JPH08316299A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH08316299A
JPH08316299A JP10070196A JP10070196A JPH08316299A JP H08316299 A JPH08316299 A JP H08316299A JP 10070196 A JP10070196 A JP 10070196A JP 10070196 A JP10070196 A JP 10070196A JP H08316299 A JPH08316299 A JP H08316299A
Authority
JP
Japan
Prior art keywords
ceramic
pedestal
dielectric ceramic
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10070196A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tatsumi
良昭 辰己
Seiichiro Miyata
征一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYATA GIKEN KK
SOUZOU KAGAKU KK
SOZO KAGAKU KK
Original Assignee
MIYATA GIKEN KK
SOUZOU KAGAKU KK
SOZO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYATA GIKEN KK, SOUZOU KAGAKU KK, SOZO KAGAKU KK filed Critical MIYATA GIKEN KK
Priority to JP10070196A priority Critical patent/JPH08316299A/en
Publication of JPH08316299A publication Critical patent/JPH08316299A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent turn-round of plasma discharge by a method wherein a metal exposure part of a junction part side face is enclosed and screened with an insulator ring integrally attached to a periphery of an electrostatic attraction mechanism part. CONSTITUTION: A dielectric ceramic 1 and a skirt portion are integrally processed from ceramic of which main components are alumina, silicon nitride, silicon carbide or the like, and a layer portion of a dielectric is processed to be in a thickness 0.1 to 2mm. A pedestal 3 is a metal excellent in heat conductivity such as Al, Cu, etc., and soldered across an intermediate layer 2 of which a coefficient of thermal expansion is 4 to 8×10<-6> , and which is composed of Mo, titanium, niobium, tantalum, WC-Co, 42%Ni alloy, etc. A soldered layer 4 serves as an electrode 5 as it is. Thus, it is possible to completely prevent damages in a metal of the pedestal 3 and an electrode junction part due to permeation of plasma gas, and also a surface of the dielectric ceramic 1 is extremely effectively cooled to obtain an electrostatic chuck excellent in etching characteristics and film formation characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電チャックに関わ
り、さらに詳しくは、誘電体セラミック面の冷却特性に
優れ併せてプラズマ放電の異常な回り込みを防止できる
構造に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck, and more particularly to a structure which is excellent in cooling characteristics of a dielectric ceramic surface and can prevent abnormal wraparound of plasma discharge.

【0002】[0002]

【従来の技術】静電チャックは半導体基板をプラズマ処
理する際の吸着固定に多く利用されている。構造的には
熱伝導に優れた台座の上に誘電体セラミックの円盤が貼
着され、特別な場合を除き、台座の裏面は通常冷却ある
いは加温されて一定温度に調節されている。台座にはア
ルミニウムあるいは窒化アルミニウム等の熱伝導に優れ
た材料が用いられており、台座とセラミックは通常有機
接着剤で接着されているが、この接着部で熱伝達が阻害
されるために、誘電体セラミック表面に吸着した処理基
板を均一な温度に保持するのは困難である。そこで本発
明者らは、先に台座とセラミックを冶金的に接合するこ
とによって接合部の熱伝達能を大巾に改良することに成
功した。また、この際、電極の模様形状に接合して、冶
金的接合と同時に電極形成も同時に行った(特願平6−
240492号)。この結果、処理基板の温度制御が均
一になり、エッチング特性、成膜特性が顕著に向上し
た。しかしながらここで、操業中、ロー付部の隙間のロ
ー材が露出した部分にプラズマ放電が回り込むトラブル
が発生した。
2. Description of the Related Art Electrostatic chucks are often used for adsorption and fixation when plasma processing semiconductor substrates. A dielectric ceramic disk is adhered on a pedestal that is structurally excellent in heat conduction, and the back surface of the pedestal is usually cooled or heated to a constant temperature, except in special cases. The pedestal is made of a material with excellent heat conduction such as aluminum or aluminum nitride, and the pedestal and the ceramic are usually bonded together with an organic adhesive. It is difficult to keep the treated substrate adsorbed on the body ceramic surface at a uniform temperature. Therefore, the present inventors have succeeded in greatly improving the heat transfer ability of the joint by first metallurgically joining the pedestal and the ceramic. At this time, the electrodes were joined at the same time as the metallurgical joining by joining the electrodes in the pattern shape (Japanese Patent Application No. 6-
240492). As a result, the temperature control of the treated substrate became uniform, and the etching characteristics and film forming characteristics were significantly improved. However, here, during the operation, there was a problem that the plasma discharge went around to the exposed portion of the brazing material in the gap of the brazing portion.

【0003】[0003]

【発明が解決する課題】本発明は、かかる状況に鑑みて
なされたもので、その目的とするところは、上記したロ
ー付けタイプの静電チャックで、プラズマ放電の回り込
みの問題を解決できる新しい構造を提供せんとするもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a new structure for the above-mentioned brazing type electrostatic chuck capable of solving the problem of plasma discharge wraparound. Is intended to be provided.

【0004】[0004]

【課題を解決するための手段】上記問題は次の手段によ
って解決される。すなわち、 1.静電吸着機構部が台座の上に直接あるいは間接的に
ロー付接合された構造の静電チャックにおいて、該接合
部側面の金属露出部を該静電吸着機構部周囲に一体的に
取り付けた絶縁体リングで包囲、遮蔽してなることを特
徴とする静電チャック。 2.静電吸着機構部が台座の上に直接あるいは間接的に
ロー付接合された構造の静電チャックにおいて、該接合
部側面の金属露出部を該静電吸着機構部周囲に一体的に
取り付けた絶縁体リングで包囲、遮蔽してなると共に、
該リング外周部に階段状の段差を設け、電極カバーをリ
ングに載置してセットしたとき、該リングの段差の水平
面が電極カバー内周面よりさらに外側に来るような構造
にしてなることを特徴とする静電チャック。 3.上記絶縁体リングが上記静電吸着機構部の誘電体セ
ラミック板に同材で一体的に形成されたものである1〜
2に記載の静電チャック。
The above problems can be solved by the following means. That is, 1. In an electrostatic chuck having a structure in which an electrostatic chucking mechanism is directly or indirectly brazed on a pedestal, an exposed metal part on the side surface of the bonding part is integrally attached around the electrostatic chucking mechanism. An electrostatic chuck characterized by being surrounded and shielded by a body ring. 2. In an electrostatic chuck having a structure in which an electrostatic chucking mechanism is directly or indirectly brazed on a pedestal, an exposed metal part on the side surface of the bonding part is integrally attached around the electrostatic chucking mechanism. Surrounded by a body ring, shielded,
A step-like step is provided on the outer circumference of the ring, and when the electrode cover is placed on the ring and set, the horizontal surface of the step of the ring is further outside the inner circumference of the electrode cover. Characteristic electrostatic chuck. 3. The insulator ring is integrally formed of the same material on the dielectric ceramic plate of the electrostatic attraction mechanism section.
2. The electrostatic chuck according to 2.

