qt2とで構成される。
As shown in FIG. 2 (equivalent circuit diagram), the memory cell 2 has a first data line DL1 and a second data line DL2.
Are arranged at the intersections with the respective word lines WL. The memory cell 2, the flip-flop circuit composed of two inverter circuits and two transfer MISFET (M etal In
sulator S emiconductor F ield E ffect T ransistor)
It is composed of Qt1 and Qt2.

【0020】前記転送用MISFETQt1、Qt2の
夫々は、フリップフロップ回路の一対の入出力端子の夫
々に一方の半導体領域を接続する。転送用MISFET
Qt1の他方の半導体領域は第1データ線DL1に接続
され、そのゲート電極はワード線WLに接続される。転
送用MISFETQt2の他方の半導体領域は第2デー
タ線DL2に接続され、そのゲート電極はワード線WL
に接続される。この転送用MISFETQt1、Qt2
の夫々はnチャネル導電型で構成される。
Each of the transfer MISFETs Qt1 and Qt2 has one semiconductor region connected to each of a pair of input / output terminals of the flip-flop circuit. MISFET for transfer
The other semiconductor region of Qt1 is connected to the first data line DL1 and its gate electrode is connected to the word line WL. The other semiconductor region of the transfer MISFET Qt2 is connected to the second data line DL2, and its gate electrode is the word line WL.
Connected to. The transfer MISFETs Qt1 and Qt2
Of n channel conductivity type.

【0021】前記フリップフロップ回路は、2個の駆動
用MISFETQd1、Qd2と、2個の負荷用MIS
FETQp1、Qp2とで構成される。駆動用MISF
ETQd1、Qd2の夫々はnチャネル導電型で構成さ
れる。負荷用MISFETQp1、Qp2の夫々はpチ
ャネル導電型で構成される。つまり、本実施例のSRA
Mのメモリセル2は完全CMIS(omplementary e
tal Insulator emiconductor)構造で構成される。
The flip-flop circuit includes two driving MISFETs Qd1 and Qd2 and two load MISFETs.
It is composed of FETs Qp1 and Qp2. MISF for drive
Each of ETQd1 and ETQd2 is of n-channel conductivity type. Each of the load MISFETs Qp1 and Qp2 is of p-channel conductivity type. That is, the SRA of this embodiment
Memory cell 2 of M is complete CMIS (C omplementary M e
It consists of tal Insulator S emiconductor) structure.

【0022】前記駆動用MISFETQd1、負荷用M
ISFETQp1の夫々は、互いのドレイン領域同志を
接続し、かつ互いのゲート電極同志を接続する。同様
に、駆動用MISFETQd2、負荷用MISFETQ
p2の夫々は、互いのドレイン領域同志を接続し、かつ
互いのゲート電極同志を接続する。駆動用MISFET
Qd1、負荷用MISFETQp1の夫々のドレイン領
域(記憶ノード)は、転送用MISFETQt1の一方の
半導体領域に接続されると共に、駆動用MISFETQ
d2、負荷用MISFETQp2の夫々のゲート電極に
接続される。駆動用MISFETQd2、負荷用MIS
FETQp2の夫々のドレイン領域(記憶ノード)は、転
送用MISFETQt2の一方の半導体領域に接続され
ると共に、駆動用MISFETQd1、負荷用MISF
ETQp1の夫々のゲート電極に接続される。
The driving MISFET Qd1 and the load M
Each of the ISFETs Qp1 connects their drain regions to each other and their gate electrodes to each other. Similarly, drive MISFETQd2, load MISFETQ
Each of p2 connects the drain regions to each other and the gate electrodes to each other. MISFET for drive
The drain regions (storage nodes) of the Qd1 and the load MISFET Qp1 are connected to one semiconductor region of the transfer MISFET Qt1 and the driving MISFET Q is formed.
d2, connected to the respective gate electrodes of the load MISFET Qp2. Drive MISFET Qd2, load MIS
Each drain region (storage node) of the FET Qp2 is connected to one semiconductor region of the transfer MISFET Qt2, and also has a driving MISFET Qd1 and a load MISF.
It is connected to each gate electrode of ETQp1.

【0023】前記駆動用MISFETQd1、Qd2の
夫々のソース領域は例えば電源電位VEM(例えば−
2.5[V])に固定される。また、前記負荷用MIS
FETQp1、Qp2の夫々のソース領域は例えば基準
電位VCC(例えば0[V])に固定される。
The source region of each of the driving MISFETs Qd1 and Qd2 is, for example, a power supply potential VEM (for example, −
It is fixed at 2.5 [V]). In addition, the load MIS
The source regions of the FETs Qp1 and Qp2 are fixed to the reference potential VCC (for example, 0 [V]), for example.

