JP2006156691A - Substrate retaining member - Google Patents

Substrate retaining member Download PDF

Info

Publication number
JP2006156691A
JP2006156691A JP2004344822A JP2004344822A JP2006156691A JP 2006156691 A JP2006156691 A JP 2006156691A JP 2004344822 A JP2004344822 A JP 2004344822A JP 2004344822 A JP2004344822 A JP 2004344822A JP 2006156691 A JP2006156691 A JP 2006156691A
Authority
JP
Japan
Prior art keywords
pedestal
substrate
wafer
plate
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004344822A
Other languages
Japanese (ja)
Other versions
JP4514587B2 (en
Inventor
Naoko Itonaga
直子 糸永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004344822A priority Critical patent/JP4514587B2/en
Publication of JP2006156691A publication Critical patent/JP2006156691A/en
Application granted granted Critical
Publication of JP4514587B2 publication Critical patent/JP4514587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate retaining member facilitating the transmission of heat of plasma atmosphere to a wafer immediately after the generation of plasma and suppressing the raise of a wafer temperature while being capable of shortening a time until obtaining a stationary condition wherein the surface temperature of the wafer becomes a given temperature. <P>SOLUTION: The one side main surface of a plate type substrate 2 or the substrate retaining member 1 is a mounting surface 2a for mounting the wafer W, and the other side main surface of the same is connected to one side main surface of a plate type pedestal 7. The pedestal 7 having a thermal conductivity larger than that of the plate type substrate 2 is employed and an annular recess 7a is formed at the central part of the other side main surface of the same. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造装置に用いられる半導体ウェハ固定用の基板保持部材に関し、特にCVD、PVD、スパッタリング等の成膜工程やエッチング工程などで用いられる基板保持部材に関する。   The present invention relates to a substrate holding member for fixing a semiconductor wafer used in a semiconductor manufacturing apparatus, and more particularly to a substrate holding member used in a film forming process such as CVD, PVD, sputtering, or an etching process.

従来、半導体デバイスを製造する半導体ウェハ(以下、ウェハという)の処理工程であるCVD、PVD、スパッタリング等の成膜工程やエッチング工程では、被処理物であるウェハに均一な厚みで均質な膜を成膜することや、成膜した膜に均一な深さでエッチングを施すことが重要であり、ウェハの温度管理が容易な基板保持部材が使用されている。   Conventionally, in a film forming process such as CVD, PVD, sputtering, etc., which is a processing process of a semiconductor wafer for manufacturing a semiconductor device (hereinafter referred to as a wafer) and an etching process, a uniform film with a uniform thickness is formed on the wafer to be processed. It is important to form a film and to etch the formed film at a uniform depth, and a substrate holding member that can easily manage the temperature of the wafer is used.

基板保持部材として、例えば板状基体の一方の主面をウェハを載せる載置面とするとともに、上記板状基体中の載置面側に吸着用の電極を備え、ウェハを載置面に載せウェハと電極との間に静電吸着力を発現させることによりウェハを載置面に吸着固定する静電チャックがある。   As the substrate holding member, for example, one main surface of the plate-shaped substrate is used as a mounting surface on which the wafer is placed, and an electrode for suction is provided on the mounting surface side in the plate-shaped substrate, and the wafer is mounted on the mounting surface. There is an electrostatic chuck that attracts and fixes a wafer to a mounting surface by developing an electrostatic attracting force between the wafer and an electrode.

また、板状基体の他方の主面近傍に加熱用の電極を備えており、ウェハを加熱することができる基板保持部材もある。上記静電吸着用の電極及び加熱用の電極には、それぞれ給電端子が電気的に接続されており、ウェハを載置面に載せ給電端子に電圧を印加することにより、ウェハと電極との間に静電吸着力を発現させてウェハを載置面に強固に吸着固定することができる。また、同時に上記加熱用の電極によりウェハを高温に加熱することができる。   There is also a substrate holding member that includes a heating electrode in the vicinity of the other main surface of the plate-like substrate and can heat the wafer. The electrostatic adsorption electrode and the heating electrode are each electrically connected to a power supply terminal, and a voltage is applied between the wafer and the electrode by placing a wafer on the mounting surface and applying a voltage to the power supply terminal. The wafer can be firmly attracted and fixed to the mounting surface by developing an electrostatic attraction force. At the same time, the wafer can be heated to a high temperature by the heating electrode.

また、板状基体の下面に金属製の台座を接合した基板保持部材は、上記台座と対向電極との間に高周波電力を印加して、ウェハの上方にプラズマを効率的に発生させることが可能である。   In addition, the substrate holding member with a metal pedestal bonded to the lower surface of the plate-like substrate can efficiently generate plasma above the wafer by applying high-frequency power between the pedestal and the counter electrode. It is.

近年、LSIの大規模化によりSiウェハの大口径化が進み、単位時間内に処理可能なウェハ数量(スループット)の向上、より均一な成膜精度、エッチング精度が要求され、均熱性と共に高い冷却能力を備えた基板保持部材が求められていた。半導体製造装置において、プラズマ雰囲気下でウェハにエッチング処理等施す場合、基板保持部材の載置面に載せられたウェハの表面はArなどのプラズマに曝されて高温になり、表面のレジスト膜が焼き付く等の問題が生じる。そこで、この温度上昇を抑える為に、ウェハを載せている板状基体の下面に温度調整機能を有する台座が設けられ、ウェハの温度調整を行っていた。   In recent years, large-scale LSIs have led to an increase in the diameter of Si wafers, increasing the number of wafers that can be processed within a unit time (throughput), more uniform film formation accuracy, and etching accuracy. There has been a demand for a substrate holding member having the ability. In a semiconductor manufacturing apparatus, when an etching process or the like is performed on a wafer in a plasma atmosphere, the surface of the wafer placed on the mounting surface of the substrate holding member is exposed to plasma such as Ar and becomes high temperature, and the resist film on the surface is baked. Such problems arise. Therefore, in order to suppress this temperature rise, a pedestal having a temperature adjusting function is provided on the lower surface of the plate-like substrate on which the wafer is placed to adjust the temperature of the wafer.

特許文献1には図3に示すように、Alからなる台座26とAlからなる板状基体21とを接合する面にIn層をメッキして融着させ、板状基体21と台座26を連通する貫通孔24からガス等を供給し、載置面21aに載せられているウェハWを冷却する基板保持部材20が提案されている。 In Patent Document 1, as shown in FIG. 3, an In layer is plated and fused on a surface where a pedestal 26 made of Al and a plate-like base 21 made of Al 2 O 3 are joined, and the plate-like base 21 and the pedestal are bonded. There has been proposed a substrate holding member 20 that supplies gas or the like from a through-hole 24 that communicates with 26 and cools the wafer W placed on the placement surface 21a.

特許文献2には図4に示すように、板状基体31と、SiCとAlとからなる台座34とがロウ材またははんだ等の金属接合材33を介して接合され、台座34底面に冷却ジャケット等を当接させることにより、載置面31aに載せられているウェハWを冷却する基板保持部材30が提案されている。   In Patent Document 2, as shown in FIG. 4, a plate-like base 31 and a pedestal 34 made of SiC and Al are joined via a metal joining material 33 such as a brazing material or solder, and a cooling jacket is formed on the bottom of the pedestal 34. A substrate holding member 30 that cools the wafer W placed on the placement surface 31a by bringing them into contact with each other is proposed.

特許文献3には板状基体が、炭素材料あるいは炭素の複合材料からなる台座の上にロウ付けされ、台座の底面に冷却媒体循環用の溝を穿設し、溝に冷却媒体を流すことによりウェハWを冷却する基板保持部材が提案されている。
特開平3−3249号公報 特開平10−32239号公報 特開平8−107140号公報
In Patent Document 3, a plate-like substrate is brazed on a pedestal made of a carbon material or a carbon composite material, a cooling medium circulation groove is formed in the bottom surface of the pedestal, and the cooling medium is caused to flow through the groove. A substrate holding member for cooling the wafer W has been proposed.
JP-A-3-3249 Japanese Patent Laid-Open No. 10-32239 JP-A-8-107140

しかしながら、図4に示す従来の基板保持部材は、台座34の大きさが大きく熱容量を考慮した設計になっていないため熱容量が概ね大きく、冷却部材を台座の下面に取り付けただけでは、熱を効率良く基板保持部材の外に放散することが不十分であった。そこで例えば、プラズマ発生直後からプラズマ雰囲気の熱がウェハに伝わりウェハの温度が上昇しつづけるとの問題があった。つまり、ウェハに加わる熱量と基板保持部材30から流出する熱量とがバランスするまでの時間が長く、ウェハW表面の温度が一定の温度となる定常状態になるまでの時間が長いという問題があった。   However, the conventional substrate holding member shown in FIG. 4 has a large pedestal 34 and is not designed with heat capacity taken into consideration, so the heat capacity is generally large, and heat can be efficiently obtained simply by attaching a cooling member to the lower surface of the pedestal. It was insufficient to diffuse out of the substrate holding member well. Therefore, for example, there is a problem that the heat of the plasma atmosphere is transmitted to the wafer immediately after the plasma is generated and the temperature of the wafer continues to rise. That is, there is a problem that the time until the amount of heat applied to the wafer and the amount of heat flowing out of the substrate holding member 30 are balanced is long, and the time until the temperature of the surface of the wafer W reaches a constant state is long. .

また、図3に示す従来の基板保持部材は、載置面21aに載せられたウェハW表面の温度分布は、中央部及び外縁部の温度が低く、その中間部の温度が高いリング状となり、ウェハWに均一な厚みで均質な膜を成膜することや、成膜した膜に均一な深さでエッチング加工を施すことが困難であった。   Further, in the conventional substrate holding member shown in FIG. 3, the temperature distribution on the surface of the wafer W placed on the mounting surface 21a is a ring shape in which the temperature at the center and the outer edge is low and the temperature at the middle is high, It has been difficult to form a uniform film with a uniform thickness on the wafer W and to etch the formed film with a uniform depth.

また、プラズマで加熱されたウェハWの熱を効率よく逃がすためには、台座の熱伝導率を大きくする必要がある。そこでAlからなる台座26と板状基体21とを接合しているが、CVD、PVD、スパッタリング等の成膜工程やエッチング工程において要求される−40〜100℃の冷熱サイクルを繰り返すと、Alからなる台座26と板状基体21の熱膨張係数の差により接合界面に発生する応力が大きく、板状基体21と台座26との接合面に隙間が生じる虞があった。このため、接合面の熱伝達率が部分的に変化し、プラズマ発生直後にウェハW表面の部分的な温度が上昇したり、ウェハWの温度が定常状態になるまでの時間が長く、ウェハ表面の温度差が大きいとの問題があった。   In order to efficiently release the heat of the wafer W heated by plasma, it is necessary to increase the thermal conductivity of the pedestal. Therefore, the pedestal 26 made of Al and the plate-like substrate 21 are joined together, but when the cooling cycle of −40 to 100 ° C. required in the film forming process and the etching process such as CVD, PVD, and sputtering is repeated, the Al Due to the difference in thermal expansion coefficient between the pedestal 26 and the plate-like substrate 21, the stress generated at the bonding interface is large, and there is a possibility that a gap is formed on the bonding surface between the plate-like substrate 21 and the pedestal 26. For this reason, the heat transfer coefficient of the bonding surface partially changes, and the time until the temperature of the wafer W partially rises immediately after plasma generation or the temperature of the wafer W reaches a steady state is long. There was a problem that the temperature difference was large.

また、複合材料からなる台座の底面に冷却媒体循環用の溝を穿孔し、溝に冷却媒体を直接流した基板保持部材は、台座にクラック等が入った際、クラックを通じて真空チャンバーに冷却媒体が漏れ、それが原因で真空チャンバー自体が使用できなくなる虞があった。   In addition, the substrate holding member in which a cooling medium circulation groove is drilled in the bottom surface of the pedestal made of a composite material and the cooling medium is directly flowed into the groove, the cracking medium enters the vacuum chamber through the crack when the cradle is cracked. There was a possibility that the vacuum chamber itself could not be used due to leakage.