【0005】[0005]

【発明の実施の形態】本発明は台座材料として熱伝導特
性に優れた金属、セラミック材料を使用するものであ
り、静電吸着機構部はこの台座に直接あるいは間接的に
ロー付け接合されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses a metal or ceramic material having excellent heat conduction characteristics as a pedestal material, and the electrostatic adsorption mechanism is directly or indirectly brazed to this pedestal. .

【0006】静電吸着機構部と台座に挟まれたロー付部
には少なくともロー材の厚さに相当する隙間が存在し、
この部分は外にむきだしになっており、プラズマ放電が
ここに回り込むことがある。静電吸着機構部の周囲に取
り付けた絶縁体リングはこの隙間の部分を隠し、プラズ
マ放電の回り込みを防止する。又、このさい、絶縁体リ
ング外周部に階段状の段差を設け、電極カバーをリング
に載置してセットしたとき、リングの水平面が電極カバ
ー内周面よりさらに外側に来るような構造、つまりリン
グに形成した段差の水平面の外径が電極カバー内周面の
径よりも大きくなるような構造にしておくと、上から直
進して来て、リングと電極カバーの微小な隙間に迷い込
んだプラズマがリングの段差面に衝突して反射され、プ
ラズマの回り込みは完全に阻止される。また、電極カバ
ーを載置する面がかならずしもこの段差の面である必要
はなく、ほかの面に載置してもよい。要はこの段差の水
平面は直進するプラズマを反射すればよいのである。
There is at least a gap corresponding to the thickness of the brazing material in the brazing part sandwiched between the electrostatic adsorption mechanism part and the pedestal,
This part is exposed to the outside, and plasma discharge may wrap around here. An insulator ring attached around the electrostatic adsorption mechanism hides this gap and prevents the plasma discharge from wrapping around. Also, at this time, a structure is provided in which a step-like step is provided on the outer peripheral portion of the insulator ring, and when the electrode cover is placed and set on the ring, the horizontal surface of the ring is further outside the inner peripheral surface of the electrode cover, that is, If the structure is such that the outer diameter of the horizontal surface of the step formed on the ring is larger than the diameter of the inner peripheral surface of the electrode cover, the plasma will go straight from above and get lost in the minute gap between the ring and the electrode cover. Collides with the stepped surface of the ring and is reflected, and the wraparound of the plasma is completely blocked. Further, the surface on which the electrode cover is placed does not necessarily have to be the stepped surface, and it may be placed on another surface. The point is that the horizontal plane of this step has only to reflect the plasma traveling straight.

【0007】絶縁体リングの形状は、静電吸着機構部の
周りにはかまを履かせたようなもので、少なくとも接合
部分の隙間が隠されるところまで下に伸ばした方が良
い。絶縁体リングは材料全体が同じ絶縁体セラミックで
製造される必要はない。少なくとも外に露出する面が絶
縁体であればよい。絶縁体セラミック、あるいは誘電体
セラミックではかま部分を一体的に製造するのはコスト
高になる場合が多いので、円板とその周囲のはかま部分
を金属で形成し、この表面に絶縁体セラミック(誘電体
セラミックでもよい)を被覆して絶縁リング部分を形成
するようにしてもよい。あるいは円板の上に誘電体セラ
ミック円板を接合し、はかま部には絶縁体セラミック
(誘電体セラミックでもよい)を被覆する構造でもよ
い。あるいは円板とその周囲のはかま部分を金属で形成
し、この表面に絶縁体セラミックを被覆し、絶縁体セラ
ミックの上にさらに誘電電極層形成し、電極層の上にさ
らに誘電体セラミック層を形成するような構造でもよ
い。あるいははかま部分のみを金属で形成し、外に露出
する面と継ぎ目部分を絶縁体セラミックで被覆したもの
でもよい。
The shape of the insulator ring is like wearing a sickle around the electrostatic attraction mechanism portion, and it is better to extend it down to at least the portion where the gap at the joint portion is hidden. The insulator ring does not have to be made entirely of the same insulating ceramic material. At least the surface exposed to the outside should be an insulator. Since it is often costly to integrally manufacture the rotary hook portion of an insulator ceramic or a dielectric ceramic, the disk and surrounding rotary hook portion are made of metal, and the insulator ceramic (dielectric Body ceramic) (which may be body ceramic) to form the insulating ring portion. Alternatively, a structure may be adopted in which a dielectric ceramic disk is bonded onto a disk and the rotary hook is covered with an insulating ceramic (or a dielectric ceramic). Alternatively, the disc and the surrounding frame are formed of metal, the surface is covered with an insulating ceramic, the dielectric electrode layer is further formed on the insulating ceramic, and the dielectric ceramic layer is further formed on the electrode layer. It may have a structure that does. Alternatively, only the hook portion may be formed of metal, and the exposed surface and the joint portion may be covered with an insulating ceramic.

【0008】ここで静電吸着機構部とは、誘電体セラミ
ックと、このセラミック背面に形成された静電誘導電極
を含んだ構造を主要部とする構造体の総称である。すな
わち、単極方式の静電チャックにあっては、誘電体セラ
ミックと、このセラミック背面に形成された静電誘導電
極からなる組み合わせ、あるいは、更にこの電極背面を
絶縁するセラミック絶縁板を組合わせた構造体を主要部
とし、双極方式にあっては誘電体セラミックと、このセ
ラミック背面に形成された静電誘導電極、およびこの電
極の背面を裏打ちするセラミック絶縁板からなる構造体
を主要部とする構造体が吸着機構部となる。
Here, the electrostatic attraction mechanism section is a generic term for a structure having a dielectric ceramic and a structure including an electrostatic induction electrode formed on the back surface of the ceramic as a main section. That is, in the single-pole type electrostatic chuck, a combination of a dielectric ceramic and an electrostatic induction electrode formed on the back surface of the ceramic, or a ceramic insulating plate for insulating the back surface of the electrode was combined. The structure is the main part, and in the bipolar system, the main part is the structure consisting of a dielectric ceramic, an electrostatic induction electrode formed on the back surface of this ceramic, and a ceramic insulating plate lining the back surface of this electrode. The structure serves as the adsorption mechanism.

【0009】上記したように絶縁体リングは上記静電吸
着機構部の誘電体セラミックの部分と同じ材料から、一
体的に作ってもよいし、又、セラミック絶縁板と同じ材
料から一体的に作ってもよい。あるいは同材、異種材で
別々に作って機械的に嵌め合わせたりあるいは接合した
ものでもよい。あるいは金属の上に絶縁体を被覆する構
造でもよい。接合の場合、絶縁性、耐プラズマ性の有
機、無機接着剤、とりわけ無機接着剤で接着する方が好
ましい。絶縁体リングの表面部分の材質は、絶縁性、耐
プラズマ性で半導体に対して為害性のないセラミック材
料であれば、いかなるセラミックでも使用できる。
As described above, the insulator ring may be integrally made of the same material as the dielectric ceramic portion of the electrostatic attraction mechanism section, or integrally made of the same material as the ceramic insulating plate. May be. Alternatively, the same material or different materials may be separately formed and mechanically fitted or joined. Alternatively, the structure may be such that a metal is covered with an insulator. In the case of joining, it is preferable to adhere with an insulating or plasma-resistant organic or inorganic adhesive, especially an inorganic adhesive. As the material of the surface portion of the insulator ring, any ceramic can be used as long as it is a ceramic material that is insulative and plasma resistant and is not harmful to the semiconductor.