【0024】前記メモリセル2は、図1に示すように、
半導体チップ1のメモリセルアレイ形成領域内におい
て、フィールド絶縁膜10で周囲を規定されたP−MI
S形成領域(第1素子形成領域)6Aに負荷用MISFE
TQp1、Qp2の夫々を塔載し、フィールド絶縁膜1
0で周囲を規定されたN−MIS形成領域(第2素子形
成領域)6Bに駆動用MISFETQd1、Qd2、転
送用MISFETQt1、Qt2の夫々を塔載する。こ
のP−MIS形成領域6A、N−MIS形成領域6Bの
夫々は分離溝11によって互いに絶縁分離される。分離
溝11は、例えばワード線WLの延在方向に沿って延在
し、各メモリセル2のP−MIS形成領域6AとN−M
IS形成領域6Bとを分離する。
The memory cell 2 is, as shown in FIG.
In the memory cell array forming region of the semiconductor chip 1, the P-MI whose periphery is defined by the field insulating film 10.
MISFE for load is formed in the S formation region (first element formation region) 6A.
Each of TQp1 and Qp2 is mounted on the field insulating film 1
The driving MISFETs Qd1 and Qd2 and the transfer MISFETs Qt1 and Qt2 are mounted in the N-MIS formation region (second element formation region) 6B whose periphery is defined by 0. The P-MIS formation region 6A and the N-MIS formation region 6B are insulated and isolated from each other by the isolation trench 11. The isolation trench 11 extends along, for example, the extending direction of the word line WL, and the P-MIS formation regions 6A and NM of each memory cell 2 are formed.
The IS formation region 6B is separated.

【0025】前記半導体チップ1は、図3(図1に示す
A−A切断線で切った断面図)に示すように、支持基板
3の主面上に絶縁体4を介在して半導体層5を積層した
SOI構造で構成される。支持基板3は例えば単結晶珪
素基板で形成され、絶縁体4は例えば酸化珪素膜で形成
される。半導体層5は、本実施例に限定されないが、単
結晶珪素基板5Aの主面上にエピタキシャル層5Bを積
層した2層構造で構成される。
As shown in FIG. 3 (a sectional view taken along the line AA of FIG. 1), the semiconductor chip 1 has a semiconductor layer 5 on the main surface of the support substrate 3 with an insulator 4 interposed therebetween. Is formed by stacking SOI structures. The support substrate 3 is formed of, for example, a single crystal silicon substrate, and the insulator 4 is formed of, for example, a silicon oxide film. Although not limited to this embodiment, the semiconductor layer 5 has a two-layer structure in which the epitaxial layer 5B is laminated on the main surface of the single crystal silicon substrate 5A.

【0026】前記半導体層5のP−MIS形成領域6A
の主面にはn型ウエル領域8が形成される。また、P−
MIS形成領域6Aにおいて、n型ウエル領域8と絶縁
体4との間には、n型ウエル領域8の底面部に接触する
n+型半導体領域7Aが形成される。このn型ウエル領域
8、n+型半導体領域7Aの夫々は、ワード線WLの延在
方向に沿って延在する。
P-MIS formation region 6A of the semiconductor layer 5
An n-type well region 8 is formed on the main surface of. Also, P-
In the MIS formation region 6A, the bottom surface of the n-type well region 8 is in contact with the space between the n-type well region 8 and the insulator 4.
The n + type semiconductor region 7A is formed. Each of the n-type well region 8 and the n + -type semiconductor region 7A extends along the extending direction of the word line WL.

【0027】前記半導体層5のN−MIS形成領域6B
の主面にはp型ウエル領域9が形成される。また、N−
MIS形成領域6Bにおいて、p型ウエル領域9と絶縁
体4との間には、p型ウエル領域9の底面部に接触する
n+型半導体領域7Bが形成される。このp型ウエル領域
9、n+型半導体領域7Bの夫々は、ワード線WLの延在
方向に沿って延在する。
N-MIS formation region 6B of the semiconductor layer 5
A p-type well region 9 is formed on the main surface of. Also, N-
In the MIS formation region 6B, between the p-type well region 9 and the insulator 4 is in contact with the bottom surface of the p-type well region 9.
The n + type semiconductor region 7B is formed. Each of p type well region 9 and n + type semiconductor region 7B extends along the extending direction of word line WL.