また、半導体製造装置では載置面等に堆積した汚れやパーティクルを洗い落とすため、定期的に基板保持部材を装置から取り外すことが必要であった。しかし、上記溝に冷却媒体を流すため、何らかの手段で台座に直接冷却媒体用の配管等を取り付ける必要があり、容易に基板保持部材の取り付けや取り外しができないとの問題があった。   In addition, in the semiconductor manufacturing apparatus, it is necessary to periodically remove the substrate holding member from the apparatus in order to wash away dirt and particles accumulated on the mounting surface and the like. However, since the cooling medium is caused to flow in the groove, it is necessary to attach piping or the like for the cooling medium directly to the pedestal by some means, and there is a problem that the substrate holding member cannot be easily attached or detached.

そこで、本発明は上記課題に鑑み、鋭意研究の結果、半導体製造装置内で使用することに好適な基板保持部材を提案した。すなわち、本発明は、板状基体の一方の主面がウェハを載せる載置面、他方の主面が板状の台座の一方の主面を接合させた基板保持部材であって、上記台座は、上記板状基体より熱伝導率の大きなものが用いられ、かつ、他方の主面の中央部にリング状の凹部が形成されていることを特徴とする。   In view of the above problems, the present invention has proposed a substrate holding member suitable for use in a semiconductor manufacturing apparatus as a result of intensive studies. That is, the present invention is a substrate holding member in which one main surface of a plate-like substrate is a mounting surface on which a wafer is placed, and the other main surface is bonded to one main surface of a plate-like pedestal, A material having a higher thermal conductivity than the plate-like substrate is used, and a ring-shaped recess is formed at the center of the other main surface.

上記板状基体の内部に吸着用の電極を備えたことを特徴とする。   An electrode for adsorption is provided inside the plate-like substrate.

上記凹部の直径が、上記載置面の直径より小さいことを特徴とする。   The diameter of the recess is smaller than the diameter of the placement surface.

上記凹部の深さtcが、上記台座の厚みtの0.3〜0.7倍であることを特徴とする。   The depth tc of the recess is 0.3 to 0.7 times the thickness t of the pedestal.

上記凹部の底面に冷却部材を配設することを特徴とする。   A cooling member is disposed on the bottom surface of the recess.

上記凹部のコーナ部のC面及び、又はR面の大きさが0.5〜5.0mmであることを特徴とする。   The size of the C surface and / or R surface of the corner portion of the recess is 0.5 to 5.0 mm.

上記凹部により形成される凸部に上記板状基体と上記台座とを貫通する貫通孔を備え、該貫通孔と連通する溝を上記載置面に形成したことを特徴とする。   The convex portion formed by the concave portion is provided with a through-hole penetrating the plate-like substrate and the pedestal, and a groove communicating with the through-hole is formed on the mounting surface.

上記台座の熱伝導率が160W/(m・K)以上であることを特徴とする。   The pedestal has a thermal conductivity of 160 W / (m · K) or more.

上記板状基体は、窒化物及び炭化物の何れか一つを含むセラミックからなることを特徴とする。   The plate-like substrate is made of a ceramic containing any one of nitride and carbide.

上記台座が金属とセラミックとからなる複合材料であることを特徴とする。   The pedestal is a composite material made of metal and ceramic.

上記台座がAlとSi及びSiCを主成分とすることを特徴とする。   The pedestal is mainly composed of Al, Si, and SiC.

本発明の基板保持部材は、台座の他方主面の中央部にリング状の凹部を設けることにより、台座全体の熱容量を小さくして凹部内面から熱を効率よく取り除くことができる。即ち、プラズマ発生直後のプラズマ雰囲気からの熱がウェハWに伝わりやすくできることからウェハW温度が高められ載置面から熱が台座に伝わっても凹部により熱が効率よく伝わりやすくウェハW温度の上昇を抑えウェハWの表面温度が一定温度となる定常状態になるまでの時間を短縮することができる。   The board | substrate holding member of this invention can remove a heat | fever efficiently from a recessed part inner surface by making the heat capacity of the whole pedestal small by providing a ring-shaped recessed part in the center part of the other main surface of a pedestal. That is, since the heat from the plasma atmosphere immediately after the plasma generation can be easily transmitted to the wafer W, the wafer W temperature is increased, and even if the heat is transmitted from the mounting surface to the pedestal, the heat is easily transmitted efficiently by the concave portion, thereby increasing the wafer W temperature. It is possible to shorten the time until the steady state where the surface temperature of the restraining wafer W becomes a constant temperature.

また、台座の他方主面の中央部にリング状の凹部を設けることにより、ウェハW表面の中心部と周辺部を除く中間部の熱を奪うことが可能となるため、ウェハW表面の温度差が小さく均一となり、ウェハWに均一な厚みで均質な膜を成膜することや、成膜した膜に均一な深さでエッチング加工を施すことができる。   Further, by providing a ring-shaped recess at the center of the other main surface of the pedestal, it is possible to remove heat from the central portion of the surface of the wafer W and the peripheral portion. Is uniform, and a uniform film with a uniform thickness can be formed on the wafer W, or the formed film can be etched with a uniform depth.

また、板状基体と台座を接合し、台座の材質として複合材料を使用したことから、CVD、PVD、スパッタリング等の成膜工程やエッチング工程において要求される−40〜100℃の冷熱サイクルをかけても、板状基体と台座の熱膨張差により発生する接合界面の熱応力が小さくなり、板状基体と台座の接合面に隙間が発生する虞がない。このため、接合面での熱伝達係数のバラツキがなく、プラズマ発生直後のウェハW温度の上昇時間が短く、ウェハW面内の温度差が小さい基板保持部材を安定して供給することができる。   In addition, since the plate-like substrate and the pedestal are joined and a composite material is used as the pedestal material, it is subjected to a cooling cycle of −40 to 100 ° C. required in the film forming process and the etching process such as CVD, PVD, and sputtering. However, the thermal stress at the bonding interface generated by the difference in thermal expansion between the plate-like base and the pedestal is reduced, and there is no possibility that a gap is generated between the joint surfaces of the plate-like base and the pedestal. For this reason, there is no variation in the heat transfer coefficient on the bonding surface, and the substrate holding member with a small temperature difference in the wafer W surface can be stably supplied with a short rise time of the wafer W temperature immediately after the generation of plasma.

また、台座に直接冷却媒体を流さないので、真空チャンバー内に冷却媒体が漏れることがない。また、冷却部を台座に内蔵していないので、基板保持部材の取り付けや取り外しを簡単に行うことができる。   Further, since the cooling medium does not flow directly to the pedestal, the cooling medium does not leak into the vacuum chamber. Further, since the cooling unit is not built in the pedestal, the substrate holding member can be easily attached and detached.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1(a)は本発明の基板保持部材1の一例である静電チャックの斜視図であり、図1(b)は(a)のX−X線断面図を示す。   Fig.1 (a) is a perspective view of the electrostatic chuck which is an example of the board | substrate holding member 1 of this invention, FIG.1 (b) shows the XX sectional drawing of (a).

板状基体2の一方の主面をウェハWを載せる載置面2aとし、上記板状基体2の内部には一対の吸着用の電極3が備えられており、上記板状基体2の下面に上記電極3へ通電するための給電端子4が取り付けられている。上記板状基体2の他方の主面には金属接合層6を介して台座7の一方の主面が接合されている。また、上記台座7の他方の主面の中央部にはリング状の凹部7aが設けられ、凹部7aの中央に凸部7bを形成している。また、上記板状基体2の載置面2aには溝2bが形成され上記凸部7bに備えられた板状基体2と台座7を連通する貫通孔5からArガス等が供給されウェハWと溝2bで形成された空間にガスが充填され、ウェハWと載置面2aの間の熱伝達を高め、ウェハWの熱を逃がすようになっている。   One main surface of the plate-like substrate 2 is a mounting surface 2a on which the wafer W is placed. A pair of adsorption electrodes 3 are provided inside the plate-like substrate 2, and the lower surface of the plate-like substrate 2 is provided on the lower surface. A power feeding terminal 4 for energizing the electrode 3 is attached. One main surface of the pedestal 7 is bonded to the other main surface of the plate-like substrate 2 via the metal bonding layer 6. Further, a ring-shaped recess 7a is provided at the center of the other main surface of the pedestal 7, and a protrusion 7b is formed at the center of the recess 7a. Further, a groove 2b is formed on the mounting surface 2a of the plate-like substrate 2, and Ar gas or the like is supplied from the through-hole 5 that communicates the plate-like substrate 2 provided on the projection 7b and the pedestal 7 with the wafer W. Gas is filled in the space formed by the groove 2b, heat transfer between the wafer W and the mounting surface 2a is enhanced, and the heat of the wafer W is released.

図2(a)は図1で示す基板保持部材1のリング状の凹部7aに、冷却媒体を通す流路8aを内蔵した冷却部材8が配設された斜視図であり、図2(b)は(a)のX−X線断面図を示す。上記流路8aには一対の冷却配管9が溶接等により取り付けられている。   2A is a perspective view in which a cooling member 8 having a flow path 8a through which a cooling medium is passed is disposed in the ring-shaped recess 7a of the substrate holding member 1 shown in FIG. 1, and FIG. Shows a sectional view taken along line XX of (a). A pair of cooling pipes 9 are attached to the flow path 8a by welding or the like.

そして、載置面2a上にウェハWを載せ、一対の吸着用の電極3との間に数百Vの吸着電圧を給電端子4から印加して、電極3とウェハWの間に静電吸着力を発現させ、ウェハWを載置面2aに吸着し固定することができる。また、台座7と対向電極(不図示)との間に高周波電圧を印加するとウェハWの上方にプラズマを効率的に発生させることができる。更に、冷却部材8中の流路8aに冷却媒体を流すことにより、凹部7aの内面を介してプラズマ等の雰囲気からウェハWに伝わった熱を効率良く外部に放散することが可能であり、ウェハWの温度を冷却媒体の温度でコントロールすることが容易となる。   Then, the wafer W is placed on the mounting surface 2 a, and an adsorption voltage of several hundred volts is applied from the power supply terminal 4 between the pair of adsorption electrodes 3, and electrostatic adsorption between the electrode 3 and the wafer W is performed. Force can be developed, and the wafer W can be adsorbed and fixed to the mounting surface 2a. Further, when a high frequency voltage is applied between the base 7 and the counter electrode (not shown), plasma can be efficiently generated above the wafer W. Further, by flowing a cooling medium through the flow path 8a in the cooling member 8, the heat transferred from the atmosphere such as plasma to the wafer W through the inner surface of the recess 7a can be efficiently dissipated to the outside. It becomes easy to control the temperature of W by the temperature of the cooling medium.

本発明の基板保持部材1は、板状基体2の一方の主面をウェハWを載せる載置面2aとし、上記板状基体2の他方の主面に上記板状基体2より熱伝導率の大きな板状の台座7の一方の主面を接合し、該台座7の他方の主面の中央部にリング状の凹部7aを設けたことを特徴とする。その理由は、板状の台座7の熱伝導率が板状基体2の熱伝導率より大きいことにより、ウェハWから板状基体2に伝わった熱は、板状基体2から台座7を経由して凹部7aの界面を介して効率良く基板保持部材1の外部に放散することが可能となる。このため、ウェハWがプラズマ雰囲気等で加熱されてもウェハW表面の温度が一定となる定常状態になるまでの時間を短縮することができる。   In the substrate holding member 1 of the present invention, one main surface of the plate-like substrate 2 is a mounting surface 2a on which the wafer W is placed, and the other main surface of the plate-like substrate 2 has a thermal conductivity higher than that of the plate-like substrate 2. One major surface of the large plate-like pedestal 7 is joined, and a ring-shaped recess 7 a is provided at the center of the other principal surface of the pedestal 7. This is because the heat conductivity of the plate-like base 7 is larger than the heat conductivity of the plate-like base 2, so that the heat transferred from the wafer W to the plate-like base 2 passes through the base 7. Thus, it is possible to dissipate efficiently to the outside of the substrate holding member 1 through the interface of the recess 7a. For this reason, even if the wafer W is heated in a plasma atmosphere or the like, it is possible to shorten the time until a steady state where the temperature of the surface of the wafer W is constant.

また、リング状の凹部7aを設けることにより、台座7が凹部のない平面形状である場合に比べ、台座7全体の熱容量が小さくなるとともに、台座7の剛性が大きくなり、しかも広い面積を有する凹部7aの内面でウェハWの表面温度差を小さくする効果を備えて冷却することができる。そして、ウェハW表面の熱を効率良く基板保持部材1の外部に放散することができることから、ウェハWの温度が定常状態になるまでの時間を短縮することができる。   Further, by providing the ring-shaped recess 7a, the heat capacity of the entire pedestal 7 is reduced and the rigidity of the pedestal 7 is increased as compared with the case where the pedestal 7 has a planar shape without the recess, and the recess has a large area. The inner surface of 7a can be cooled with the effect of reducing the surface temperature difference of the wafer W. Since the heat on the surface of the wafer W can be efficiently dissipated to the outside of the substrate holding member 1, the time until the temperature of the wafer W reaches a steady state can be shortened.