【0010】誘電体セラミックは,誘電体セラミックの
焼結体を、あるいは誘電体セラミックの膜、つまり溶射
によって誘電体セラミックの被膜を形成したもの、ある
いはスパッタリング、CVD等の薄膜処理によって形成
したもの、あるいはその他の成膜処理によって形成され
たもの、いずれでも選択できる。ここで誘電体セラミッ
クとは誘電率が特に高いセラミックのみに限定されるも
のではない。通常の電気絶縁セラミックでも厚さを薄く
すると吸着力は大きくなる現象に鑑み、本発明では通常
の電気絶縁体セラミック全般がこの「誘電体セラミッ
ク」の範疇に含まれる。チタン酸アルミナ、チタン酸バ
リウム等の高誘電率セラミックから、窒化ケイ素、窒化
アルミ、アルミナ、サファイア、炭化ケイ素、成膜形成
されたダイヤモンド等、絶縁体セラミックがこの範疇に
いる。
The dielectric ceramic is a sintered body of the dielectric ceramic, or a film of the dielectric ceramic, that is, a film of the dielectric ceramic formed by thermal spraying, or a film formed by thin film processing such as sputtering or CVD. Alternatively, any one formed by another film forming process can be selected. Here, the dielectric ceramics are not limited to ceramics having a particularly high dielectric constant. In view of the phenomenon that the attraction force increases even if the thickness of the ordinary electrical insulating ceramic is reduced, the general electrical insulating ceramics are included in the category of the “dielectric ceramic” in the present invention. Insulator ceramics such as high dielectric constant ceramics such as alumina titanate and barium titanate, silicon nitride, aluminum nitride, alumina, sapphire, silicon carbide, and diamond formed into a film are included in this category.

【0011】静電吸着機構部と台座をロー付けする場
合、吸着機構部の接合面材料と台座材料との熱膨張差が
問題になる。台座材料が、金属、吸着機構部の接合面材
料がセラミックの場合、直接ロー付けすると接合面のセ
ラミックが熱応力で破壊される場合が多い。とくにアル
ミニウムの場合、セラミック材料はほとんど割れる。こ
の様な場合、接合部に単数、あるいは複数の中間層を挿
入して熱応力を緩和するとよい。本発明の「間接的接
合」なる用語は、この接合部に中間層を挿入して接合す
る場合を指すものである。中間層としては金属、セラミ
ック材料を問わず使用できる。台座材料が、銅、アルミ
ニウムで、セラミックがアルミナ系、あるいはこれらを
主成分とする材料であれば、つまり熱膨脹係数が7〜8
×10−6の場合、熱膨脹係数が4〜12×10−6
材料、例えば、W,Mo,Nb,Cr,42%Niアロ
イ、42Ni−6Cr,Ti,Ni,WC−Co超硬合
金、TiC−Niサーメット、炭素鋼、特殊鋼、さらに
W−Cu,W−AL,Mo−Cu、Mo−AL等の複合
材料等々が適宜使用できる。とりわけ4〜6×10−6
の熱膨張係数を有するコバール、42%Niアロイ、4
2%Ni−6%Crアロイ、Mo,W、あるいはこれら
を主成分とする合金類が好適に使用できる。セラミック
が炭化ケイ素、窒化アルミニウム系、あるいはこれらを
主成分とする材料であれば、つまり熱膨脹係数が4〜5
×10−6の場合、熱膨脹係数が3〜7×10−6の材
料、例えば、W,Mo,Nb,Cr,42%Niアロ
イ、WC−Co超硬合金、TiC−Niサーメットさら
にW−Cu,W−AL,Mo−Cu、Mo−AL等の複
合材料等々が適宜使用できる。とりわけ4〜6×10
−6の熱膨張係数を有するコバール、42%Niアロ
イ、42%Ni−6%Crアロイ、Mo,W、あるいは
これらを主成分とする合金類が好適に使用できる。
When the electrostatic attraction mechanism section and the pedestal are brazed, the difference in thermal expansion between the joining surface material of the attraction mechanism section and the pedestal material becomes a problem. When the pedestal material is metal and the joining surface material of the adsorption mechanism is ceramic, the ceramics on the joining surface are often destroyed by thermal stress when directly brazed. Especially in the case of aluminum, the ceramic material is almost cracked. In such a case, it is advisable to insert a single intermediate layer or a plurality of intermediate layers into the joint to reduce the thermal stress. The term "indirect joining" of the present invention refers to the case where an intermediate layer is inserted into this joining portion to join. Any metal or ceramic material can be used as the intermediate layer. If the pedestal material is copper or aluminum and the ceramic is an alumina-based material or a material containing these as the main components, that is, the coefficient of thermal expansion is 7 to 8
× For 10 -6, a thermal expansion coefficient of 4 to 12 × 10 -6 material, for example, W, Mo, Nb, Cr , 42% Ni alloy, 42Ni-6Cr, Ti, Ni , WC-Co cemented carbide, TiC-Ni cermet, carbon steel, special steel, and composite materials such as W-Cu, W-AL, Mo-Cu, and Mo-AL can be appropriately used. Especially 4-6 × 10 −6
Having a coefficient of thermal expansion of 42% Ni alloy, 4
2% Ni-6% Cr alloy, Mo, W, or alloys containing these as main components can be preferably used. If the ceramic is silicon carbide, aluminum nitride, or a material containing these as the main components, that is, the coefficient of thermal expansion is 4 to 5
× For 10 -6, a thermal expansion coefficient of 3 to 7 × 10 -6 material, for example, W, Mo, Nb, Cr , 42% Ni alloy, WC-Co cemented carbide, TiC-Ni cermet further W-Cu , W-AL, Mo-Cu, Mo-AL, and other composite materials can be used as appropriate. Especially 4-6 × 10
Kovar, 42% Ni alloy, 42% Ni-6% Cr alloy, Mo, W, or alloys containing these as the main components, which have a coefficient of thermal expansion of −6 , can be preferably used.

【0012】台座材料に金属/セラミック、金属/金属
の複合材料を使用して台座部分の熱膨張係数を小さくす
ると応力緩和に効果がある。複合材料としては炭化ケイ
素、窒化アルミ等のセラミック、あるいはMo,W、イ
ンバー、アンバー等の低膨脹性金属の多孔体のなかにア
ルミニウム、アルミニウム合金(Al−Si,Al−T
i合金等)、銅等の熱伝導率の高い金属を含浸させたも
の、あるいはこれらの粉末を混合して焼結した材料が好
適である。これらの材料は線膨脹係数が4〜8×10
−6で、炭化ケイ素、窒化アルミニウム、アルミナ系の
材料との接合には好適である。
When a metal / ceramic or metal / metal composite material is used as the pedestal material to reduce the coefficient of thermal expansion of the pedestal portion, it is effective in stress relaxation. Examples of the composite material include ceramics such as silicon carbide and aluminum nitride, or aluminum and aluminum alloys (Al-Si, Al-T) in porous materials of low expansion metals such as Mo, W, Invar and Amber.
(i alloy, etc.), a material impregnated with a metal having a high thermal conductivity such as copper, or a material obtained by mixing and sintering these powders is suitable. The linear expansion coefficient of these materials is 4 to 8 × 10.
-6 is suitable for joining with a material such as silicon carbide, aluminum nitride or alumina.