【0028】前記n+型半導体領域7A、n+型半導体領域
7Bの夫々は、半導体チップ1の周辺回路形成領域に塔
載されたバイポーラトランジスタのコレクタ領域である
埋込型の半導体領域と同一の製造プロセスで同時に或は
別々に形成される。
Each of the n + type semiconductor region 7A and the n + type semiconductor region 7B has the same manufacturing process as the buried type semiconductor region which is the collector region of the bipolar transistor mounted in the peripheral circuit forming region of the semiconductor chip 1. At the same time or separately.

【0029】前記n型ウエル領域8の主面には負荷用M
ISFETQp1が構成される。この負荷用MISFE
TQp1は、n型ウエル領域(チャネル形成領域)8、ゲ
ート絶縁膜13、ゲート電極14、ソース領域及びドレ
イン領域である一対のp+型半導体領域16で構成され
る。また、n型ウエル領域8の主面には、図示していな
いが、負荷用MISFETQp2が構成される。
A load M is formed on the main surface of the n-type well region 8.
ISFET Qp1 is configured. MISFE for this load
The TQp1 is composed of an n-type well region (channel forming region) 8, a gate insulating film 13, a gate electrode 14, and a pair of p + -type semiconductor regions 16 which are a source region and a drain region. Although not shown, a load MISFET Qp2 is formed on the main surface of the n-type well region 8.

【0030】前記p型ウエル領域9の主面には駆動用M
ISFETQd1が構成される。この駆動用MISFE
TQd1は、p型ウエル領域(チャネル形成領域)9、ゲ
ート絶縁膜13、ゲート電極14、ソース領域及びドレ
イン領域である一対のn+型半導体領域15で構成され
る。また、p型ウエル領域9の主面には、図示していな
いが、駆動用MISFETQd1、転送用MISFET
Qt1、Qt2の夫々が構成される。
A driving M is formed on the main surface of the p-type well region 9.
ISFET Qd1 is configured. This drive MISFE
The TQd1 is composed of a p-type well region (channel forming region) 9, a gate insulating film 13, a gate electrode 14, and a pair of n + type semiconductor regions 15 which are a source region and a drain region. Although not shown, the main surface of the p-type well region 9 includes a driving MISFET Qd1 and a transfer MISFET.
Each of Qt1 and Qt2 is configured.

【0031】前記半導体層5において、P−MOS形成
領域6A、N−MOS形成領域6Bの夫々は、半導体層
5の主面からその深さ方向に向って絶縁体4に到達する
分離溝11で互いに絶縁分離される。この分離溝11内
には例えば酸化珪素膜で形成された絶縁体12が埋め込
まれる。つまり、n型ウエル領域8、n+型半導体領域7
Aの夫々とp型ウエル領域9、n+型半導体領域7Bの夫
々は分離溝11及び絶縁体12で互いに絶縁分離され
る。
In the semiconductor layer 5, each of the P-MOS formation region 6A and the N-MOS formation region 6B is a separation groove 11 that reaches the insulator 4 from the main surface of the semiconductor layer 5 in the depth direction. Isolated from each other. An insulator 12 formed of, for example, a silicon oxide film is embedded in the separation groove 11. That is, the n-type well region 8 and the n + -type semiconductor region 7
Each of A, the p-type well region 9 and each of the n + type semiconductor regions 7B are insulated and isolated from each other by the isolation groove 11 and the insulator 12.

【0032】前記n型ウエル領域8は例えば0[V]電
位に固定される。p型ウエル領域9は例えば−2.5
[V]電位に固定される。n+型半導体領域7A、n+型半
導体領域7Bの夫々は例えば0[V]電位に固定され
る。つまり、n+型半導体領域7A、埋込型のn+型半導体
領域7Bの夫々は同一の電位に設定される。
The n-type well region 8 is fixed at 0 [V] potential, for example. The p-type well region 9 has, for example, -2.5.
It is fixed at the [V] potential. Each of the n + type semiconductor region 7A and the n + type semiconductor region 7B is fixed at, for example, 0 [V] potential. That is, the n + type semiconductor region 7A and the buried type n + type semiconductor region 7B are set to the same potential.