また、凹部7aをリング状とすることにより、載置面2a上のウェハW面内の温度差が小さくなるとともに、冷却部材8中の冷却媒体の流れがスムースになり淀みが発生しないことから、熱交換がスムースに行われ均熱性のよい基板保持部材1が得られる。   Moreover, since the temperature difference in the wafer W surface on the mounting surface 2a is reduced by making the concave portion 7a into a ring shape, the flow of the cooling medium in the cooling member 8 becomes smooth and no stagnation occurs. Heat exchange is performed smoothly, and the substrate holding member 1 with good heat uniformity is obtained.

台座7の熱容量は該台座7の厚みを薄くすれば小さくなるが、台座7の厚みが薄くなる程、凹部7aの加工が困難になる上、板状基体2と上記台座7を接合する際に、該台座7に変形が発生する虞があり好ましくない。上記台座7の最大厚みは、5〜25mmとすることが好ましい。   The heat capacity of the pedestal 7 is reduced if the thickness of the pedestal 7 is reduced. However, as the thickness of the pedestal 7 is reduced, the processing of the recess 7a becomes more difficult, and when the plate-like substrate 2 and the pedestal 7 are joined. The base 7 may be deformed, which is not preferable. The maximum thickness of the pedestal 7 is preferably 5 to 25 mm.

また、本発明の基板保持部材1は、板状基体2の内部に吸着用の電極3を備えることが好ましい。その理由は、板状基体2の内部にウェハWの吸着用の電極3を設けることにより、ウェハWを載置面2aに強固に吸着固定することが可能となるため、ウェハWと載置面2aの間の熱伝導率が高まり、ウェハWの熱を効率的に板状基体2に伝える事ができる。そして、プラズマ発生後にウェハWの温度が定常状態になるまでの時間をより小さくすることができる。   Further, the substrate holding member 1 of the present invention preferably includes an electrode 3 for adsorption inside the plate-like substrate 2. The reason is that by providing the electrode 3 for attracting the wafer W inside the plate-like substrate 2, it becomes possible to firmly attract and fix the wafer W to the placement surface 2a. The thermal conductivity between 2a increases, and the heat of the wafer W can be efficiently transmitted to the plate-like substrate 2. Then, the time until the temperature of the wafer W reaches a steady state after the plasma is generated can be further reduced.

板状基体2中に埋設する電極3としては、上記板状基体2の反りや割れ等を防ぐために上記板状基体2と熱膨脹係数が近似した材質が良く、例えば4〜6×10−6/℃の熱膨張係数を有するタングステン(W)やモリブデン(Mo)などの高融点金属がより好ましく、これらの合金、あるいは炭化タングステン(WC)、炭化チタン(TiC)、窒化チタン(TiN)を用いることができる。 The electrode 3 embedded in the plate-like substrate 2 is preferably made of a material having a thermal expansion coefficient approximate to that of the plate-like substrate 2 in order to prevent warpage or cracking of the plate-like substrate 2, for example, 4-6 × 10 −6 / Refractory metals such as tungsten (W) and molybdenum (Mo) having a thermal expansion coefficient of ° C. are more preferable, and alloys thereof, tungsten carbide (WC), titanium carbide (TiC), and titanium nitride (TiN) should be used. Can do.

また、板状基体2に埋設する吸着用の電極3は膜状のものに限らず、金属箔などの板状体やメッシュ体、さらにはコイルであっても良い。電極3の形状は、半円形や櫛歯形状等があり機能に応じて様々なパターン形状に形成することが可能である。   The adsorption electrode 3 embedded in the plate-like substrate 2 is not limited to a film-like one, and may be a plate-like body such as a metal foil, a mesh body, or a coil. The shape of the electrode 3 includes a semicircular shape, a comb shape, and the like, and can be formed in various pattern shapes according to the function.

また、本発明の基板保持部材1は、凸部7bに板状基体2と台座7を貫通する貫通孔5を備え、該貫通孔5と連通する溝2bを載置面2aに備えることが好ましい。その理由は、凸部7bに備えられた板状基体2と台座7とを貫通する貫通孔5にガスを供給することにより、上記貫通孔5と連通する載置面2a上の溝2bとウェハWで形成された空間にガスが充填され、ウェハWと載置面2aの間の熱伝導を高め、ウェハWの熱を板状基体2へ逃がすことが更に容易となるからである。よって、載置面2a上に溝2bを設けない場合に比べ、ウェハWから板状基体2への熱の伝わり方が良くなり、プラズマ等からウェハWに熱が伝わってもウェハWの温度を急激に上昇させることなく短時間で一定の温度に保持することができる。   Further, the substrate holding member 1 of the present invention is preferably provided with a through hole 5 penetrating the plate-like base 2 and the base 7 in the convex portion 7b, and a groove 2b communicating with the through hole 5 on the mounting surface 2a. . The reason is that the gas is supplied to the through hole 5 penetrating the plate-like substrate 2 and the pedestal 7 provided in the convex portion 7b, whereby the groove 2b on the mounting surface 2a communicating with the through hole 5 and the wafer are provided. This is because the space formed by W is filled with gas, the heat conduction between the wafer W and the mounting surface 2a is enhanced, and the heat of the wafer W can be more easily released to the plate-like substrate 2. Therefore, compared with the case where the groove 2b is not provided on the mounting surface 2a, the heat transfer from the wafer W to the plate-like substrate 2 is improved, and the temperature of the wafer W is reduced even if heat is transferred from the plasma or the like to the wafer W. It can be held at a constant temperature in a short time without being rapidly increased.

図3に示す従来の基板保持部材20では、板状基体21と台座26を連通する貫通孔24から供給されたガスはウェハW裏面中央部から外縁部に向かって円周方向に均一に拡散するが、ウェハWの中央部は常にガスが供給され続けているため冷却され易く、外縁部は基板保持部材を収納する容器の壁面への熱引けがあることからウェハWの表面温度は、中央部及び外縁部の温度が低くなり、その中間部の温度が高いリング状となる。それに対し本発明の基板保持部材1は、台座7の底面にリング状の凹部7aを備えたことにより、ウェハW上の温度が高い中間部の熱を効率よく奪い載置面2aの全面を冷却することが可能となりウェハW上の面内温度差がより小さくなる。そして、最新の微細な回路素子に対応してウェハWに均一な厚みで均質な膜を成膜することや、成膜した膜に均一な深さでエッチング加工を施すことが可能となる。   In the conventional substrate holding member 20 shown in FIG. 3, the gas supplied from the through hole 24 communicating with the plate-like base 21 and the base 26 is uniformly diffused in the circumferential direction from the center of the back surface of the wafer W toward the outer edge. However, since the gas is continuously supplied to the central portion of the wafer W, the wafer W is easily cooled, and the outer edge portion is thermally attracted to the wall surface of the container that stores the substrate holding member. And the temperature of an outer edge part becomes low, and it becomes a ring shape with the high temperature of the intermediate part. On the other hand, the substrate holding member 1 of the present invention is provided with the ring-shaped recess 7a on the bottom surface of the pedestal 7, thereby efficiently depriving the heat of the intermediate portion having a high temperature on the wafer W to cool the entire surface of the mounting surface 2a. And the in-plane temperature difference on the wafer W becomes smaller. Then, it becomes possible to form a uniform film with a uniform thickness on the wafer W corresponding to the latest fine circuit elements, and to etch the formed film with a uniform depth.

また、本発明の基板保持部材1は、凹部7aの直径が、載置面2aの直径より小さいことが好ましい。その理由は、凹部7aの直径が載置面2aの直径を超えると、ウェハWの外周部の温度は容器壁面への熱引けに加え、凹部7aの周辺から冷却部材8により更に冷却されるため温度が低くなり、ウェハW表面の温度差が大きく不均一となる虞があるからである。   Moreover, as for the board | substrate holding member 1 of this invention, it is preferable that the diameter of the recessed part 7a is smaller than the diameter of the mounting surface 2a. The reason is that if the diameter of the concave portion 7a exceeds the diameter of the mounting surface 2a, the temperature of the outer peripheral portion of the wafer W is further cooled by the cooling member 8 from the periphery of the concave portion 7a in addition to the heat sink to the container wall surface. This is because the temperature becomes low and the temperature difference on the surface of the wafer W may become large and non-uniform.

尚、上記載置面2aの直径は、板状基体2の上面の最大直径であり、上記凹部2aの直径は、凹部2aの内面の最大径を4箇所測定したその平均値である。   The diameter of the mounting surface 2a described above is the maximum diameter of the upper surface of the plate-like substrate 2, and the diameter of the concave portion 2a is an average value obtained by measuring four maximum diameters of the inner surface of the concave portion 2a.

また、本発明の基板保持部材1は、凹部7aの深さtcが、台座7の厚みtの0.3〜0.7倍であることが好ましい。その理由は、凹部7aの深さtcが台座7の厚みtの0.3倍未満では、凹部7aの深さtcが浅いため、凹部7a内面の面積が小さく、また、台座7全体の熱容量が小さくならないことから、ウェハW表面の熱を効率よく基板保持部材1の外に放出できない虞があるからである。一方、凹部7aの深さtcが台座7の厚みtの0.7倍を超えると、凹部7aの深さtcが深いため凹部7a部分の台座7の厚みが薄くなり、冷熱サイクルをかけると台座7にクラックが発生する虞がある。また、深さtcが厚みtの0.7倍を超えると、凹部7aの底面に近いウェハW表面は冷却が速いが、凸部7bの熱が逃げ難いことからタイムラグが発生しウェハWの面内温度差が大きくなる虞があるからである。   In the substrate holding member 1 of the present invention, the depth tc of the recess 7 a is preferably 0.3 to 0.7 times the thickness t of the base 7. The reason is that if the depth tc of the recess 7a is less than 0.3 times the thickness t of the pedestal 7, the depth tc of the recess 7a is shallow, so that the area of the inner surface of the recess 7a is small, and the heat capacity of the entire pedestal 7 is small. This is because the heat on the surface of the wafer W may not be efficiently released to the outside of the substrate holding member 1 because it is not reduced. On the other hand, when the depth tc of the concave portion 7a exceeds 0.7 times the thickness t of the pedestal 7, the depth tc of the concave portion 7a is so deep that the thickness of the pedestal 7 at the concave portion 7a becomes thin. 7 may crack. When the depth tc exceeds 0.7 times the thickness t, the surface of the wafer W near the bottom surface of the recess 7a is cooled quickly, but the heat of the projection 7b is difficult to escape, so a time lag occurs and the surface of the wafer W This is because the internal temperature difference may increase.

台座7の他方の主面に設けた凹部7aの深さtcを台座7の厚みtの0.3〜0.7倍とすることにより、台座7全体の熱容量が低下することから、例えばプラズマからの熱がウェハWに注がれても載置面2aから凹部7aに向けて熱を迅速に移動させさせることが可能となるため、熱を効率良く基板保持部材1の外部に放散することが可能となり、ウェハWの温度が定常状態になるまでの時間をより短縮することができる。また、台座7の熱容量を抑えながらも、台座7の剛性を高める事ができる。更に、本発明の基板保持部材1の凹部7aの深さtcは、台座7の厚みtの0.45〜0.7倍であることがより好ましい。   By setting the depth tc of the recess 7a provided on the other main surface of the pedestal 7 to 0.3 to 0.7 times the thickness t of the pedestal 7, the overall heat capacity of the pedestal 7 is reduced. Even if this heat is poured onto the wafer W, the heat can be quickly moved from the mounting surface 2a toward the recess 7a, so that the heat can be efficiently dissipated to the outside of the substrate holding member 1. Thus, the time until the temperature of the wafer W reaches a steady state can be further shortened. In addition, the rigidity of the pedestal 7 can be increased while suppressing the heat capacity of the pedestal 7. Furthermore, the depth tc of the recess 7 a of the substrate holding member 1 of the present invention is more preferably 0.45 to 0.7 times the thickness t of the base 7.