【0013】静電チャックでは誘電体セラミックの裏側
は、必ず電極が形成されている。電極はセラミックの裏
側をメタライズすることによって形成されるが、本発明
では接合部のロー付け金属層をそのまま電極として利用
してもよい。すなわち、単極方式で、静電吸着機構部を
誘電体セラミックと電極だけの組み合わせにし、台座、
中間層に金属材料を使用したとき、セラミックと中間
層、中間層と台座をロー付けすると、ロー材層、中間
層、台座の部分、すべてが電極となる。また、中間層な
しでセラミックと台座をロー付けすると、ロー材層、台
座の部分、すべてが電極となる。双極方式では、誘電体
セラミックとセラミック絶縁体を電極の模様形状にロー
付けすると、ロー材層がそのまま電極となる。
In the electrostatic chuck, an electrode is always formed on the back side of the dielectric ceramic. The electrode is formed by metallizing the back side of the ceramic, but in the present invention, the brazing metal layer at the joint may be used as it is as an electrode. That is, in the monopolar system, the electrostatic adsorption mechanism is a combination of only dielectric ceramic and electrodes,
When a metal material is used for the intermediate layer and the ceramic and the intermediate layer and the intermediate layer and the pedestal are brazed, the brazing material layer, the intermediate layer, and the pedestal portion all become electrodes. Further, when the ceramic and the pedestal are brazed without the intermediate layer, the brazing material layer, the pedestal part, and all become electrodes. In the bipolar method, when the dielectric ceramic and the ceramic insulator are brazed to the pattern shape of the electrode, the brazing material layer becomes the electrode as it is.

【0014】静電吸着機構部と台座材料のろう付け、あ
るいは静電吸着機構部の中のロー付では、あらかじめ接
合部をメタライズした後、ろう付けしても良いし、ある
いはセラミック融着性のろう材で直接ろう付けしても良
い。メタライズには、メッキ、スパッタリング、ペース
ト焼き付け、活性金属の融着等、通常のメタライズ手法
がすべて適用できる。直接ろう付けの際はいわゆる活性
金属ロー材が適宜使用できる。活性金属ロー材の主成分
は、 Cu,Ag,Au,Ni,Co,AL,Si,S
n、In等の蒸気圧の低い金属成分を含む合金に微量か
ら数%の活性金属の入った合金である。このとき、活性
金属にはTi,Zr,Nb,Ta,V等のTi族、V族
元素から、Cr,Mn、Y,AL等々、通常この種の目
的で使用されている成分はすべて使用できる。
In the case of brazing the electrostatic adsorption mechanism and the base material, or brazing in the electrostatic adsorption mechanism, the joint may be metallized in advance and then brazed, or the ceramic fusion bonding material may be used. You may braze directly with a brazing material. For the metallization, all ordinary metallizing methods such as plating, sputtering, paste baking, and fusion of active metal can be applied. In the case of direct brazing, so-called active metal brazing material can be appropriately used. The main components of the active metal brazing material are Cu, Ag, Au, Ni, Co, AL, Si, S
It is an alloy containing a trace amount to several percent of an active metal in an alloy containing a metal component having a low vapor pressure such as n and In. At this time, as the active metal, Ti, Zr, Nb, Ta, V, and other Ti group and V group elements, Cr, Mn, Y, AL, and the like, all of which are normally used for this purpose, can be used. .