【0033】前記分離溝11は例えばドライエッチング
技術で形成される。この分離溝11の分離幅は、メモリ
セル2の高集積化に伴い、例えば0.5[μm]程度に
微細化される。この微細化に伴なって、分離溝11、こ
の分離溝11に埋め込まれる絶縁体12の夫々には微小
欠陥が発生し易いが、前述のように、n+型半導体領域7
A、n+型半導体領域7Bの夫々が同一の電位に設定され
ているので、分離溝11や絶縁体12に微小欠陥が生じ
ても、P−MIS形成領域6AとN−MIS形成領域6
Bとの間におけるリーク電流を防止できる。
The separation groove 11 is formed by, for example, a dry etching technique. The isolation width of the isolation trench 11 is reduced to about 0.5 [μm], for example, as the memory cell 2 is highly integrated. Along with this miniaturization, minute defects are easily generated in each of the isolation trench 11 and the insulator 12 embedded in the isolation trench 11, but as described above, the n + type semiconductor region 7 is formed.
Since the A and n + type semiconductor regions 7B are set to the same potential, even if a minute defect occurs in the isolation trench 11 or the insulator 12, the P-MIS formation region 6A and the N-MIS formation region 6 are formed.
It is possible to prevent a leak current between B and B.

【0034】このように、絶縁体4の主面上に積層され
た半導体層5のP−MIS形成領域(第1素子形成領域)
6AとN−MIS形成領域(第2素子形成領域)6Bとが
前記半導体層5の主面から前記絶縁体4に到達する分離
溝11で互いに分離され、前記半導体層5のP−MIS
形成領域6Aの主面に負荷用MISFETQp1、Qp
2の夫々のチャネル形成領域として使用されるn型ウエ
ル領域8、前記半導体層5のN−MIS形成領域6Bの
主面に駆動用MISFETQd1、Qd2、転送用MI
SFETQt1、Qt2の夫々のチャネル形成領域とし
て使用されるp型ウエル領域9の夫々が形成され、かつ
前記半導体層5のP−MIS形成領域6Aのn型ウエル
領域8と絶縁体4との間にn+型半導体領域7A、前記半
導体層5のN−MIS形成領域6Bのp型ウエル領域9
と絶縁体4との間にn+型半導体領域7Bの夫々が形成さ
れるSRAM(半導体集積回路装置)において、前記n+
型半導体領域7Aと前記n+型半導体領域7Bとを同一の
電位に設定する。この構成により、分離溝11やこの分
離溝11内に埋め込まれる絶縁体12に微小欠陥が生じ
ても、n+型半導体領域7A、n+型半導体領域7Bの夫々
が同一の電位に設定されているので、P−MIS形成領
域6AとN−MIS形成領域6Bとの間におけるリーク
電流を防止できる。この結果、負荷用MISFETQp
1、Qp2、駆動用MISFETQd1、Qd2、転送
用MISFETQt1、Qt2の夫々の電気的特性を安
定化することができるので、半導体集積回路装置の電気
的信頼性を高めることができる。
As described above, the P-MIS formation region (first element formation region) of the semiconductor layer 5 laminated on the main surface of the insulator 4 is formed.
6A and an N-MIS formation region (second element formation region) 6B are separated from each other by an isolation groove 11 that reaches the insulator 4 from the main surface of the semiconductor layer 5, and the P-MIS of the semiconductor layer 5 is formed.
Load MISFETs Qp1 and Qp are formed on the main surface of the formation region 6A.
2, n-type well regions 8 used as respective channel formation regions, and driving MISFETs Qd1 and Qd2 and transfer MI on the main surface of the N-MIS formation region 6B of the semiconductor layer 5.
The p-type well regions 9 used as the channel forming regions of the SFETs Qt1 and Qt2 are formed, respectively, and between the n-type well region 8 of the P-MIS forming region 6A of the semiconductor layer 5 and the insulator 4. n + type semiconductor region 7A, p type well region 9 of N-MIS formation region 6B of the semiconductor layer 5
In the SRAM (semiconductor integrated circuit device) in which each of the n + type semiconductor regions 7B is formed between the insulator 4 and the insulator 4,
The type semiconductor region 7A and the n + type semiconductor region 7B are set to the same potential. With this configuration, even if a minute defect occurs in the isolation trench 11 or the insulator 12 embedded in the isolation trench 11, the n + type semiconductor region 7A and the n + type semiconductor region 7B are set to the same potential. , A leak current between the P-MIS formation region 6A and the N-MIS formation region 6B can be prevented. As a result, the load MISFET Qp
1, Qp2, the driving MISFETs Qd1 and Qd2, and the transfer MISFETs Qt1 and Qt2 can be stabilized in electrical characteristics, so that the electrical reliability of the semiconductor integrated circuit device can be improved.