また、本発明の基板保持部材1は、凹部7aの底面に冷却部材8を配設することが好ましい。その理由は、凹部7aの内面に冷却部材8を配設することにより、台座7の凹部7aから冷却部材8に熱を伝えることができ冷却効率が向上するからである。また、台座7に直接冷却媒体を流すことがなく、真空容器内に冷却媒体が漏れる虞がない。また、冷却部材8を台座7に内蔵していないため、基板保持部材1の取り付け/取り外し等の交換が容易となる。尚、凹部7aと冷却部材8の界面には熱伝導率の大きなグリース等を介在させることが好ましい。   Moreover, it is preferable that the board | substrate holding member 1 of this invention arrange | positions the cooling member 8 on the bottom face of the recessed part 7a. The reason is that by disposing the cooling member 8 on the inner surface of the recess 7a, heat can be transferred from the recess 7a of the base 7 to the cooling member 8, and the cooling efficiency is improved. Further, the cooling medium does not flow directly to the pedestal 7, and there is no possibility that the cooling medium leaks into the vacuum vessel. Further, since the cooling member 8 is not built in the pedestal 7, replacement such as attachment / detachment of the substrate holding member 1 is facilitated. In addition, it is preferable to interpose a grease having a large thermal conductivity at the interface between the recess 7a and the cooling member 8.

また、上記冷却部材8中には冷却媒体を流す流路8aが備えられており、流路8aと交差する一対の冷却配管9が溶接等の方法により取り付けられている。上記冷却配管9は、冷却媒体の吸込及び吹出を行っており、流路8aを通って循環されプラズマ等の雰囲気からウェハWに伝わった熱を効率良く外部に放散する。なお、冷却部材8及び冷却配管9はステンレス鋼で作製することが好ましい。   The cooling member 8 is provided with a flow path 8a for flowing a cooling medium, and a pair of cooling pipes 9 intersecting with the flow path 8a are attached by a method such as welding. The cooling pipe 9 sucks and blows out the cooling medium, and efficiently dissipates the heat circulated through the flow path 8a and transmitted from the atmosphere such as plasma to the wafer W to the outside. The cooling member 8 and the cooling pipe 9 are preferably made of stainless steel.

また、本発明の基板保持部材1は、凹部7aのコーナ部のC面及び、又はR面の大きさが、0.5〜5.0mmであることが好ましい。その理由は、凹部7aと接触する側の冷却部材8の面には、凹部7aの底面に設けられているコーナ部の大きさに合わせてコーナ部が設けられており、このことにより、凹部7aと冷却部材8との間に隙間が発生せず、上記凹部7aと上記冷却部材8との熱的接触面積を大きくしているが、凹部7aのコーナ部のC面及び、又はR面の大きさが、0.5mm未満では、冷熱サイクルをかけると台座7が熱膨張するため、コーナ部に応力が集中し、コーナ部からクラックが発生する虞があるからである。一方、凹部7aのコーナ部のC面及び、又はR面の大きさが、5.0mmを超えると、上記凹部7aのコーナ部の大きさに合わせて、冷却部材8のコーナ部を精度よく加工することが困難となり凹部7aの内面で冷却部材8と熱的に接触する接触面積が小さくなる虞があるからである。   Moreover, as for the board | substrate holding member 1 of this invention, it is preferable that the magnitude | size of the C surface and / or R surface of the corner part of the recessed part 7a is 0.5-5.0 mm. The reason is that a corner portion is provided on the surface of the cooling member 8 on the side in contact with the recess portion 7a in accordance with the size of the corner portion provided on the bottom surface of the recess portion 7a. There is no gap between the cooling member 8 and the thermal contact area between the recess 7a and the cooling member 8 is increased, but the size of the C surface and / or R surface of the corner of the recess 7a is increased. However, if the thickness is less than 0.5 mm, the pedestal 7 is thermally expanded when a cooling cycle is applied, so that stress concentrates on the corner portion and cracks may occur from the corner portion. On the other hand, when the size of the C surface and / or R surface of the corner portion of the recess 7a exceeds 5.0 mm, the corner portion of the cooling member 8 is accurately processed according to the size of the corner portion of the recess 7a. This is because it becomes difficult to do so, and there is a possibility that the contact area that is in thermal contact with the cooling member 8 on the inner surface of the recess 7a may be reduced.

更に、凹部7aのコーナ部のC面及び、又はR面の大きさは、0.5〜2.0mmの大きさであることが好ましい。   Furthermore, it is preferable that the size of the C surface and / or the R surface of the corner portion of the recess 7a is 0.5 to 2.0 mm.

また、本発明の基板保持部材1は、台座7の熱伝導率が160W/(m・K)以上であることが好ましい。その理由は、台座7の熱伝導率が160W/(m・K)未満では、板状基体2の熱を効率よく台座7に伝えることができない虞があるからである。台座7の熱伝導率を160W/(m・K)以上とすることにより、板状基体2から台座7への熱の流れがスムースとなり、プラズマ雰囲気等からの熱がウェハWかた板状基体2に伝わり台座7の凹部7aから容易に系外へ取り除く事ができるからである。   In the substrate holding member 1 of the present invention, the pedestal 7 preferably has a thermal conductivity of 160 W / (m · K) or more. The reason is that if the thermal conductivity of the base 7 is less than 160 W / (m · K), the heat of the plate-like substrate 2 may not be efficiently transmitted to the base 7. By setting the thermal conductivity of the pedestal 7 to 160 W / (m · K) or more, the flow of heat from the plate-like substrate 2 to the pedestal 7 becomes smooth, and the heat from the plasma atmosphere or the like is obtained from the wafer W. This is because it can be easily removed from the recess 7a of the base 7 to the outside of the system.

また、本発明の基板保持部材1は、板状基体2が、窒化物及び炭化物の何れか一つを含むセラミックからなることが好ましい。その理由は、窒化物及び炭化物等のセラミックスは耐プラズマ腐食性に優れているため、プラズマによるダメージを受け難くウェハW上に不純物が付着し難いからであり、また、高熱伝導率が100W/(m・K)〜300W/(m・K)と大きく、ウェハ面内の温度差がより小さくなるからである。上記の窒化物及び炭化物としては、AlN、SiC、Siがあり、AlN、SiCが特に好ましい。 In the substrate holding member 1 of the present invention, the plate-like substrate 2 is preferably made of a ceramic containing any one of nitride and carbide. The reason is that ceramics such as nitrides and carbides are excellent in plasma corrosion resistance, so that they are not easily damaged by plasma and impurities are not easily deposited on the wafer W, and the high thermal conductivity is 100 W / ( This is because the temperature difference in the wafer surface becomes smaller because it is large (m · K) to 300 W / (m · K). Examples of the nitride and carbide include AlN, SiC, and Si 3 N 4 , and AlN and SiC are particularly preferable.

また、本発明の基板保持部材1の台座7は、金属とセラミックとからなる複合材料であることが好ましい。その理由は、台座7を熱膨張係数の大きな金属と熱膨張係数の小さなセラミックスとの複合材料とすることにより台座7の熱膨脹係数を板状基体2の熱膨脹係数に近づけることが可能であるため、CVD、PVD、スパッタリング等の成膜工程やエッチング工程において要求される−40〜100℃の冷熱サイクルをかけても、板状基体2と台座7の接合面に隙間が発生し難く、ウェハW表面の一部の温度が部分的に上昇することなく均一な温度とすることができるからである。   Moreover, it is preferable that the base 7 of the board | substrate holding member 1 of this invention is a composite material which consists of a metal and a ceramic. The reason is that by making the base 7 a composite material of a metal having a large thermal expansion coefficient and ceramics having a small thermal expansion coefficient, the thermal expansion coefficient of the base 7 can be brought close to the thermal expansion coefficient of the plate-like substrate 2. Even when a cooling cycle of −40 to 100 ° C. required in a film forming process or an etching process such as CVD, PVD, sputtering, etc. is applied, a gap is hardly generated at the joint surface between the plate-like substrate 2 and the base 7, and the surface of the wafer W This is because a part of the temperature can be made uniform without a partial rise.

また、本発明の台座7は、AlとSi及びSiCを主成分とすることが好ましい。その理由は、熱膨張係数の小さなSiCを骨材として、台座7として製造した際にAlとSiはAl・Si系の共晶材料を形成していることから、台座7の接合表面に形成された金属層との密着性が改善されるからである。上記金属層は、金属接合層6と板状基体2や台座7の濡れ性を良くするために、板状基体2及び台座7の接合表面に、メッキなどの方法を用いて設けられている。Si自体の金属層との密着性が好ましいため、台座7では板状基体2との強固な接合が得られるので、板状基体2と台座7の熱交換効率が良くなるため、プラズマ発生直後のウェハ温度の上昇や変化に対して基板保持部材1の温度を追従させることが可能となるため、熱を効率良く基板保持部材1の外部に放散することが可能となり、ウェハWの温度が定常状態になるまでの時間を短縮することができる。また、台座7の接合表面に形成された金属層は、金属接合層6との濡れが大幅に改善され、台座7と金属接合層6との間に空洞が発生しないため、CVD、PVD、スパッタリング等の成膜工程やエッチング工程において要求される−40〜100℃の冷熱サイクルをかけても、板状基体2と台座7の接合面に隙間が発生する虞が小さくなるからである。   Moreover, it is preferable that the base 7 of this invention has Al, Si, and SiC as a main component. The reason for this is that when SiC is manufactured as a pedestal 7 using SiC with a small coefficient of thermal expansion as the base 7, Al and Si are formed on the joint surface of the pedestal 7 because they form an Al / Si eutectic material. This is because the adhesion to the metal layer is improved. The metal layer is provided on the bonding surfaces of the plate-like substrate 2 and the pedestal 7 by using a method such as plating in order to improve the wettability between the metal-bonding layer 6 and the plate-like substrate 2 or the pedestal 7. Since the adhesion of the Si itself to the metal layer is preferable, the pedestal 7 can be firmly joined to the plate-like substrate 2, so that the heat exchange efficiency between the plate-like substrate 2 and the pedestal 7 is improved. Since the temperature of the substrate holding member 1 can follow the rise or change of the wafer temperature, heat can be efficiently dissipated to the outside of the substrate holding member 1, and the temperature of the wafer W is in a steady state. Can be shortened. Further, the metal layer formed on the bonding surface of the pedestal 7 is greatly improved in wettability with the metal bonding layer 6, and no cavities are generated between the pedestal 7 and the metal bonding layer 6. Therefore, CVD, PVD, sputtering This is because the possibility of a gap occurring at the joint surface between the plate-like substrate 2 and the pedestal 7 is reduced even when a cooling cycle of −40 to 100 ° C. required in the film forming process and the etching process is performed.

そして台座7の熱膨張係数は板状基体2の熱膨張係数の0.8〜1.2倍であることが好ましい。その理由は、板状基体2の熱膨張係数が台座7の熱膨張係数の0.8倍未満では、板状基体2と台座7の熱膨張差が大きくなるため、板状基体2と台座7の接合面に隙間が発生する虞があるからである。一方、板状基体2の熱膨張係数が台座7の熱膨張係数の1.2倍を越えると、板状基体2と台座7の熱膨張差が大きくなるため、やはり板状基体2と台座7の接合面に隙間が発生する虞があるからである。   The thermal expansion coefficient of the pedestal 7 is preferably 0.8 to 1.2 times the thermal expansion coefficient of the plate-like substrate 2. The reason is that if the thermal expansion coefficient of the plate-like substrate 2 is less than 0.8 times the thermal expansion coefficient of the pedestal 7, the difference in thermal expansion between the plate-like substrate 2 and the pedestal 7 becomes large. This is because there is a possibility that a gap is generated on the joint surface. On the other hand, if the thermal expansion coefficient of the plate-like substrate 2 exceeds 1.2 times the thermal expansion coefficient of the pedestal 7, the difference in thermal expansion between the plate-like substrate 2 and the pedestal 7 becomes large. This is because there is a possibility that a gap is generated on the joint surface.

上記台座7は、金属とセラミックの複合材からなり、三次元網目構造の多孔質セラミック体を骨格とし、その気孔部に隙間なくアルミニウム−シリコン合金を充填した複合材料を使用することが好ましい。このような構造とすることで、板状基体2と台座7の熱膨張係数を近づけることができるとともに、台座7の熱伝導率が大きな材料が得られ、プラズマ等の雰囲気からウェハWに伝わった熱を効率良く外部に放散することが可能となり好ましい。   The pedestal 7 is preferably made of a composite material of a metal and a ceramic, and a composite material in which a porous ceramic body having a three-dimensional network structure is used as a skeleton and an aluminum-silicon alloy is filled in the pores without gaps. By adopting such a structure, the thermal expansion coefficient of the plate-like base 2 and the pedestal 7 can be brought close to each other, and a material having a large thermal conductivity of the pedestal 7 is obtained, which is transmitted from the atmosphere such as plasma to the wafer W. It is preferable because heat can be efficiently dissipated to the outside.