【0015】次に実施の形態を図面で説明する。図1
は、単極式の静電チャックではかま部分(絶縁体リン
グ)を誘電体セラミックと同材で形成した場合の説明
図。図2は、はかま部分(絶縁体リング)と誘電体セラ
ミックをことなる材料で形成した場合の説明図。図3
は、はかま部分(絶縁体リング)と誘電体セラミックを
ことなる材料で形成し、一体焼結した場合の説明図。図
4は、はかま部分(絶縁体リング)を別の材料で形成
し、吸着機構部本体に接合した場合の説明図。図5は双
極式で、はかま部分(絶縁体リング)を誘電体セラミッ
クと同材で形成、台座が絶縁体セラミックの例。図6は
双極式、はかま部分(絶縁体リング)と誘電体セラミッ
クが同材、台座が金属の例。図7は、双極式、はかま部
分(絶縁体リング)と誘電体セラミックが異材、台座が
金属の例。図8は、金属基材と絶縁膜の積層構造のはか
まの例。図9は、誘電電極と誘電体セラミックを成膜法
で形成した例。図10,11は、リフトピン孔の部分の
構造の説明図。図1で、誘電体セラミック1とはかま部
分(絶縁体リング)は、アルミナ、窒化ケイ素、炭化ケ
イ素等を主成分にするセラミックから一体的に加工され
たもので、誘電体の層の部分は0.1〜2mmの厚さに
加工されたものである。台座3はアルミニウム、銅等の
熱伝導のよい金属で,Mo,チタン、ニオブ、タンタ
ル、WC−Co、42%Niアロイ、等の熱膨張係数が
4〜8×10−6の中間層2を間に挟んでロー付されて
いる。誘電電極5はロー付層4がそのまま兼ねることと
なる。図2は、絶縁体セラミック6ではかま部分(絶縁
体リング)を形成し、この絶縁体セラミックの上に単極
電極5を形成し、電極の上に誘電体セラミック1を貼着
したものである。誘電体セラミック1と絶縁体セラミッ
ク6の間(電極の存在する隙間)には絶縁材料を充填し
て隙間を完全に埋めた構造である。絶縁体セラミック6
と台座3は図1の場合と同じく、中間層2を間に挟んで
ロー付されたものである。図3は、電極の上の層を形成
する誘電体セラミックの部分1と電極層5、および下の
層を形成する絶縁体セラミックの層6が一体焼結された
構造のものである。電極はタングステンペースト等を印
刷して焼結して結合させたものである。図4は、はかま
部分を絶縁スリーブ7で形成し、これを誘電体セラミッ
ク1、絶縁体セラミック6、電極5が一体焼結された構
造の静電吸着体の周囲に無機接着剤等で接合した構造で
ある。図5は、双極で、台座3が絶縁体セラミック、ロ
ー付金属層を電極形状にして台座、誘電体セラミック1
を接合。図6は、図5の構造で、台座3が金属の場合
で、この場合は、電極5と台座3の間に電気絶縁性セラ
ミック中間層2がインサートされて接合された構造であ
る。図7は双極で、誘電体セラミック1とはかま材料の
部分(絶縁体セラミック6)が別材料。双極は誘電体セ
ラミックとはかま材料の間に形成。絶縁体セラミック6
と台座3は中間層4を挟んで接合された例である。図8
は、周囲にはかまを備えた金属円板の外表面に誘電体セ
ラミックの層を溶射、スパッタリング、CVD,あるい
はゾルーゲル法、あるいはセラミックペースト塗着焼付
け、等の成膜法で絶縁膜を被覆したものである。金属円
板は電極5を兼ね、また、台座と接合するときの応力緩
衝用の中間層の役目も兼ねている。絶縁膜を被覆する部
分は少なくとも金属面が外に露出する部分は必須で、さ
らに好ましくは、図示したはかまの部分の底面、さらに
好ましくは、はかまの内周面にも被覆したほうがよい。
図9は、はかま部分の絶縁体セラミック6の上に成膜法
で溶射、スパッタリング等で電極5を形成し、この上に
同じく成膜法で誘電体セラミック1の層を形成したもの
である。図10,11はリフトピン孔からプラズマの差
し込みがないようにはかま9を形成した構造のものであ
る。図10は誘電体セラミック1と同材で一体加工した
もの、図11は別加工したはかま9を誘電体セラミック
部に図のように差し込んで接着したものである。以上図
1〜11は本発明の代表的な実施の形態であり、本発明
が本例のみに限定されるものでないことは持ち論であ
る。また台座材料の熱膨張特性が静電吸着機構部の接合
部の材料と近似した材料では当然、本例に記載した中間
層は不要になる場合があることも持ち論である。また、
本発明では誘電体セラミック、中間層、台座、あるい誘
電体セラミック、台座は共にロー付されているが、プラ
ズマの回り込みを阻止するだけであれば、有機接着剤に
よる接着でも十分目的を果たすことができる。有機接着
剤はエポキシ系接着剤、シリコン系接着剤等がとくに好
適である。
Next, an embodiment will be described with reference to the drawings. FIG.
[FIG. 3] is an explanatory view of a case where a rotary hook portion (insulator ring) is formed of the same material as a dielectric ceramic in a monopolar electrostatic chuck. FIG. 2 is an explanatory diagram of a case where the hook portion (insulator ring) and the dielectric ceramic are formed of different materials. FIG.
[FIG. 4] is an explanatory view of a case where a hook-shaped portion (insulator ring) and a dielectric ceramic are formed of different materials and integrally sintered. FIG. 4 is an explanatory diagram of a case where the hook portion (insulator ring) is made of another material and is joined to the suction mechanism body. FIG. 5 shows an example of a bipolar type in which the hook portion (insulator ring) is made of the same material as the dielectric ceramic, and the pedestal is made of the insulating ceramic. Fig. 6 shows an example of a bipolar type, in which the hook portion (insulator ring) and the dielectric ceramic are the same material, and the pedestal is metal. FIG. 7 is an example of a bipolar type, in which the hook portion (insulator ring) and the dielectric ceramic are different materials and the pedestal is metal. FIG. 8 is an example of a hook having a laminated structure of a metal base material and an insulating film. FIG. 9 shows an example in which a dielectric electrode and a dielectric ceramic are formed by a film forming method. 10 and 11 are explanatory views of the structure of the portion of the lift pin hole. In FIG. 1, the dielectric ceramic 1 and the rotary hook portion (insulator ring) are integrally processed from a ceramic containing alumina, silicon nitride, silicon carbide or the like as a main component, and the dielectric layer portion is 0. It is processed into a thickness of 1 to 2 mm. The pedestal 3 is a metal having good thermal conductivity such as aluminum or copper, and is formed of the intermediate layer 2 having a thermal expansion coefficient of 4 to 8 × 10 −6 such as Mo, titanium, niobium, tantalum, WC-Co, or 42% Ni alloy. It is brazed in between. The brazing layer 4 also serves as the dielectric electrode 5 as it is. FIG. 2 shows a structure in which the insulator ceramic 6 forms a hook portion (insulator ring), the monopolar electrode 5 is formed on the insulator ceramic, and the dielectric ceramic 1 is attached on the electrode. . An insulating material is filled between the dielectric ceramic 1 and the insulating ceramic 6 (a gap where the electrode exists) to completely fill the gap. Insulator ceramic 6
The pedestal 3 and the pedestal 3 are brazed with the intermediate layer 2 in between, as in the case of FIG. FIG. 3 shows a structure in which a dielectric ceramic portion 1 forming an upper layer of an electrode, an electrode layer 5, and an insulating ceramic layer 6 forming a lower layer are integrally sintered. The electrodes are formed by printing a tungsten paste or the like, sintering it, and bonding it. In FIG. 4, the hook portion is formed of an insulating sleeve 7, and this is joined with an inorganic adhesive or the like around an electrostatic attraction body having a structure in which the dielectric ceramic 1, the insulating ceramic 6, and the electrode 5 are integrally sintered. It is a structure. FIG. 5 shows a bipolar structure in which the pedestal 3 is an insulator ceramic, and the brazing metal layer is in the shape of an electrode.
Join. FIG. 6 shows the structure of FIG. 5, in which the pedestal 3 is made of metal, and in this case, the electrically insulating ceramic intermediate layer 2 is inserted and joined between the electrode 5 and the pedestal 3. FIG. 7 shows a bipolar structure in which the dielectric ceramic 1 and the rotary hook material (insulator ceramic 6) are different materials. The bipolar is formed between the dielectric ceramic and the hook material. Insulator ceramic 6
The pedestal 3 and the pedestal 3 are joined together with the intermediate layer 4 interposed therebetween. FIG.
Is a metal disk having a rotary hook with a dielectric ceramic layer coated on its outer surface by a film-forming method such as thermal spraying, sputtering, CVD, sol-gel method, or ceramic paste coating baking. Is. The metal disk serves not only as the electrode 5 but also as an intermediate layer for buffering stress when joining with the pedestal. At least the portion where the metal surface is exposed to the outside is essential for the portion that covers the insulating film, and it is more preferable that the bottom surface of the hook portion shown in the figure, and more preferably, the inner peripheral surface of the hook, should also be covered.
In FIG. 9, an electrode 5 is formed by thermal spraying, sputtering, or the like on the insulating ceramic 6 in the hook portion by a film forming method, and a layer of the dielectric ceramic 1 is also formed on the electrode 5 by a film forming method. 10 and 11 show a structure in which a hook 9 is formed so that plasma is not inserted from the lift pin hole. FIG. 10 shows the same material as the dielectric ceramic 1 integrally processed, and FIG. 11 shows the separately processed hook 9 inserted into the dielectric ceramic portion as shown in FIG. 1 to 11 are representative embodiments of the present invention, and it is a matter of course that the present invention is not limited to this example. Further, it is also of course held that the intermediate layer described in this example may be unnecessary if the material of which the thermal expansion characteristic of the pedestal material is similar to the material of the joint portion of the electrostatic attraction mechanism portion is unnecessary. Also,
In the present invention, the dielectric ceramic, the intermediate layer, the pedestal, or the dielectric ceramic and the pedestal are all brazed, but if only the plasma is prevented from wrapping around, the organic adhesive can sufficiently serve the purpose. You can As the organic adhesive, an epoxy adhesive, a silicone adhesive or the like is particularly suitable.