【0035】また、分離溝11に絶縁体4に到達しない
分離不良が生じても、n+型半導体領域7A、n+型半導体
領域7Bの夫々が同一電位に設定されているので、分離
不良が発生した分離溝11でP−MIS形成領域6A、
N−MIS形成領域6Bの夫々が分離される各メモリセ
ル2の不良を防止することができる。
Further, even if a separation failure that does not reach the insulator 4 occurs in the separation groove 11, the separation failure occurs because the n + type semiconductor region 7A and the n + type semiconductor region 7B are set to the same potential. In the isolation groove 11, the P-MIS formation region 6A,
It is possible to prevent defects in each memory cell 2 in which the N-MIS formation regions 6B are separated from each other.

【0036】また、P−MIS形成領域6AとN−MI
S形成領域6Bとの間におけるリーク電流を防止できる
ので、分離溝11の更なる微細化を図ることができる。
Further, the P-MIS formation region 6A and the N-MI are formed.
Since leakage current between the S formation region 6B and the S formation region 6B can be prevented, further miniaturization of the isolation trench 11 can be achieved.

【0037】また、P−MIS形成領域6AとN−MI
S形成領域6Bとの間における分離溝11を浅く形成す
ることができるので、SRAMの歩留まりを高めること
ができる。
Further, the P-MIS formation region 6A and the N-MI are formed.
Since the isolation trench 11 between the S formation region 6B and the S formation region 6B can be formed shallowly, the yield of SRAM can be increased.

【0038】(実 施 例 2)本発明の実施例2である
SRAMのメモリセルの概略構成を図4(断面図)に示
す。
(Embodiment 2) FIG. 4 (cross-sectional view) shows a schematic configuration of a memory cell of an SRAM which is Embodiment 2 of the present invention.

【0039】図4に示すように、SRAMのメモリセル
は、半導体チップ1のメモリセルアレイ形成領域内にお
いて、フィールド絶縁膜10で周囲を規定された半導体
層5のP−MIS形成領域(第1素子形成領域)6Aに負
荷用MISFETQp1を塔載し、フィールド絶縁膜1
0で周囲を規定された半導体層5のP−MIS形成領域
(第2素子形成領域)6Bに駆動用MISFETQd1
を塔載する。このP−MIS形成領域6A、N−MIS
形成領域6Bの夫々は、半導体層5の主面からその深さ
方向に向って絶縁体4に到達する分離溝11及びこの分
離溝11内に埋め込まれた絶縁体12で互いに絶縁分離
される。
As shown in FIG. 4, in the memory cell of the SRAM, in the memory cell array forming region of the semiconductor chip 1, the P-MIS forming region (first element) of the semiconductor layer 5 whose periphery is defined by the field insulating film 10 is formed. In the formation region) 6A, the load MISFET Qp1 is mounted, and the field insulating film 1 is formed.
In the P-MIS formation region (second element formation region) 6B of the semiconductor layer 5 whose periphery is defined by 0, the driving MISFET Qd1 is formed.
To install. This P-MIS formation region 6A, N-MIS
The formation regions 6B are insulated and separated from each other by the isolation trench 11 that reaches the insulator 4 from the main surface of the semiconductor layer 5 in the depth direction thereof and the insulator 12 embedded in the isolation trench 11.

【0040】前記半導体層5のP−MIS形成領域6A
の主面にはn型ウエル領域8が形成される。また、P−
MIS形成領域6Aにおいて、n型ウエル領域8と絶縁
体4との間には、n型ウエル領域8の底面部に接触する
n+型半導体領域7Aが形成される。
P-MIS formation region 6A of the semiconductor layer 5
An n-type well region 8 is formed on the main surface of. Also, P-
In the MIS formation region 6A, the bottom surface of the n-type well region 8 is in contact with the space between the n-type well region 8 and the insulator 4.
The n + type semiconductor region 7A is formed.

【0041】前記半導体層5のN−MIS形成領域6B
の主面にはp型ウエル領域9が形成される。また、N−
MIS形成領域6Bにおいて、p型ウエル領域9と絶縁
体4との間には、p型ウエル領域9の底面部に接触する
n-型半導体領域17が形成される。このn-型半導体領域
17は、n+型半導体領域7の不純物濃度に比べて低い不
純物濃度に設定され、例えば単結珪素基板5Aで構成さ
れる。このように、p型ウエル領域9と絶縁体4との間
にn-型半導体領域17を形成することにより、n+型半導
体領域15をエミッタ領域、p型ウエル領域9をベース
領域、n-型半導体領域17をコレクタ領域とする寄生バ
イポーラトランジスタの寄生動作を防止することができ
る。
N-MIS formation region 6B of the semiconductor layer 5
A p-type well region 9 is formed on the main surface of. Also, N-
In the MIS formation region 6B, between the p-type well region 9 and the insulator 4 is in contact with the bottom surface of the p-type well region 9.
The n − type semiconductor region 17 is formed. The n − type semiconductor region 17 is set to have an impurity concentration lower than that of the n + type semiconductor region 7, and is composed of, for example, a single-bonded silicon substrate 5A. By thus forming the n − type semiconductor region 17 between the p type well region 9 and the insulator 4, the n + type semiconductor region 15 is the emitter region, the p type well region 9 is the base region, and the n − type semiconductor region 17 is formed. It is possible to prevent the parasitic operation of the parasitic bipolar transistor having the semiconductor region 17 as the collector region.