上記台座7の製造方法としては、所望の形状のセラミックスのポーラスなプレフォームを形成して、非酸化性ガス中にて、溶融したAlとSiの合金を上記のプレフォーム中に含浸させるという方法で作製する。または、セラミックスと溶融したAlとSiの合金をかき混ぜながら分散し、均一に分散されたセラミックスと金属の混合物を所望の形状が得られる鋳型に流し込むことにより作製することができる。   As a manufacturing method of the pedestal 7, a porous preform of a ceramic having a desired shape is formed, and a molten Al-Si alloy is impregnated in the preform in a non-oxidizing gas. To make. Alternatively, the ceramic and molten Al / Si alloy can be dispersed while being stirred, and the mixture of the uniformly dispersed ceramic and metal can be poured into a mold capable of obtaining a desired shape.

次に、本発明の基板保持部材1のその他の構成について示す。   Next, other configurations of the substrate holding member 1 of the present invention will be described.

本発明の基板保持部材1の載置面2aと電極3との間の距離である絶縁膜厚みは、静電吸着力に影響を与える重要な部分であり、厚みは50〜1500μmであり、好ましくは100〜1000μmに設定されている。その理由は、50μm未満だと膜厚が薄すぎるため、充分な耐電圧が得られず、ウェハWを載置面2aに載せ、吸着させた際に絶縁破壊を起こす可能性がある。一方、1500μmを越えるとウェハWと電極3の距離が大きくなるため、吸着力が小さくなるからである。   The insulating film thickness, which is the distance between the mounting surface 2a of the substrate holding member 1 of the present invention and the electrode 3, is an important part that affects the electrostatic adsorption force, and the thickness is preferably from 50 to 1500 μm. Is set to 100 to 1000 μm. The reason is that if the thickness is less than 50 μm, the film thickness is too thin, so that a sufficient withstand voltage cannot be obtained, and there is a possibility that dielectric breakdown may occur when the wafer W is placed on and placed on the placement surface 2a. On the other hand, if the thickness exceeds 1500 μm, the distance between the wafer W and the electrode 3 increases, so that the attractive force decreases.

なお、図1及び図2に示す静電チャックは、板状基体2として静電吸着用の電極3を設けた例を示したが、加熱用電極、プラズマ発生用電極の少なくとも1つを備えていても良い。また、これらの電極を全て備えたものであっても構わない。   The electrostatic chuck shown in FIG. 1 and FIG. 2 shows an example in which the electrode 3 for electrostatic adsorption is provided as the plate-like substrate 2, but is provided with at least one of a heating electrode and a plasma generating electrode. May be. Moreover, you may provide all these electrodes.

また、本発明の台座7は、金属接合層6を介して板状基体2に接合されていることが好ましい。その理由は、金属接合層6を介して接合することにより、板状基体2と台座7の接合不良をなくすことが可能となり、−40〜100℃の冷熱サイクルをかけても、板状基体2と台座7の接合面に隙間が発生する虞が少ない。   Further, the pedestal 7 of the present invention is preferably bonded to the plate-like substrate 2 via the metal bonding layer 6. The reason is that bonding failure between the plate-like substrate 2 and the pedestal 7 can be eliminated by bonding via the metal bonding layer 6, and the plate-like substrate 2 can be applied even when subjected to a cooling cycle of −40 to 100 ° C. There is little possibility that a gap will be generated on the joint surface of the base 7.

また、金属接合層6の組成は、Alロウを主成分とし、上記主成分に対し添加成分としてNi、Au、Agから選ばれる少なくとも1種以上を0.01〜10質量%含有することが好ましい。その理由は、金属接合層6と板状基体2や台座7の濡れ性を良くするために、板状基体2及び台座7の接合表面に、メッキなどの方法を用いて金属層を設けてから板状基体2と台座7を金属接合層6で接合するが、接合した後には、必ず、Ni、Au、Agといった金属層は金属接合層6中に拡散してしまう。このためには、接合前には、板状基体2の金属層、金属接合用のロウ材、台座7の金属層と3層になっていたものが、接合後には、金属接合層6の組成としては、Alを主成分とし、上記主成分に対し添加成分としてNi、Au、Agから選ばれる少なくとも1種以上を0.01〜10質量%含有する組成となっていることを見出した。このNi、Au、Agの金属成分は、接合時の金属接合層6の濡れ性を向上するだけでなく、接合終了までに金属接合層6中に拡散し、金属接合層6と板状基体2あるいは台座7の接合を単なるアンカー効果だけではなく、相互拡散により強固なものとしていると考えられる。   Further, the composition of the metal bonding layer 6 preferably contains Al wax as a main component and 0.01 to 10% by mass of at least one selected from Ni, Au and Ag as an additive component with respect to the main component. . The reason is that, in order to improve the wettability between the metal bonding layer 6 and the plate-like substrate 2 or the pedestal 7, a metal layer is provided on the bonding surfaces of the plate-like substrate 2 and the pedestal 7 using a method such as plating. The plate-like substrate 2 and the pedestal 7 are joined by the metal joining layer 6. After joining, the metal layers such as Ni, Au, and Ag always diffuse into the metal joining layer 6. For this purpose, before joining, the metal layer of the plate-like substrate 2, the brazing material for metal joining, and the metal layer of the pedestal 7 become three layers. It was found that the composition contains 0.01 to 10% by mass of at least one selected from Ni, Au and Ag as an additive component with respect to the main component. The metal components of Ni, Au, and Ag not only improve the wettability of the metal bonding layer 6 at the time of bonding, but also diffuse into the metal bonding layer 6 by the end of bonding, and the metal bonding layer 6 and the plate-like substrate 2 Alternatively, it is considered that the joining of the pedestal 7 is strengthened not only by the anchor effect but also by mutual diffusion.

主成分に対して添加成分としてNi、Au、Agから選ばれる少なくとも1種以上が0.01質量%未満では、金属接合層6中に拡散する量が少ないため、金属接合層6と板状基体2あるいは台座7の強固な接合が得られず、CVD、PVD、スパッタリング等の成膜工程やエッチング工程において要求される−40〜100℃の冷熱サイクルをかけると、板状基体2と台座7の接合面に隙間が生じるため、プラズマ発生直後のウェハ温度の上昇や変化に対して基板保持部材1の温度を追従させることが困難となるため、熱を効率良くまた、均一に基板保持部材1の外部に放散することができず、ウェハWの温度が定常状態になるまでの時間が長く、均熱性が悪くなるため好ましくない。一方、主成分に対して添加成分としてNi、Au、Agから選ばれる少なくとも1種以上が10質量%を超えると、ロウ材自体が脆くなるため、やはり冷熱サイクル試験でクラックが生じやすくなるために好ましくない。   When at least one selected from Ni, Au, and Ag as an additive component is less than 0.01% by mass with respect to the main component, the amount of diffusion into the metal bonding layer 6 is small, so the metal bonding layer 6 and the plate-like substrate 2 or the pedestal 7 cannot be firmly bonded, and if a -40 to 100 ° C. cooling cycle required in a film forming process such as CVD, PVD, sputtering or the etching process is applied, the plate-like substrate 2 and the pedestal 7 Since a gap is generated in the bonding surface, it becomes difficult to follow the temperature of the substrate holding member 1 against a rise or change in the wafer temperature immediately after the plasma is generated, so that the heat of the substrate holding member 1 can be efficiently and uniformly obtained. This is not preferable because it cannot be diffused to the outside, and the time until the temperature of the wafer W reaches a steady state is long and the heat uniformity deteriorates. On the other hand, if at least one selected from Ni, Au and Ag as an additive component exceeds 10% by mass with respect to the main component, the brazing material itself becomes brittle, so that cracks are likely to occur in the thermal cycle test. It is not preferable.

このため、金属接合層6の組成としては、Alロウを主成分とし、上記主成分に対し添加成分としてNi、Au、Agから選ばれる少なくとも1種以上を0.01〜10質量%含有することにより、−40〜100℃の冷熱サイクルをかけても、板状基体2と台座7の接合面の隙間の発生を防止できるからである。   For this reason, the composition of the metal bonding layer 6 contains Al wax as a main component and 0.01 to 10% by mass of at least one selected from Ni, Au, and Ag as an additive component with respect to the main component. Therefore, even if a cooling cycle of −40 to 100 ° C. is applied, it is possible to prevent the generation of a gap between the joining surfaces of the plate-like substrate 2 and the base 7.

次に、本発明の基板保持部材1の製造方法を静電チャックを例に説明する。   Next, the manufacturing method of the substrate holding member 1 of the present invention will be described by taking an electrostatic chuck as an example.

静電チャックを構成する板状基体2としては、窒化アルミニウム質焼結体を用いることができる。窒化アルミニウム質焼結体の製造に当たっては、窒化アルミニウム粉末に重量換算で10質量%程度の第3a族酸化物を添加し、IPAとウレタンボールを用いてボールミルにより48時間混合し、得られた窒化アルミニウムのスラリーを200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた後、防爆乾燥機にて120℃で24時間乾燥して均質な窒化アルミニウム質混合粉末を得る。 As the plate-like substrate 2 constituting the electrostatic chuck, an aluminum nitride sintered body can be used. In the production of the aluminum nitride sintered body, about 10% by mass of Group 3a oxide in terms of weight is added to the aluminum nitride powder and mixed for 48 hours by ball mill using IPA and urethane balls. The aluminum slurry is passed through 200 mesh to remove urethane balls and ball mill wall debris, and then dried at 120 ° C. for 24 hours in an explosion-proof dryer to obtain a homogeneous aluminum nitride mixed powder.

該混合粉末にアクリル系のバインダーと溶媒を混合して窒化アルミニウム質のスリップを作製し、ドクターブレード法にてテープ成形を行う。得られた窒化アルミニウムのテープを複数枚積層し、その上に静電吸着用の電極3としてWをスクリーン印刷法で形成し、無地のテープに所望の密着液を塗り、テープを複数枚重ねてプレス成形を行う。   The mixed powder is mixed with an acrylic binder and a solvent to produce an aluminum nitride slip, and tape forming is performed by a doctor blade method. A plurality of obtained aluminum nitride tapes are laminated, W is formed thereon as an electrostatic adsorption electrode 3 by screen printing, a desired adhesive liquid is applied to a plain tape, and a plurality of tapes are stacked. Press forming.

得られた成形体を非酸化性ガス気流中にて500℃で5時間程度の脱脂を行い、更に非酸化性雰囲気にて1900℃で5時間程度の焼成を行い、電極3を埋設した窒化アルミニウム質焼結体を得る。   The obtained molded body was degreased at 500 ° C. for about 5 hours in a non-oxidizing gas stream, and further fired at 1900 ° C. for about 5 hours in a non-oxidizing atmosphere to embed the electrode 3 in the aluminum nitride A quality sintered body is obtained.

こうして得られた窒化アルミニウム質焼結体に所望の形状、所望の絶縁層厚みが得られるように機械加工を施し、板状基体2とした。更に板状基体2に設けられた貫通孔5と連通する所望の溝2bをウェハWの載置面2aにサンドブラストなどの方法で形成した。   The aluminum nitride sintered body thus obtained was machined so as to obtain a desired shape and a desired insulating layer thickness, whereby a plate-like substrate 2 was obtained. Further, a desired groove 2b communicating with the through hole 5 provided in the plate-like substrate 2 was formed on the mounting surface 2a of the wafer W by a method such as sandblasting.

そして、メッキ、はんだメッキ、スパッタリング、メタライズなどの方法により、静電吸着部の載置面2aと反対側の面に金属層を形成する。   And a metal layer is formed in the surface on the opposite side to the mounting surface 2a of an electrostatic adsorption part by methods, such as plating, solder plating, sputtering, and metallizing.

台座7はSiCからなるセラミックス粒子に溶融したAlとSi金属を含浸させ、含浸中はセラミックス粒子と溶融金属に熱だけを加え、圧力はかけない。含浸が終了した時点で、10〜100rpmの回転数の攪拌ブレードにより溶融金属が含浸されたセラミックス粒子を加熱しながら1〜10時間混合する。   The base 7 impregnates ceramic particles made of SiC with molten Al and Si metal. During the impregnation, only heat is applied to the ceramic particles and molten metal, and no pressure is applied. When the impregnation is completed, the ceramic particles impregnated with the molten metal are mixed for 1 to 10 hours while being heated with a stirring blade having a rotational speed of 10 to 100 rpm.