【0016】[0016]

【実施例】【Example】

実施例1 図12に示す構造 誘電体セラミック:図12に示す形状のSiC系の誘電
体セラミック(φ150×2t)を使用。電極は単極 誘電体セラミックの裏面にSi−20Ti粉末を塗布し
て真空中(2×10−5Torr)、1450℃で5分
加熱してメタライズ。メタライズ厚さは、約10ミクロ
ン。メタライズ面には、さらにNiメッキした。 台座 : アルミニウム使用して図12に示す
形状に加工した。接合面はNiメッキ。 中間層 : 厚さ2mm,φ150のMo板を使
用。Moの両面はNiメッキ。 誘電体セラミックと中間層、中間層と台座の接合は、図
に示すように誘電体セラミックのはかま部分で隠される
ように接合した。ろう材には低融点のIn半田を使用し
て接合した。 結果 接合部に割れ剥離は認められなかった。 使用状況 台座に直流電圧(700V)印加してシリコンウエハー
静電吸着できた。シリコンウエハーのプラズマエッチン
グ処理に実使用した。プラズマの異常放電はまったく認
められなかった。延べ5000時間テストするも、セラ
ミック電極カバーと誘電体セラミックの隙間にプラズマ
が侵入した痕跡もなかった。また、本構造のものは、誘
電体セラミックと台座を接着剤で接着したものに比較し
て極めてよく冷却され、使用条件にもよるが、約30〜
50℃程度セラミック表面の温度低下が認められた。
Example 1 Structure shown in FIG. 12 Dielectric ceramic: SiC-based dielectric ceramic (φ150 × 2t) having the shape shown in FIG. 12 was used. The electrodes were metallized by applying Si-20Ti powder on the back surface of a unipolar dielectric ceramic and heating in vacuum (2 × 10 −5 Torr) at 1450 ° C. for 5 minutes. The metallization thickness is about 10 microns. The metallized surface was further plated with Ni. Pedestal: Aluminum was used to form the shape shown in FIG. The joint surface is Ni-plated. Middle layer: A Mo plate with a thickness of 2 mm and φ150 is used. Both sides of Mo are plated with Ni. The dielectric ceramic and the intermediate layer and the intermediate layer and the pedestal were joined so as to be hidden by the hook portion of the dielectric ceramic as shown in the figure. A low melting point In solder was used for the brazing material to bond the solder. As a result, cracking and peeling were not observed at the joint. Usage status DC voltage (700V) was applied to the pedestal to electrostatically adsorb the silicon wafer. It was actually used for the plasma etching process of a silicon wafer. No abnormal discharge of plasma was observed. After testing for a total of 5,000 hours, there was no trace of plasma entering the gap between the ceramic electrode cover and the dielectric ceramic. In addition, this structure is much better cooled than the one in which the dielectric ceramic and the pedestal are bonded together with an adhesive, and depending on the operating conditions, it is about 30-
It was confirmed that the temperature of the ceramic surface decreased by about 50 ° C.

【0017】実施例2 図13に示す構造 誘電体セラミック:図13に示す形状のアルミナーチタ
ニア系セラミック(φ100×0.2mmt)を使用。
電極は単極 誘電体セラミックの裏面はTiスパッタリング、Tiの
上にさらにNiスパッタリング。Niスパッタの上に無
電解Niメッキ(10ミクロン) 台座 : アルミニウム使用して図13に示す
形状に加工した。接合面はNiメッキ。 中間層 : 厚さ3mm,φ100の42%Ni
アロイ板を使用。 誘電体セラミックと中間層、中間層と台座の接合は、図
に示すように誘電体セラミックのはかま部分で隠される
ように接合した。ろう材にはSn−Ag半田を使用。 結果 接合部に割れ剥離は認められなかった。 使用状況 実使用に当たり、台座底面に図に示すようなカバー(ア
ルミナ)を被せて露出部を遮蔽して隠した。台座に直流
電圧(800V)印加してシリコンウエハー静電吸着で
きた。シリコンウエハーのプラズマエッチング処理に実
使用した。プラズマの異常放電はまったく認められなか
った。延べ100時間テストするも、内部にプラズマが
侵入した痕跡は皆無であった。
Example 2 Structure shown in FIG. 13 Dielectric ceramic: Alumina-titania ceramic (φ100 × 0.2 mmt) having the shape shown in FIG. 13 was used.
The electrode is a monopolar dielectric ceramic with Ti sputtering on the back surface and Ni sputtering on Ti. Electroless Ni plating (10 micron) on Ni sputter pedestal: Aluminum was used to form the shape shown in FIG. The joint surface is Ni-plated. Intermediate layer: 42% Ni with a thickness of 3 mm and φ100
Uses alloy plate. The dielectric ceramic and the intermediate layer and the intermediate layer and the pedestal were joined so as to be hidden by the hook portion of the dielectric ceramic as shown in the figure. Sn-Ag solder is used for the brazing material. As a result, cracking and peeling were not observed at the joint. In actual use, the bottom of the pedestal was covered with a cover (alumina) as shown in the figure to cover and hide the exposed part. DC voltage (800 V) was applied to the pedestal to electrostatically adsorb the silicon wafer. It was actually used for the plasma etching process of a silicon wafer. No abnormal discharge of plasma was observed. After conducting a test for a total of 100 hours, there was no trace of plasma intrusion inside.

【0018】実施例3 誘電体セラミック:図5に示す形状の窒化アルミニウム
(φ100X0.2mmt)を使用。電極は双極 台座 : 窒化アルミニウムセラミックて図5
に示す形状に加工した。誘電体セラミックと台座の接合
は、双極の模様形状にAg−Cu−3%Ti合金でロー
付。 結果 接合部に割れ剥離は認められなかった。 使用状況 台座に直流電圧(800V)印加してシリコンウエハー
静電吸着できた。シリコンウエハーのプラズマエッチン
グ処理に実使用した。延べ100時間テストするもプラ
ズマの異常放電はまったく認められなかった。
Example 3 Dielectric ceramic: Aluminum nitride (φ100 × 0.2 mmt) having the shape shown in FIG. 5 was used. The electrode is a bipolar pedestal: aluminum nitride ceramic
It processed into the shape shown in. The dielectric ceramic and the pedestal are brazed in a bipolar pattern with Ag-Cu-3% Ti alloy. As a result, cracking and peeling were not observed at the joint. Usage status DC voltage (800V) was applied to the pedestal and the silicon wafer could be electrostatically adsorbed. It was actually used for the plasma etching process of a silicon wafer. Abnormal plasma discharge was not observed at all even after testing for a total of 100 hours.