【0042】前記負荷用MISFETQp1は、そのチ
ャネル形成領域として使用するn型ウエル領域8の主面
に構成される。駆動用MISFETQd1は、そのチャ
ネル形成領域として使用するp型ウエル領域9の主面に
構成される。
The load MISFET Qp1 is formed on the main surface of the n-type well region 8 used as a channel forming region thereof. The driving MISFET Qd1 is formed on the main surface of the p-type well region 9 used as its channel forming region.

【0043】前記n型ウエル領域8は例えば0[V]電
位に固定される。p型ウエル領域9は例えば−2.5
[V]電位に固定される。n+型半導体領域7A、n-型半
導体領域17の夫々は例えば0[V]電位に固定され
る。つまり、n+型半導体領域7A、n-型半導体領域17
の夫々は同一の電位に設定される。
The n-type well region 8 is fixed at, for example, 0 [V] potential. The p-type well region 9 has, for example, -2.5.
It is fixed at the [V] potential. Each of the n + type semiconductor region 7A and the n − type semiconductor region 17 is fixed to 0 [V] potential, for example. That is, the n + type semiconductor region 7A and the n − type semiconductor region 17
Are set to the same potential.

【0044】このように、n+型半導体領域7A、n-型半
導体領域17の夫々を同一の電位に設定することによ
り、前述の実施例1と同様の効果が得られる。
As described above, by setting the n + type semiconductor region 7A and the n− type semiconductor region 17 to the same potential, the same effect as that of the first embodiment can be obtained.

【0045】(実 施 例 3)本発明の実施例2である
SRAMのメモリセルの概略構成を図5(断面図)に示
す。
(Embodiment 3) FIG. 5 (cross-sectional view) shows a schematic configuration of a memory cell of an SRAM which is Embodiment 2 of the present invention.

【0046】図5に示すように、SRAMのメモリセル
は、半導体チップ1のメモリセルアレイ形成領域内にお
いて、フィールド絶縁膜10で周囲を規定された半導体
層5のP−MIS形成領域(第1素子形成領域)6Aに負
荷用MISFETQp1を塔載し、フィールド絶縁膜1
0で周囲を規定された半導体層5のP−MIS形成領域
(第2素子形成領域)6Bに駆動用MISFETQd1
を塔載する。このP−MIS形成領域6A、N−MIS
形成領域6Bの夫々は、半導体層5の主面からその深さ
方向に向って絶縁体4に到達する分離溝11及びこの分
離溝11内に埋め込まれた絶縁体12で互いに絶縁分離
される。
As shown in FIG. 5, in the memory cell of the SRAM, in the memory cell array forming region of the semiconductor chip 1, the P-MIS forming region (first element) of the semiconductor layer 5 whose periphery is defined by the field insulating film 10 is formed. In the formation region) 6A, the load MISFET Qp1 is mounted, and the field insulating film 1 is formed.
In the P-MIS formation region (second element formation region) 6B of the semiconductor layer 5 whose periphery is defined by 0, the driving MISFET Qd1 is formed.
To install. This P-MIS formation region 6A, N-MIS
The formation regions 6B are insulated and separated from each other by the isolation trench 11 that reaches the insulator 4 from the main surface of the semiconductor layer 5 in the depth direction thereof and the insulator 12 embedded in the isolation trench 11.

【0047】前記半導体層5のN−MIS形成領域6B
の主面にはp型ウエル領域9が形成される。また、N−
MIS形成領域6Bにおいて、p型ウエル領域9と絶縁
体4との間には、p型ウエル領域9の底面部に接触する
n-型半導体領域17が形成される。
N-MIS formation region 6B of the semiconductor layer 5
A p-type well region 9 is formed on the main surface of. Also, N-
In the MIS formation region 6B, between the p-type well region 9 and the insulator 4 is in contact with the bottom surface of the p-type well region 9.
The n − type semiconductor region 17 is formed.