そして、鋳込み成型により底面中央部に凸部7bを備え、上記凸部7bを囲むようにリング状の凹部7aを設け、上記凹部7aの直径が板状基体2の載置面2aの直径より小さくなるよう所望の形状に成型し、その後、上記凸部7bに貫通孔5を設け、更に上記凹部7aの内面をコーナ部のC面及び又はR面の大きさを調整して仕上げ加工した。   Then, a convex portion 7b is provided at the center of the bottom by casting, and a ring-shaped concave portion 7a is provided so as to surround the convex portion 7b, and the diameter of the concave portion 7a is smaller than the diameter of the mounting surface 2a of the plate-like substrate 2. After forming into a desired shape, the through hole 5 was provided in the convex portion 7b, and the inner surface of the concave portion 7a was further finished by adjusting the size of the C surface and / or R surface of the corner portion.

そして、SiCとAlとSiからなる台座7の板状基体2との接合面側にもメッキ、はんだメッキ、スパッタリング、メタライズなどの方法により、金属層を形成し、台座7と上記窒化アルミニウム製板状基体2を金属接合層6で接合する。この際、金属接合層6としては、Alを主成分とし、上記主成分に対し添加成分としてNi、Au、Agから選ばれる1種以上を0.01〜10質量%含有する金属接合層6であることが望ましい。   A metal layer is also formed on the joint surface side of the base 7 made of SiC, Al, and Si by a method such as plating, solder plating, sputtering, metallization, and the base 7 and the aluminum nitride plate. The substrate 2 is bonded with the metal bonding layer 6. At this time, the metal bonding layer 6 is a metal bonding layer 6 containing Al as a main component and containing 0.01 to 10% by mass of one or more selected from Ni, Au, and Ag as an additive component with respect to the main component. It is desirable to be.

そして、所望の荷重、温度を加えながら非酸化性雰囲気中にて接合するか、あるいはホットプレス法で加圧しながら、所望の温度、所望の圧力下にて接合し、板状基体2及び台座7の接合体を得ることができる。   Then, bonding is performed in a non-oxidizing atmosphere while applying a desired load and temperature, or bonding is performed under a desired temperature and a desired pressure while applying pressure by a hot press method. The joined body can be obtained.

冷却部材8及び冷却配管9はステンレス鋼で作製され、台座7に設けた凹部7aの底面に配設されている。上記冷却部材8の内部には、冷却媒体を流す流路8aが備えられており、上記流路8aと一対の冷却配管9が溶接等の方法などにより取り付けられている。そして、上記板状基体2及び台座7の接合体を、冷却部材8上に載置することにより、静電チャックを得ることができる。   The cooling member 8 and the cooling pipe 9 are made of stainless steel, and are disposed on the bottom surface of the recess 7 a provided in the base 7. The cooling member 8 includes a flow path 8a through which a cooling medium flows, and the flow path 8a and a pair of cooling pipes 9 are attached by a method such as welding. An electrostatic chuck can be obtained by placing the joined body of the plate-like substrate 2 and the base 7 on the cooling member 8.

窒化アルミニウム粉末に重量換算で10質量%の第3a族酸化物を添加し、IPAとウレタンボールを用いてボールミルにより48時間混合し、得られた窒化アルミニウムのスラリーを200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた後、防爆乾燥機にて120℃で24時間乾燥して、均質な窒化アルミニウム質混合粉末を得る。この窒化アルミニウム質混合粉末にアクリル系のバインダーと溶媒を混合して窒化アルミニウム質スリップを作製し、ドクターブレード法にてテープ成形を行った。そして、作製したテープを複数枚積層し、その上に電極としてWをスクリーン印刷法で形成し、無地のテープに所望の密着液を塗り、テープを複数枚重ねて板状体を成形した。   10% by mass of Group 3a oxide in terms of weight is added to the aluminum nitride powder, mixed for 48 hours with a ball mill using IPA and urethane balls, and the resulting aluminum nitride slurry is passed through 200 mesh, After removing the ball mill wall debris, it is dried at 120 ° C. for 24 hours in an explosion-proof dryer to obtain a homogeneous aluminum nitride mixed powder. This aluminum nitride mixed powder was mixed with an acrylic binder and a solvent to produce an aluminum nitride slip, and tape-molded by the doctor blade method. Then, a plurality of the produced tapes were laminated, W was formed thereon as an electrode by a screen printing method, a desired adhesion liquid was applied to the plain tape, and a plurality of tapes were laminated to form a plate-like body.

上記板状体を非酸化性ガス気流中にて500℃で5時間程度の脱脂を行い、更に非酸化性雰囲気にて1900℃で5時間程度の焼成を行い、誘電体からなる窒化アルミニウム質焼結体を得た。   The above plate-like body is degreased at 500 ° C. for about 5 hours in a non-oxidizing gas stream, and further baked at 1900 ° C. for about 5 hours in a non-oxidizing atmosphere, so that the aluminum nitride-based baking made of a dielectric is performed. A ligature was obtained.

こうして得られた窒化アルミニウム質焼結体に所望の形状、載置面と電極の絶縁膜が所望の厚みが得られるように機械加工を施し、板状基体とした。更に板状基体に設けられた貫通孔と連通する所望の溝をウェハの載置面にサンドブラストで形成した。   The aluminum nitride sintered body thus obtained was machined so as to obtain a desired shape and a desired thickness of the mounting surface and the electrode insulating film, thereby obtaining a plate-like substrate. Further, desired grooves communicating with the through holes provided in the plate-like substrate were formed on the wafer mounting surface by sandblasting.

そして、メッキ法により板状基体の載置面と反対側の主面に金属層を形成した。   And the metal layer was formed in the main surface on the opposite side to the mounting surface of a plate-shaped base | substrate by the plating method.

また、台座はSiC粒子に溶融したAlとSiの合金を含浸させ、含浸中はSiC粒子とAlとSiの合金からなる溶融金属に熱だけを加え、圧力はかけない。含浸が終了した時点で、10〜100rpmの回転数の攪拌ブレードにより溶融金属が含浸されたSiC粒子を加熱しながら1〜10時間混合する。そして、鋳込み成型により底面中央部に凸部を備え、上記凸部を囲むようにリング状の凹部を設け、上記凹部の深さが台座の厚みに対して0.5倍であり、かつ、上記凹部の直径が板状基体の載置面の直径より小さくなるよう所望の形状に成型し、その後、外周部にチャンバー固定用の孔及び凸部に貫通孔を設け、更に上記凹部のコーナ部のR面の大きさが1.0mmとなるよう加工し、複数の台座を作製した。また、上記と同様の方法で、鋳込み成型により底面中央部に円形状の凹部を設け、それ以外はリング状の凹部を設けた台座と同様に作製した。   The pedestal impregnates SiC particles with molten Al and Si alloy. During impregnation, only heat is applied to the molten metal composed of SiC particles and Al and Si alloy, and no pressure is applied. When the impregnation is completed, the SiC particles impregnated with the molten metal are mixed for 1 to 10 hours while being heated with a stirring blade having a rotational speed of 10 to 100 rpm. And by providing a convex part at the bottom center part by casting molding, providing a ring-shaped concave part so as to surround the convex part, the depth of the concave part is 0.5 times the thickness of the pedestal, and Molded into a desired shape so that the diameter of the concave portion is smaller than the diameter of the mounting surface of the plate-like substrate, and then provided with a hole for fixing the chamber and a through hole in the convex portion on the outer peripheral portion. A plurality of pedestals were fabricated by processing the R surface to have a size of 1.0 mm. Further, in the same manner as described above, a circular concave portion was provided at the center of the bottom surface by casting, and the other portions were produced in the same manner as the pedestal provided with a ring-shaped concave portion.

また、SUS製とAl製の台座を別途作製した。   Also, SUS and Al pedestals were prepared separately.

そして、作製した台座に板状基体と同様に金属層を形成し、Alロウを介して上記板状基体とそれぞれ接合した。   And the metal layer was formed in the produced base similarly to a plate-shaped base | substrate, and it joined to the said plate-shaped base | substrate through Al brazing, respectively.

板状基体と台座の接合は1×10−6Pa程度の真空炉中で行い、550〜600℃で98KPaの荷重をかけて接合し、板状基体と台座の接合体を得ることができた。 The plate-like substrate and the pedestal were joined in a vacuum furnace of about 1 × 10 −6 Pa and joined at a load of 98 KPa at 550 to 600 ° C. to obtain a joined body of the plate-like substrate and the pedestal. .

また、冷却部材及び冷却配管はステンレス鋼で作製され、台座に設けた凹部の底面に配設した。上記冷却部材の内部には、冷却媒体を流す流路が備えられており、上記流路と一対の冷却配管が溶接により取り付けられている。そして、上記板状基体及び台座の接合体を、冷却部材上に載置することにより、静電チャックを形成した。   Further, the cooling member and the cooling pipe were made of stainless steel and arranged on the bottom surface of the recess provided on the pedestal. The cooling member is provided with a flow path for flowing a cooling medium, and the flow path and a pair of cooling pipes are attached by welding. And the electrostatic chuck | zipper was formed by mounting the joined body of the said plate-shaped base | substrate and a base on a cooling member.

上記のように作製した静電チャックを真空処理チャンバー内に設置し、室温25℃において静電吸着用の電極に500Vの直流電圧を印加してウェハWを載置面に吸着させた後、板状基体と台座を連通する貫通孔からArガスをウェハWと溝で形成された空間に充填した。また、冷却部材中の流路に20℃程度の冷却媒体を10リッタ/分で循環させ、プラズマ発生前のウェハ温度を測定点13箇所の測温ウェハWを用いて測定し、13箇所の平均値が20℃となるように冷却媒体の温度を微調整した。そして、酸素とArの混合ガスを流しながら、台座と対向電極との間に200Wの高周波電力を印加して、プラズマ処理を開始した。   The electrostatic chuck produced as described above is placed in a vacuum processing chamber, and a DC voltage of 500 V is applied to the electrode for electrostatic adsorption at room temperature of 25 ° C. to adsorb the wafer W onto the mounting surface, and then the plate A space formed by the wafer W and the groove was filled with Ar gas from a through hole communicating with the substrate and the base. Further, a cooling medium of about 20 ° C. is circulated through the flow path in the cooling member at 10 liters / minute, and the wafer temperature before plasma generation is measured using the temperature measuring wafers W at 13 measurement points. The temperature of the cooling medium was finely adjusted so that the value was 20 ° C. Then, while flowing a mixed gas of oxygen and Ar, high-frequency power of 200 W was applied between the pedestal and the counter electrode to start the plasma treatment.

台座底面に設けた凹部の形状を変更した場合の、ウェハWの温度が定常状態になるまでに経過した時間及び面内温度差についてそれぞれ測定を行った。定常状態とは、プラズマ発生直後からウェハW中央部の温度を測温ウェハWを用いて連続的に測定し、ウェハWの温度が1秒間に1℃以上変化しない状態を言う。ウェハWの温度が定常状態になるまでの時間が短い試料ほど、冷却能力が優れていると言える。また、定常状態でのウェハWの面内温度差は、測定点13箇所の測温ウェハを用いて最大温度と最小温度の差とした。面内温度差が小さい試料ほど、ウェハWの均熱性が優れていると言える。   When the shape of the recess provided on the bottom surface of the pedestal was changed, the time elapsed until the temperature of the wafer W reached a steady state and the in-plane temperature difference were measured. The steady state refers to a state in which the temperature of the central portion of the wafer W is continuously measured using the temperature measuring wafer W immediately after the plasma is generated, and the temperature of the wafer W does not change by 1 ° C. or more per second. It can be said that the sample having a shorter time until the temperature of the wafer W reaches a steady state is superior in cooling capacity. Further, the in-plane temperature difference of the wafer W in the steady state was determined as the difference between the maximum temperature and the minimum temperature using the temperature measurement wafers at 13 measurement points. It can be said that the smaller the in-plane temperature difference is, the better the temperature uniformity of the wafer W is.

なお、本発明の他の形態として、板状基体の内部に電極を設けていない試料を準備し、それ以外は他の試料と同様に作製し、評価を行った。   As another embodiment of the present invention, a sample in which no electrode was provided inside the plate-like substrate was prepared, and other samples were prepared and evaluated in the same manner as other samples.