【0019】実施例4 誘電体セラミック:図8に示す形状 厚さ2mmのNi板ではかまを持った図8の形状の金属
電極(φ100)を成形 表面にアルミナ・チタニア系誘電体セラミックを0.2
mm溶射。電極は単極 台座 : アルミニウム 図8に示す形状に加工した。接合面はNiメッキ。接合
部以外はアルミナ溶射で絶縁処理。誘電体セラミックと
台座は、In合金半田で接合。 結果 接合部に割れ剥離は認められなかった。 使用状況 台座に直流電圧(800V)印加してシリコンウエハー
静電吸着できた。シリコンウエハーのプラズマエッチン
グ処理に実使用した。延べ100時間テストするもプラ
ズマの異常放電はまったく認められなかった。
Example 4 Dielectric ceramic: shape shown in FIG. 8 A 2 mm thick Ni plate was used to form a metal electrode (φ100) having a shape shown in FIG. 8 having a hook. The surface of the dielectric ceramic was made of alumina / titania dielectric ceramic. Two
mm spraying. The electrode was monopolar pedestal: aluminum and processed into the shape shown in FIG. The joint surface is Ni-plated. Except for the joints, insulation treatment is performed by alumina spraying. The dielectric ceramic and pedestal are joined with In alloy solder. As a result, cracking and peeling were not observed at the joint. Usage status DC voltage (800V) was applied to the pedestal and the silicon wafer could be electrostatically adsorbed. It was actually used for the plasma etching process of a silicon wafer. Abnormal plasma discharge was not observed at all even after testing for a total of 100 hours.

【0020】[0020]

【発明の効果】以上詳記したように、本発明は、プラズ
マガスの侵入による台座金属および電極接合部の損傷を
完全に防止できるものであり、併せてセラミック表面は
極めて効果的に冷却されており、エッチング特性、成膜
特性は極めて優れた特徴を有するものであり、半導体基
板処理の品質向上に多大の貢献をなすものである。
As described above in detail, the present invention can completely prevent damage to the pedestal metal and the electrode joint portion due to the penetration of plasma gas, and at the same time, the ceramic surface is cooled very effectively. However, the etching characteristics and the film forming characteristics have extremely excellent characteristics, and make a great contribution to the improvement of the quality of semiconductor substrate processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、単極式の静電チャックではかま部分
(絶縁体リング)を誘電体セラミックと同材で形成した
場合の説明図。
FIG. 1 is an explanatory diagram of a case where a hook portion (insulator ring) is formed of the same material as a dielectric ceramic in a monopolar electrostatic chuck.

【図2】図2は、はかま部分(絶縁体リング)と誘電体
セラミックをことなる材料で形成した場合の説明図。
FIG. 2 is an explanatory view of a case where a hook portion (insulator ring) and a dielectric ceramic are formed of different materials.

【図3】図3は、はかま部分(絶縁体リング)と誘電体
セラミックをことなる材料で形成し、一体焼結した場合
の説明図。
FIG. 3 is an explanatory view of a case where a rotary hook portion (insulator ring) and a dielectric ceramic are made of different materials and integrally sintered.

【図4】図4は、はかま部分(絶縁体リング)を別の材
料で形成し、吸着機構部本体に接合した場合の説明図。
FIG. 4 is an explanatory view of a case where the hook portion (insulator ring) is formed of another material and is joined to the suction mechanism body.

【図5】図5は双極式で、はかま部分(絶縁体リング)
を誘電体セラミックと同材で形成、台座が絶縁体セラミ
ックの例。
FIG. 5 is a bipolar type and has a hook portion (insulator ring).
Is made of the same material as the dielectric ceramic, and the pedestal is an insulator ceramic.

【図6】図6は双極式、はかま部分(絶縁体リング)と
誘電体セラミックが同材、台座が金属の例。
FIG. 6 is an example of a bipolar type, in which a hook part (insulator ring) and a dielectric ceramic are the same material and a pedestal is a metal.

【図7】図7は、双極式、はかま部分(絶縁体リング)
と誘電体セラミックが異材、台座が金属の例。
FIG. 7 is a bipolar type, a hook part (insulator ring).
An example in which the dielectric ceramic is a different material and the pedestal is a metal.

【図8】図8は、金属基材と絶縁膜の積層構造のはかま
の例。
FIG. 8 is an example of a hook having a laminated structure of a metal base material and an insulating film.

【図9】図9は、誘電電極と誘電体セラミックを成膜法
で形成した例。
FIG. 9 is an example in which a dielectric electrode and a dielectric ceramic are formed by a film forming method.

【図10】図10はリフトピン孔の部分の構造の説明
図。
FIG. 10 is an explanatory diagram of a structure of a lift pin hole portion.

【図11】図11は、リフトピン孔の部分の構造の説明
図。
FIG. 11 is an explanatory diagram of a structure of a lift pin hole portion.

【図12】図12実施例の構造を説明した図である。FIG. 12 is a view for explaining the structure of the embodiment in FIG.

【図13】図13実施例の構造を説明した図である。FIG. 13 is a drawing for explaining the structure of the embodiment in FIG.

【符号の説明】[Explanation of symbols]

1…誘電体セラミック 2…中間層 3…台座
4…ロー付層 5…電極 6…絶縁体セラミック 7…絶縁ス
リーブ 8…リフトピン穴 9…はかま
DESCRIPTION OF SYMBOLS 1 ... Dielectric ceramic 2 ... Intermediate layer 3 ... Pedestal 4 ... Layer with brazing 5 ... Electrode 6 ... Insulator ceramic 7 ... Insulation sleeve 8 ... Lift pin hole 9 ... Hama

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】静電吸着機構部が台座の上に直接あるいは
間接的にロー付接合された構造の静電チャックにおい
て、該接合部側面の金属露出部を該静電吸着機構部周囲
に一体的に取り付けた絶縁体リングで包囲、遮蔽してな
ることを特徴とする静電チャック。
1. In an electrostatic chuck having a structure in which an electrostatic chucking mechanism is directly or indirectly brazed on a pedestal, a metal exposed part on the side surface of the bonding part is integrated around the electrostatic chucking mechanism. An electrostatic chuck characterized in that it is surrounded and shielded by an insulator ring that has been attached.
【請求項2】静電吸着機構部が台座の上に直接あるいは
間接的にロー付接合された構造の静電チャックにおい
て、該接合部側面の金属露出部を該静電吸着機構部周囲
に一体的に取り付けた絶縁体リングで包囲、遮蔽してな
ると共に、該リング外周部に階段状の段差を設け、電極
カバーをリングに載置してセットしたとき、該リングの
段差の水平面が電極カバー内周面よりさらに外側に来る
ような構造にしてなることを特徴とする静電チャック。
2. An electrostatic chuck having a structure in which an electrostatic chucking mechanism is directly or indirectly brazed on a pedestal, and a metal exposed portion on a side surface of the bonding portion is integrally formed around the electrostatic chucking mechanism. It is surrounded and shielded by an insulator ring that is attached dynamically, and when a step-like step is provided on the outer periphery of the ring and the electrode cover is placed on the ring and set, the horizontal surface of the step of the ring is the electrode cover. An electrostatic chuck characterized by having a structure such that it is located further outside than the inner peripheral surface.
【請求項3】上記絶縁体リングが上記静電吸着機構部の
誘電体セラミック板に同材で一体的に形成されたもので
ある請求項1〜2に記載の静電チャック。
3. The electrostatic chuck according to claim 1, wherein the insulator ring is integrally formed on the dielectric ceramic plate of the electrostatic attraction mechanism portion with the same material.
JP10070196A 1995-03-14 1996-03-14 Electrostatic chuck Pending JPH08316299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10070196A JPH08316299A (en) 1995-03-14 1996-03-14 Electrostatic chuck