【0048】前記半導体層5のP−MIS形成領域6A
の主面にはn型ウエル領域8が形成される。また、P−
MIS形成領域6Aにおいて、n型ウエル領域8と絶縁
体4との間には、n型ウエル領域8の底面部に接触する
n+型半導体領域7A1 が形成される。また、P−MIS
形成領域6Aにおいて、n+型半導体領域7A1 と絶縁体
4との間にはn-型半導体領域17が形成される。このn-
型半導体領域17は、n+型半導体領域7A1 の不純物濃
度に比べて低い不純物濃度に設定され、例えば単結晶珪
素基板5Aで構成される。
P-MIS formation region 6A of the semiconductor layer 5
An n-type well region 8 is formed on the main surface of. Also, P-
In the MIS formation region 6A, the bottom surface of the n-type well region 8 is in contact with the space between the n-type well region 8 and the insulator 4.
The n + type semiconductor region 7A 1 is formed. In addition, P-MIS
In the formation region 6A, the n − type semiconductor region 17 is formed between the n + type semiconductor region 7A 1 and the insulator 4. This n-
The type semiconductor region 17 is set to have an impurity concentration lower than that of the n + type semiconductor region 7A 1 and is composed of, for example, a single crystal silicon substrate 5A.

【0049】前記n+型半導体領域7A1 、n-型半導体領
域17の夫々は例えば0[V]電位に固定される。つま
り、n+型半導体領域7A1 、n-型半導体領域17の夫々
は同一の電位に設定される。
Each of the n + type semiconductor region 7A 1 and the n− type semiconductor region 17 is fixed to 0 [V] potential, for example. That is, the n + type semiconductor region 7A 1 and the n− type semiconductor region 17 are set to the same potential.

【0050】このように、n+型半導体領域7A1 、n-型
半導体領域17の夫々を同一の電位に設定することによ
り、前述の実施例1と同様の効果が得られる。
As described above, by setting the n + type semiconductor region 7A 1 and the n− type semiconductor region 17 to the same potential, the same effect as that of the first embodiment can be obtained.

【0051】以上、本発明者によってなされた発明を、
前記実施例に基づき具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能であることは勿論であ
る。
The inventions made by the present inventors are as follows.
Although the present invention has been specifically described based on the above-mentioned embodiments, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention.

【0052】[0052]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0053】半導体集積回路装置の電気的信頼性を高め
ることができる。
The electrical reliability of the semiconductor integrated circuit device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1であるSRAMの要部平面
図。
FIG. 1 is a plan view of a main part of an SRAM that is Embodiment 1 of the present invention.

【図2】前記SRAMのメモリセルの等価回路図。FIG. 2 is an equivalent circuit diagram of the memory cell of the SRAM.

【図3】図1に示すA−A切断線で切った断面図。3 is a cross-sectional view taken along the line AA shown in FIG.

【図4】本発明の実施例2であるSRAMの要部断面
図。
FIG. 4 is a sectional view of a main part of an SRAM which is Embodiment 2 of the present invention.

【図5】本発明の実施例3であるSRAMの要部断面
図。
FIG. 5 is a cross-sectional view of essential parts of an SRAM according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体チップ、2…メモリセル、3…支持基板、4
…絶縁体、5…半導体層、6A…P−MIS形成領域、
6B…N−MIS形成領域、7A,7B…n+型半導体領
域、8…n型ウエル領域、9…p型ウエル領域、10…
フィールド絶縁膜、11…分離溝、12…絶縁体、13
…ゲート絶縁膜、14…ゲート電極、15…n+型半導体
領域、16…p+型半導体領域、17…n-型半導体領域。
1 ... Semiconductor chip, 2 ... Memory cell, 3 ... Support substrate, 4
... insulator, 5 ... semiconductor layer, 6A ... P-MIS formation region,
6B ... N-MIS formation region, 7A, 7B ... n + type semiconductor region, 8 ... N type well region, 9 ... P type well region, 10 ...
Field insulating film, 11 ... Separation groove, 12 ... Insulator, 13
... Gate insulating film, 14 ... Gate electrode, 15 ... N + type semiconductor region, 16 ... P + type semiconductor region, 17 ... N- type semiconductor region.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/08 331 A C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 27/08 331 AC