表1にその結果を示す。

Figure 2006156691
Table 1 shows the results.
Figure 2006156691

試料No.2は、Al−Si−SiC複合材料からなる台座底面に設けた凹部の形状が円形状であり、ウェハWの温度が定常状態になるまでの時間が25秒と長く、面内温度差も15.4℃と劣っていた。   Sample No. 2, the shape of the concave portion provided on the bottom surface of the base made of the Al—Si—SiC composite material is circular, the time until the temperature of the wafer W reaches a steady state is as long as 25 seconds, and the in-plane temperature difference is 15 It was inferior at 4 ° C.

試料No.4は、SUSからなる台座底面に設けた凹部の形状が円形状であることから、ウェハWの温度が定常状態になるまでの時間が35秒と長く冷却能力が劣っており、また、面内温度差も20.7℃と劣っていた。   Sample No. No. 4, since the concave portion provided on the pedestal bottom made of SUS has a circular shape, the time until the temperature of the wafer W reaches a steady state is as long as 35 seconds, and the cooling capacity is inferior. The temperature difference was also inferior at 20.7 ° C.

それに対し、試料No.1、No.3、No.5、No.6、No.7は台座底面に設けた凹部の形状がリング状であることから、ウェハWの温度が定常状態になるまでの時間が19秒以下と短く冷却能力が優れており、また、面内温度差も9.8℃以下と優れていた。   In contrast, sample no. 1, no. 3, no. 5, no. 6, no. No. 7 has a ring-shaped recess on the bottom surface of the pedestal, so the time until the temperature of the wafer W reaches a steady state is as short as 19 seconds or less, and the cooling capability is excellent. It was excellent at 9.8 ° C. or lower.

また、試料No.3、No.5、No.6、No.7は板状基体の内部に電極を備えていることから、ウェハWの温度が定常状態になるまでの時間が16秒以下と短く冷却能力がより優れており、また、面内温度差も9.1℃とより優れていた。   Sample No. 3, no. 5, no. 6, no. 7 has an electrode inside the plate-like substrate, so that the time until the temperature of the wafer W reaches a steady state is as short as 16 seconds or less, and the cooling capacity is more excellent, and the in-plane temperature difference is 9 .1 ° C and better.

更に、試料No.3及びNo.7は台座が金属とセラミックからなる複合材料であることから、ウェハWの温度が定常状態になるまでの時間が12秒以下と短く冷却能力がより優れており、また、面内温度差も4.7℃以下とより優れていた。   Furthermore, sample no. 3 and no. 7 is a composite material made of a metal and a ceramic pedestal, so the time until the temperature of the wafer W reaches a steady state is as short as 12 seconds or less, and the cooling capacity is more excellent, and the in-plane temperature difference is 4 .7 ° C. or lower and better.

また、試料No.3は、台座がAl−Si−SiCを主成分としていることから、ウェハWの温度が定常状態になるまでの時間が9秒以下と短く冷却能力が最も優れており、また、面内温度差も1.5℃以下と最も優れていた。   Sample No. No. 3, since the pedestal is mainly composed of Al-Si-SiC, the time until the temperature of the wafer W reaches a steady state is as short as 9 seconds or less, and the cooling ability is most excellent. Was the most excellent at 1.5 ° C. or less.

実施例1と同様に所望の溝と連通する貫通孔を設けた板状基体を作製した。また、台座は鋳込み成型により底面中央部に凸部を備え、上記凸部を囲むようにリング状の凹部を設け、該凹部の直径が板状基体の載置面の直径より小さく、台座の厚みtに対する凹部の深さtcの比(tc/t)を変更して所望の形状に成型した複数の台座を作製し、その後、外周部にチャンバー固定用の孔及び凸部に貫通孔を設け、上記凹部のコーナ部のR面の大きさが1.0mmとなるよう加工した。   Similar to Example 1, a plate-like substrate provided with a through hole communicating with a desired groove was produced. Further, the pedestal has a convex portion at the center of the bottom surface by casting, and a ring-shaped concave portion is provided so as to surround the convex portion, and the diameter of the concave portion is smaller than the diameter of the mounting surface of the plate-like substrate, and the thickness of the pedestal Producing a plurality of pedestals molded in a desired shape by changing the ratio of the depth tc of the recess to t (tc / t), and then providing a hole for fixing the chamber and a through hole in the protrusion on the outer periphery, It processed so that the magnitude | size of the R surface of the corner part of the said recessed part might be set to 1.0 mm.

そして、実施例1と同様の方法で板状基体と台座をそれぞれ接合した。   Then, the plate-like substrate and the pedestal were joined by the same method as in Example 1.

上記のように作製した基板保持部材を恒温室に設置し、上記接合体の温度が−40℃となるまで冷気を30分程度恒温室に循環させ、上記接合体の温度が−40℃となった状態で10分間保持した。次に、接合体の温度が100℃となるまで熱気を1時間程度恒温室に循環させ、上記接合体の温度が100℃となった状態で10分間保持した。接合体の温度は、板状基体の表面に熱電対を取り付けて測定した。上記−40℃から100℃の冷熱サイクルを5000回実施した。   The substrate holding member produced as described above is placed in a temperature-controlled room, and cold air is circulated through the temperature-controlled room for about 30 minutes until the temperature of the bonded body reaches −40 ° C., and the temperature of the bonded body reaches −40 ° C. Held for 10 minutes. Next, hot air was circulated through the temperature-controlled room for about 1 hour until the temperature of the bonded body reached 100 ° C., and the temperature of the bonded body was maintained at 100 ° C. for 10 minutes. The temperature of the joined body was measured by attaching a thermocouple to the surface of the plate-like substrate. The -40 ° C to 100 ° C cooling cycle was performed 5000 times.

そして、上記基板保持部材を実施例1と同様に真空チャンバー内に設置し、プラズマ処理を開始した。   And the said board | substrate holding member was installed in the vacuum chamber similarly to Example 1, and the plasma processing was started.

台座の厚みtに対する凹部の深さtcの比(tc/t)を変更した場合の、ウェハWの温度が定常状態になるまでの時間についてそれぞれ測定を行った。台座の厚みt及び凹部の深さtcはマイクロメーター及びノギスによりその最大厚みと最も深い部分の深さを3箇所測定しその平均値とした。   The time until the temperature of the wafer W reached a steady state when the ratio (tc / t) of the depth tc of the recess to the thickness t of the base was changed was measured. The thickness t of the pedestal and the depth tc of the recesses were measured by measuring the maximum thickness and the depth of the deepest portion with a micrometer and a caliper, and taking them as average values.

ウェハWの温度が定常状態になるまでの時間は、実施例1と同様の方法で測定を行った。   The time until the temperature of the wafer W reaches a steady state was measured by the same method as in Example 1.

表2にその結果を示す。

Figure 2006156691
Table 2 shows the results.
Figure 2006156691

試料No.21は、台座の厚みtに対する凹部の深さtcの比が0.2であることから、台座の耐久性については優れていたが、台座の熱容量が大きいため、ウェハWの温度が定常状態になるまでの時間が18秒と長く冷却能力がやや劣っていた。   Sample No. No. 21 is excellent in durability of the pedestal because the ratio of the depth tc of the recess to the thickness t of the pedestal is 0.2. However, since the heat capacity of the pedestal is large, the temperature of the wafer W is in a steady state. The cooling time was slightly inferior, with a long time of 18 seconds.

試料No.27は、台座の厚みtに対する凹部の深さtcの比が0.8であることから、ウェハWの温度が定常状態になるまでの時間が7秒と短く冷却能力が優れていたが、凹部の深さtcが深いため凹部部分の台座の厚みが薄くなり、冷熱サイクルをかけると台座にクラックが発生したため、台座の耐久性は劣っていた。   Sample No. 27, since the ratio of the depth tc of the recess to the thickness t of the pedestal is 0.8, the time until the temperature of the wafer W reaches a steady state is as short as 7 seconds. Since the depth tc of the pedestal was deep, the thickness of the pedestal in the recessed portion was reduced, and cracking occurred in the pedestal when subjected to a cooling cycle, so the durability of the pedestal was inferior.

これらに対し、試料No.22〜No.26は、台座の厚みtに対する凹部の深さtcの比が0.3〜0.7であることから、台座にクラックの発生もなく、台座の耐久性に優れており、また、ウェハWの温度が定常状態になるまでの時間が15秒以下と短く冷却能力が優れていた。   In contrast, sample no. 22-No. 26, since the ratio of the depth tc of the recess to the thickness t of the pedestal is 0.3 to 0.7, the pedestal is free from cracks and has excellent pedestal durability. The time until the temperature reached a steady state was as short as 15 seconds or less, and the cooling capacity was excellent.

また、台座の厚みtに対する凹部の深さtcの比が0.45〜0.7である試料No.24〜No.26は、台座の耐久性に優れており、また、ウェハWの温度が定常状態になるまでの時間が9秒以下と短く冷却能力がより優れていた。   In addition, the ratio of the depth tc of the recess to the thickness t of the pedestal is 0.45 to 0.7. 24-No. No. 26 was excellent in the durability of the pedestal, and the time until the temperature of the wafer W reached a steady state was as short as 9 seconds or less, and the cooling capacity was more excellent.

実施例1と同様に溝と連通する貫通孔を設けた板状基体を作製した。また、台座は鋳込み成型により底面中央部に凸部を備え、上記凸部を囲むようにリング状の凹部を設け、該凹部の深さtcが台座の厚み20mmに対して0.5倍であり、かつ、上記凹部の直径が板状基体の載置面の直径より小さくなるよう所望の形状に成型し、その後、外周部にチャンバー固定用の孔及び凸部に貫通孔を設け、上記凹部のコーナ部のR面の大きさを変更して複数の台座を作製した。なお、凹部底面のコーナ部の大きさはRゲージを用いて測定した。   Similar to Example 1, a plate-like substrate having through holes communicating with the grooves was produced. Further, the pedestal is provided with a convex portion at the center of the bottom by casting, and a ring-shaped concave portion is provided so as to surround the convex portion, and the depth tc of the concave portion is 0.5 times the thickness of the pedestal 20 mm. In addition, the concave portion is molded into a desired shape so that the diameter of the concave portion is smaller than the diameter of the mounting surface of the plate-like substrate, and then a hole for fixing the chamber and a through hole are provided in the convex portion on the outer peripheral portion. A plurality of pedestals were produced by changing the size of the R surface of the corner portion. The size of the corner portion at the bottom of the recess was measured using an R gauge.

そして、実施例1と同様の方法で板状基体と台座をそれぞれ接合した。   Then, the plate-like substrate and the pedestal were joined by the same method as in Example 1.

そして、実施例2と同様に冷熱サイクルを5000回実施して、実施例2と同様に定常状態になるまでの時間を測定した。   Then, the cooling cycle was performed 5000 times in the same manner as in Example 2, and the time until the steady state was reached was measured as in Example 2.

表3にその結果を示す。

Figure 2006156691
Table 3 shows the results.
Figure 2006156691

試料No.31は、凹部のコーナ部のR面の大きさが0.2mmであることから、ウェハWの温度が定常状態になるまでの時間が6秒と短く冷却能力が優れていたが、冷熱サイクルをかけると台座にクラックが発生し、台座の耐久性がやや劣っていた。   Sample No. In No. 31, the R surface size of the corner portion of the recess was 0.2 mm, so the time until the temperature of the wafer W reached a steady state was as short as 6 seconds, and the cooling capacity was excellent. When applied, cracks occurred in the pedestal, and the durability of the pedestal was slightly inferior.

試料No.39は、凹部のコーナ部の大きさがC/R6.0であることから、台座の耐久性については優れていたが、凹部の側面と冷却部材とのクリアランスが大きくなるので、ウェハWの温度が定常状態になるまでの時間が18秒と長く冷却能力が劣っていた。   Sample No. No. 39 was excellent in the durability of the pedestal because the size of the corner of the recess was C / R 6.0, but the clearance between the side surface of the recess and the cooling member was increased, so the temperature of the wafer W The cooling time was inferior for a long time of 18 seconds until it became a steady state.