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9296895 1995-03-14
JP7-92968 1995-03-14
JP10070196A JPH08316299A (en) 1995-03-14 1996-03-14 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH08316299A true JPH08316299A (en) 1996-11-29

Family

ID=26434333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10070196A Pending JPH08316299A (en) 1995-03-14 1996-03-14 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH08316299A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135684A (en) * 1999-08-23 2001-05-18 Ibiden Co Ltd Wafer prober device
US6272002B1 (en) * 1997-12-03 2001-08-07 Shin-Estu Chemical Co., Ltd. Electrostatic holding apparatus and method of producing the same
JP2002289677A (en) * 2001-03-26 2002-10-04 Taiheiyo Cement Corp Electrostatic chuck
JP2006156691A (en) * 2004-11-29 2006-06-15 Kyocera Corp Substrate retaining member
JP2008258374A (en) * 2007-04-04 2008-10-23 Hitachi High-Technologies Corp Electrode for mounting wafer
US7615133B2 (en) 2001-12-04 2009-11-10 Toto Ltd. Electrostatic chuck module and cooling system
JP2010062195A (en) * 2008-09-01 2010-03-18 Hitachi High-Technologies Corp Plasma processing apparatus, and sample placing and holding electrode
WO2009149275A3 (en) * 2008-06-05 2010-03-25 Varian Semiconductor Equipment Associates Improved multilayer electrostatic chuck wafer platen
JP2012507860A (en) * 2008-10-31 2012-03-29 ラム リサーチ コーポレーション Lower electrode assembly in plasma processing chamber
KR20150128221A (en) * 2014-05-09 2015-11-18 코리아세미텍 주식회사 Cap type electrostatic chuck having heater and method of manufacturing the same
JP2016225616A (en) * 2015-05-29 2016-12-28 ラム リサーチ コーポレーションLam Research Corporation Light emission prevention using multi-layer ceramic fabrication techniques
WO2017033738A1 (en) * 2015-08-27 2017-03-02 住友大阪セメント株式会社 Electrostatic chuck device
CN115425379A (en) * 2022-09-21 2022-12-02 河北美泰电子科技有限公司 MEMS circulator, packaging method thereof and microwave component

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272002B1 (en) * 1997-12-03 2001-08-07 Shin-Estu Chemical Co., Ltd. Electrostatic holding apparatus and method of producing the same
JP2001135684A (en) * 1999-08-23 2001-05-18 Ibiden Co Ltd Wafer prober device
JP2002289677A (en) * 2001-03-26 2002-10-04 Taiheiyo Cement Corp Electrostatic chuck
US7615133B2 (en) 2001-12-04 2009-11-10 Toto Ltd. Electrostatic chuck module and cooling system
JP4514587B2 (en) * 2004-11-29 2010-07-28 京セラ株式会社 Substrate holding member
JP2006156691A (en) * 2004-11-29 2006-06-15 Kyocera Corp Substrate retaining member
JP2008258374A (en) * 2007-04-04 2008-10-23 Hitachi High-Technologies Corp Electrode for mounting wafer
WO2009149275A3 (en) * 2008-06-05 2010-03-25 Varian Semiconductor Equipment Associates Improved multilayer electrostatic chuck wafer platen
JP2010062195A (en) * 2008-09-01 2010-03-18 Hitachi High-Technologies Corp Plasma processing apparatus, and sample placing and holding electrode
JP2012507860A (en) * 2008-10-31 2012-03-29 ラム リサーチ コーポレーション Lower electrode assembly in plasma processing chamber
US9412555B2 (en) 2008-10-31 2016-08-09 Lam Research Corporation Lower electrode assembly of plasma processing chamber
JP2016219820A (en) * 2008-10-31 2016-12-22 ラム リサーチ コーポレーションLam Research Corporation Lower electrode assembly of plasma processing chamber
KR20150128221A (en) * 2014-05-09 2015-11-18 코리아세미텍 주식회사 Cap type electrostatic chuck having heater and method of manufacturing the same
JP2016225616A (en) * 2015-05-29 2016-12-28 ラム リサーチ コーポレーションLam Research Corporation Light emission prevention using multi-layer ceramic fabrication techniques
WO2017033738A1 (en) * 2015-08-27 2017-03-02 住友大阪セメント株式会社 Electrostatic chuck device
JP6123952B1 (en) * 2015-08-27 2017-05-10 住友大阪セメント株式会社 Electrostatic chuck device
US10256131B2 (en) 2015-08-27 2019-04-09 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
CN115425379A (en) * 2022-09-21 2022-12-02 河北美泰电子科技有限公司 MEMS circulator, packaging method thereof and microwave component
CN115425379B (en) * 2022-09-21 2024-02-06 河北美泰电子科技有限公司 MEMS circulator, packaging method thereof and microwave component

Similar Documents

Publication Publication Date Title
JP4034145B2 (en) Susceptor device
EP0886312B1 (en) Ceramics joint structure and method of producing the same
US6768079B2 (en) Susceptor with built-in plasma generation electrode and manufacturing method therefor
US5886863A (en) Wafer support member
JP5968651B2 (en) Components for semiconductor manufacturing equipment
JPH08316299A (en) Electrostatic chuck
EP0753494B1 (en) Method of joining ceramics
EP1430007B1 (en) Brazeable matallizations for diamond components
JP4136648B2 (en) Dissimilar material joined body and manufacturing method thereof
JP4331427B2 (en) Power supply electrode member used in semiconductor manufacturing equipment
JP4858319B2 (en) Wafer holder electrode connection structure
JPH08306629A (en) Wafer holding equipment
JPH0586465A (en) Target for sputtering and its manufacture
JPH09172056A (en) Plasma processing apparatus for semiconductor substrate
JPH0870036A (en) Electrostatic chuck
JP3966376B2 (en) SUBSTRATE HOLDER, PROCESSING DEVICE, AND CERAMIC SUSCEPTOR FOR SEMICONDUCTOR MANUFACTURING DEVICE
JP3370489B2 (en) Electrostatic chuck
US20040146737A1 (en) Joined structures of ceramics
JP6699765B2 (en) Wafer holder
JPH08316298A (en) Electrostatic chuck
JPH08279550A (en) Electrostatic chuck
JP3681824B2 (en) Ceramic bonded body and ceramic bonding method
JP7441370B1 (en) ceramic susceptor
WO2004065046A2 (en) Brittle material sputtering target assembly and method of making same
JPS62296959A (en) Envelope for rectifying element