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体の主面上に積層された半導体層の
第1素子形成領域と第2素子形成領域とが前記半導体層
の主面から前記絶縁体に到達する分離溝で互いに分離さ
れ、前記半導体層の第1素子形成領域の主面にpチャネ
ルMISFETのチャネル形成領域として使用されるn
型ウエル領域、前記半導体層の第2素子形成領域の主面
にnチャネルMISFETのチャネル形成領域として使
用されるp型ウエル領域の夫々が形成され、かつ前記半
導体層の第1素子形成領域のn型ウエル領域と絶縁体と
の間にn型の第1半導体領域、前記半導体層の第2素子
形成領域のp型ウエル領域と絶縁体との間にn型の第2
半導体領域の夫々が形成される半導体集積回路装置にお
いて、前記n型の第1半導体領域と前記n型の第2半導
体領域とが同一の電位に設定されていることを特徴とす
る半導体集積回路装置。
1. A first element formation region and a second element formation region of a semiconductor layer stacked on a main surface of an insulator are separated from each other by a separation groove that reaches the insulator from the main surface of the semiconductor layer. , Used as a channel formation region of a p-channel MISFET on the main surface of the first element formation region of the semiconductor layer.
A p-type well region used as a channel formation region of an n-channel MISFET is formed on the main surface of the second well formation region of the semiconductor layer, and n of the first formation region of the semiconductor layer is formed. An n-type first semiconductor region is provided between the type well region and the insulator, and an n-type second semiconductor region is provided between the p-type well region and the insulator in the second element forming region of the semiconductor layer.
In a semiconductor integrated circuit device in which each of the semiconductor regions is formed, the n-type first semiconductor region and the n-type second semiconductor region are set to the same potential. .
【請求項2】 前記n型の第2半導体領域は、前記n型
の第1半導体領域に比べて低い不純物濃度に設定されて
いることを特徴とする請求項1に記載の半導体集積回路
装置。
2. The semiconductor integrated circuit device according to claim 1, wherein the n-type second semiconductor region is set to have an impurity concentration lower than that of the n-type first semiconductor region.
【請求項3】 前記半導体層の第1素子形成領域のn型
の第1半導体領域と絶縁体との間には、この第1半導体
領域に比べて低い不純物濃度に設定されたn型の第3半
導体領域が形成されていることを特徴とする請求項1に
記載の半導体集積回路装置。
3. Between the n-type first semiconductor region of the first element formation region of the semiconductor layer and the insulator, an n-type first semiconductor region having a lower impurity concentration than that of the first semiconductor region is set. The semiconductor integrated circuit device according to claim 1, wherein three semiconductor regions are formed.
JP6167792A 1994-07-20 1994-07-20 Semiconductor integrated circuit device Pending JPH0831954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6167792A JPH0831954A (en) 1994-07-20 1994-07-20 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6167792A JPH0831954A (en) 1994-07-20 1994-07-20 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0831954A true JPH0831954A (en) 1996-02-02

Family

ID=15856201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6167792A Pending JPH0831954A (en) 1994-07-20 1994-07-20 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0831954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528484A (en) * 2009-05-28 2012-11-12 インターナショナル・ビジネス・マシーンズ・コーポレーション Integrated circuit device and method of forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528484A (en) * 2009-05-28 2012-11-12 インターナショナル・ビジネス・マシーンズ・コーポレーション Integrated circuit device and method of forming the same

Similar Documents

Publication Publication Date Title
JP2927463B2 (en) Semiconductor storage device
JP3057661B2 (en) Semiconductor device
US6740958B2 (en) Semiconductor memory device
JP2825520B2 (en) Semiconductor device
US20050029556A1 (en) Compact SRAM cell with FinFET
JP2559360B2 (en) Semiconductor memory device
US6903419B2 (en) Semiconductor storage device and semiconductor integrated circuit
JP2001352077A (en) Soi field effect transistor
KR940018972A (en) Semiconductor integrated circuit device and manufacturing method thereof
JP3780003B2 (en) Semiconductor integrated circuit device
EP0426174B1 (en) Semiconductor integrated circuit
JPH07106438A (en) Semiconductor integrated circuit device
JP2998679B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0831954A (en) Semiconductor integrated circuit device
JP3363750B2 (en) Method for manufacturing semiconductor integrated circuit device
US6242786B1 (en) SOI Semiconductor device with field shield electrode
JP2550119B2 (en) Semiconductor memory device
JP2877069B2 (en) Static semiconductor memory device
JPH0722182B2 (en) Complementary semiconductor device
JP3059607B2 (en) Semiconductor memory device and method of manufacturing the same
JP2621820B2 (en) Static memory cell
JP3080800B2 (en) Semiconductor device
JPH10290519A (en) Semiconductor integrated circuit device
JP2003046087A (en) Semiconductor integrated circuit
JPS63104467A (en) Semiconductor integrated circuit device