それに対し、試料No.32〜No.38は、凹部のコーナ部のR面の大きさが0.5〜5.0mmであることから、凹部の側面と冷却部材とのクリアランスが冷却効果のある範囲に保たれるので、ウェハWの温度が定常状態になるまでの時間が15秒以下と短く冷却能力が優れ、台座にクラックも無く台座の耐久性に優れていた。   In contrast, sample no. 32-No. 38, since the size of the R surface of the corner portion of the concave portion is 0.5 to 5.0 mm, the clearance between the side surface of the concave portion and the cooling member is maintained in a range having a cooling effect. The time required for the temperature to reach a steady state was as short as 15 seconds or less, and the cooling capacity was excellent. The pedestal had no cracks and the pedestal had excellent durability.

また、試料No.32〜No.35は、凹部のコーナ部のR面の大きさが0.5〜2.0mmであることから、凹部の側面と冷却部材との適度のクリアランスが冷却効果のある範囲に保たれるので、ウェハWの温度が定常状態になるまでの時間が10秒と短く冷却能力がより優れており、また、台座にクラックが発生し難くなるので、台座の耐久性に優れていた。   Sample No. 32-No. 35, since the size of the R surface of the corner portion of the recess is 0.5 to 2.0 mm, an appropriate clearance between the side surface of the recess and the cooling member is maintained in a range having a cooling effect. The time until the temperature of W reaches a steady state is as short as 10 seconds, and the cooling capacity is more excellent. Further, cracks are less likely to occur in the pedestal, so the pedestal has excellent durability.

本発明は、半導体製造装置の基板保持装置に関する。   The present invention relates to a substrate holding device of a semiconductor manufacturing apparatus.

(a)は本発明の斜視図、(b)は(a)のX−X線断面図を示す。(A) is a perspective view of this invention, (b) shows the XX sectional drawing of (a). (a)は本発明の斜視図、(b)は(a)のX−X線断面図を示す。(A) is a perspective view of this invention, (b) shows the XX sectional drawing of (a). 従来の断面図である。It is conventional sectional drawing. 従来の断面図である。It is conventional sectional drawing.

符号の説明Explanation of symbols

1:基板保持部材
2:板状基体
2a:載置面
2b:溝
3:電極
4:給電端子
5:貫通孔
6:金属接合材
7:Al−Si−SiC台座
7a:凹部
7b:凸部
8:冷却部材
8a:流路
9:冷却配管
20:基板保持部材
21:板状基体
21a:載置面
22:電極
23:リード線
24:貫通孔
25:金属接合材
26:Alプレート
26a:流路
30:基板保持部材
31:板状基体
31a:載置面
32:電極
33:金属接合材
34:Al−Si−SiC台座
1: Substrate holding member 2: Plate-like substrate 2a: Placement surface 2b: Groove 3: Electrode 4: Feeding terminal 5: Through hole 6: Metal bonding material 7: Al-Si-SiC pedestal 7a: Concave portion 7b: Convex portion 8 : Cooling member 8a: Channel 9: Cooling pipe 20: Substrate holding member 21: Plate substrate 21a: Mounting surface 22: Electrode 23: Lead wire 24: Through hole 25: Metal bonding material 26: Al plate 26a: Channel 30: Substrate holding member 31: Plate base 31a: Placement surface 32: Electrode 33: Metal bonding material 34: Al—Si—SiC base

Claims (11)

板状基体の一方の主面がウェハを載せる載置面、他方の主面が板状の台座の一方の主面を接合させた基板保持部材であって、上記台座は、上記板状基体より熱伝導率の大きなものが用いられ、かつ、他方の主面の中央部にリング状の凹部が形成されていることを特徴とする基板保持部材。 One main surface of the plate-like substrate is a mounting surface on which the wafer is placed, and the other main surface is a substrate holding member joined to one main surface of the plate-like pedestal, and the pedestal is more than the plate-like substrate. A substrate holding member characterized in that a material having a high thermal conductivity is used, and a ring-shaped recess is formed at the center of the other main surface. 上記板状基体の内部に上記ウェハ吸着用の電極を備えたことを特徴とする請求項1に記載の基板保持部材。 The substrate holding member according to claim 1, wherein the wafer adsorption electrode is provided inside the plate-like substrate. 上記凹部の直径が、上記載置面の直径より小さいことを特徴とする請求項1または2に記載の基板保持部材。 The substrate holding member according to claim 1, wherein a diameter of the concave portion is smaller than a diameter of the placement surface. 上記凹部の深さtcが、上記台座の厚みtの0.3〜0.7倍であることを特徴とする請求項1〜3の何れかに記載の基板保持部材。 The depth tc of the said recessed part is 0.3 to 0.7 times the thickness t of the said base, The board | substrate holding member in any one of Claims 1-3 characterized by the above-mentioned. 上記凹部の底面に冷却部材を配設することを特徴とする請求項1〜4の何れかに記載の基板保持部材。 The substrate holding member according to claim 1, wherein a cooling member is disposed on a bottom surface of the concave portion. 上記凹部のコーナ部のC面及び、又はR面の大きさが0.5〜5.0mmであることを特徴とする請求項1〜5の何れかに記載の基板保持部材。 The substrate holding member according to any one of claims 1 to 5, wherein a size of a C surface and / or an R surface of the corner portion of the concave portion is 0.5 to 5.0 mm. 上記凹部により形成される凸部に上記板状基体と上記台座とを貫通する貫通孔を備え、該貫通孔と連通する溝を上記載置面に形成したことを特徴とする請求項1〜6の何れかに記載の基板保持部材。 7. A convex portion formed by the concave portion is provided with a through hole penetrating the plate-like substrate and the pedestal, and a groove communicating with the through hole is formed on the mounting surface. The substrate holding member according to any one of the above. 上記台座の熱伝導率が160W/(m・K)以上であることを特徴とする請求項1〜7の何れかに記載の基板保持部材。 The substrate holding member according to claim 1, wherein the pedestal has a thermal conductivity of 160 W / (m · K) or more. 上記板状基体は、窒化物及び炭化物の何れか一つを含むセラミックからなることを特徴とする請求項1〜8の何れかに記載の基板保持部材。 9. The substrate holding member according to claim 1, wherein the plate-like substrate is made of a ceramic containing any one of nitride and carbide. 上記台座が金属とセラミックとからなる複合材料であることを特徴とする請求項1〜9の何れかに記載の基板保持部材。 The substrate holding member according to claim 1, wherein the pedestal is a composite material made of metal and ceramic. 上記台座がAlとSi及びSiCを主成分とすることを特徴とする請求項10に記載の基板保持部材。 The substrate holding member according to claim 10, wherein the pedestal comprises Al, Si, and SiC as main components.
JP2004344822A 2004-11-29 2004-11-29 Substrate holding member Active JP4514587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344822A JP4514587B2 (en) 2004-11-29 2004-11-29 Substrate holding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344822A JP4514587B2 (en) 2004-11-29 2004-11-29 Substrate holding member

Publications (2)

Publication Number Publication Date
JP2006156691A true JP2006156691A (en) 2006-06-15
JP4514587B2 JP4514587B2 (en) 2010-07-28

Family

ID=36634592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344822A Active JP4514587B2 (en) 2004-11-29 2004-11-29 Substrate holding member

Country Status (1)

Country Link
JP (1) JP4514587B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159932A (en) * 2006-12-25 2008-07-10 Ngk Insulators Ltd Substrate retainer and manufacturing method thereof
WO2009149275A2 (en) * 2008-06-05 2009-12-10 Varian Semiconductor Equipment Associates Improved multilayer electrostatic chuck wafer platen
JP2009302346A (en) * 2008-06-13 2009-12-24 Shinko Electric Ind Co Ltd Substrate temperature-control securing device
JP2010056353A (en) * 2008-08-29 2010-03-11 Renesas Technology Corp Manufacturing method of semiconductor device
KR20180001452A (en) 2016-06-27 2018-01-04 신꼬오덴기 고교 가부시키가이샤 Base plate structure, method of manufacturing thereof, and substrate fixing device
WO2023063016A1 (en) * 2021-10-12 2023-04-20 日本碍子株式会社 Wafer placement stage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824117B2 (en) * 1992-10-27 1996-03-06 東京エレクトロン株式会社 Plasma processing method
JPH08316299A (en) * 1995-03-14 1996-11-29 Souzou Kagaku:Kk Electrostatic chuck
JP2614422B2 (en) * 1993-12-20 1997-05-28 インターナショナル・ビジネス・マシーンズ・コーポレイション Electrostatic chuck device and manufacturing method thereof
JP2001102436A (en) * 1999-05-07 2001-04-13 Applied Materials Inc Electrostatic chuck and its manufacturing method
JP3306677B2 (en) * 1993-05-12 2002-07-24 東京エレクトロン株式会社 Self-bias measurement method and device, and electrostatic suction device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824117B2 (en) * 1992-10-27 1996-03-06 東京エレクトロン株式会社 Plasma processing method
JP3306677B2 (en) * 1993-05-12 2002-07-24 東京エレクトロン株式会社 Self-bias measurement method and device, and electrostatic suction device
JP2614422B2 (en) * 1993-12-20 1997-05-28 インターナショナル・ビジネス・マシーンズ・コーポレイション Electrostatic chuck device and manufacturing method thereof
JPH08316299A (en) * 1995-03-14 1996-11-29 Souzou Kagaku:Kk Electrostatic chuck
JP2001102436A (en) * 1999-05-07 2001-04-13 Applied Materials Inc Electrostatic chuck and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159932A (en) * 2006-12-25 2008-07-10 Ngk Insulators Ltd Substrate retainer and manufacturing method thereof
JP4590393B2 (en) * 2006-12-25 2010-12-01 日本碍子株式会社 Substrate holder and method for manufacturing the same
WO2009149275A2 (en) * 2008-06-05 2009-12-10 Varian Semiconductor Equipment Associates Improved multilayer electrostatic chuck wafer platen
WO2009149275A3 (en) * 2008-06-05 2010-03-25 Varian Semiconductor Equipment Associates Improved multilayer electrostatic chuck wafer platen
CN102105976A (en) * 2008-06-05 2011-06-22 瓦里安半导体设备公司 Improved multilayer electrostatic chuck wafer platen
JP2009302346A (en) * 2008-06-13 2009-12-24 Shinko Electric Ind Co Ltd Substrate temperature-control securing device
JP2010056353A (en) * 2008-08-29 2010-03-11 Renesas Technology Corp Manufacturing method of semiconductor device
KR20180001452A (en) 2016-06-27 2018-01-04 신꼬오덴기 고교 가부시키가이샤 Base plate structure, method of manufacturing thereof, and substrate fixing device
US10847401B2 (en) 2016-06-27 2020-11-24 Shinko Electric Industries Co., Ltd. Wafer holding apparatus and baseplate structure
WO2023063016A1 (en) * 2021-10-12 2023-04-20 日本碍子株式会社 Wafer placement stage

Also Published As

Publication number Publication date
JP4514587B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4497103B2 (en) Wafer holder, heater unit on which it is mounted, and wafer prober
US7068489B2 (en) Electrostatic chuck for holding wafer
CN100472766C (en) Aluminum-silicon carbide composite
WO2002047129A1 (en) Ceramic substrate for semiconductor manufacturing and inspecting devices, and method of manufacturing the ceramic substrate
JP2002237375A (en) Ceramic plate for semiconductor manufacturing/testing device, and manufacturing method of the same
US20050260938A1 (en) Table of wafer polishing apparatus, method for polishing semiconductor wafer, and method for manufacturing semiconductor wafer
US7381673B2 (en) Composite material, wafer holding member and method for manufacturing the same
JP4514587B2 (en) Substrate holding member
JP5381878B2 (en) Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same
JP2000243821A (en) Wafer support member
JP2007201068A (en) Electrostatic chuck
JP4103385B2 (en) Vacuum chuck
JP2005085657A (en) Ceramic heater
JP4525571B2 (en) Wafer holder, heater unit on which it is mounted, and wafer prober
JP2007115736A (en) Wafer heating hot plate
US20050260930A1 (en) Table of wafer of polishing apparatus, method for polishing semiconductor wafer, and method for manufacturing semiconductor wafer
JP2002083848A (en) Semiconductor manufacturing and inspecting apparatus
JP2013004810A (en) Heater for heating wafer
JP4744016B2 (en) Manufacturing method of ceramic heater
JP2002025912A (en) Susceptor for semiconductor manufacturing device and semiconductor manufacturing device using the same
JP2005057231A (en) Wafer holding member and its manufacturing method
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP4788575B2 (en) Holder for semiconductor manufacturing equipment
JP2002184851A (en) Electrostatic chuck stage and its manufacturing method
JP2010283364A (en) Holder for semiconductor manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Ref document number: 4514587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4