JPH08316172A - Sic semiconductor device - Google Patents
Sic semiconductor deviceInfo
- Publication number
- JPH08316172A JPH08316172A JP7115553A JP11555395A JPH08316172A JP H08316172 A JPH08316172 A JP H08316172A JP 7115553 A JP7115553 A JP 7115553A JP 11555395 A JP11555395 A JP 11555395A JP H08316172 A JPH08316172 A JP H08316172A
- Authority
- JP
- Japan
- Prior art keywords
- work function
- low
- alloy
- electrode
- sic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 36
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 36
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 239000000758 substrate Substances 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 7
- 238000004544 sputter deposition Methods 0.000 abstract description 5
- 229910018134 Al-Mg Inorganic materials 0.000 abstract description 4
- 229910018467 Al—Mg Inorganic materials 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910018131 Al-Mn Inorganic materials 0.000 description 2
- 229910018461 Al—Mn Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/47—Schottky barrier electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭化珪素(以下SiC
と略記する)を用いた半導体装置に関する。BACKGROUND OF THE INVENTION The present invention relates to silicon carbide (hereinafter referred to as SiC
Abbreviated as “)”.
【0002】[0002]
【従来の技術】ワイドギャップ半導体であるSiCは、
シリコンに比べてエネルギーギャップが大きいため、約
600℃までの高温動作が可能であり、また、絶縁破壊
強度が大きいため、高耐圧の半導体装置ができるだけで
なく、半導体装置を構成する各層の不純物濃度を高く、
厚さを薄くでき、オン状態での損失が低減できる等、特
に、パワー用の半導体装置の特性改善に有望な材料であ
る。また、SiCは、シリコンと同じように熱酸化によ
って安定な酸化シリコン膜が得られ、シリコン半導体の
主要なプロセス技術が転用できるという利点もある。2. Description of the Related Art SiC, which is a wide-gap semiconductor, is
Since the energy gap is larger than that of silicon, high-temperature operation up to about 600 ° C is possible, and the high dielectric breakdown strength allows not only a high breakdown voltage semiconductor device but also the impurity concentration of each layer constituting the semiconductor device. High
It is a promising material for improving the characteristics of a power semiconductor device, in particular, because it can be made thin and the loss in the ON state can be reduced. Further, SiC has an advantage that a stable silicon oxide film can be obtained by thermal oxidation like silicon, and the main process technology of silicon semiconductor can be diverted.
【0003】[0003]
【発明が解決しようとする課題】SiCを用いた例えば
ショットキーダイオードやMOSFETのような半導体
装置を製造する上で、オーミックな電極を作成すること
が必要になる。従来、幾つかの方法が試みられている
が、いずれも実用上解決すべき問題があった。たとえ
ば、シリコン半導体で最も一般的に用いられているアル
ミニウム(以下Alと記す)の電極をn型SiC表面上
に設けると、オーミック電極にならず、ショットキー電
極になつてしまう。従来n型SiC表面上に設ける電極
金属としてはニッケル(以下Niと記す)が用いられて
いるが、1000℃以上の熱処理を必要とし、容易にオ
ーミック電極が得られなかった。しかもNiの場合、1
000℃以上の熱処理により、Niのシリサイドが形成
され、その深さが1μm以上になるので、その下のn型
高濃度ドープ層の深さが十分深くないと接触抵抗が大き
くなってしまうという問題もある。In manufacturing a semiconductor device such as a Schottky diode or MOSFET using SiC, it is necessary to form an ohmic electrode. Conventionally, some methods have been tried, but all of them have problems to be solved in practical use. For example, if an aluminum (hereinafter referred to as Al) electrode that is most commonly used in silicon semiconductors is provided on the surface of n-type SiC, the electrode becomes a Schottky electrode instead of an ohmic electrode. Conventionally, nickel (hereinafter referred to as Ni) has been used as an electrode metal provided on the surface of n-type SiC, but it requires heat treatment at 1000 ° C. or higher, and an ohmic electrode cannot be easily obtained. Moreover, in the case of Ni, 1
Since the silicide of Ni is formed by the heat treatment at 000 ° C. or more and the depth thereof becomes 1 μm or more, the contact resistance becomes large unless the depth of the n-type high concentration doped layer thereunder is sufficiently deep. There is also.
【0004】以上の問題に鑑みて、本発明の目的は容易
に接触抵抗の小さいオーミック電極が得られるようにす
ることによって、オン電圧の低いSiC半導体装置を提
供することにある。In view of the above problems, an object of the present invention is to provide an SiC semiconductor device having a low on-voltage by making it possible to easily obtain an ohmic electrode having a low contact resistance.
【0005】[0005]
【課題を解決するための手段】n型のSiCにオーミッ
ク性の接触を形成する金属は、仕事関数ができるだけ低
いことが望ましい。n型SiCと金属を接触させる場合
のエネルギーバンドを図2に示す。図2(a)におい
て、金属の仕事関数をφm 、SiCの仕事関数をφs 、
SiCの電子親和力をχとする。A metal forming an ohmic contact with n-type SiC preferably has a work function as low as possible. FIG. 2 shows the energy band when n-type SiC is brought into contact with a metal. In FIG. 2A, the work function of metal is φ m , the work function of SiC is φ s ,
Let χ be the electron affinity of SiC.
【0006】いま、金属とSiCを接触させると、図2
(b)に示すように、フェルミ凖位が一致するようにn
型SiCのエネルギーバンドが曲がる。このとき、
φs > χ >φm の関係が成り立つときにオー
ミツク性の接触が得られる。SiCの仕事関数φsは
4.5eVであり〔表面物性工学ハンドブック、198
7年、丸善発行 による〕、φs とχとの差はn型不純
物の種類と濃度に依存するが。およそ0.3eV程度と
考えられる。このことから、n型SiCの場合、仕事関
数φm はおよそ4.2eV以下の金属が望ましく、その
範囲でも、できるだけ低いことが望ましい。Now, when the metal and SiC are brought into contact with each other, as shown in FIG.
As shown in (b), n
The energy band of type SiC bends. At this time,
An ohmic contact is obtained when the relationship of φ s >χ> φ m holds. The work function φ s of SiC is 4.5 eV [Handbook of Physical Properties of Surface, 198
7 years, published by Maruzen], but the difference between φ s and χ depends on the type and concentration of n-type impurities. It is considered to be about 0.3 eV. From this, in the case of n-type SiC, it is desirable that the work function φ m be a metal having a work function φ m of about 4.2 eV or less, and it is desirable that the work function φ m be as low as possible.
【0007】表1に仕事関数の低い金属を示す〔表面物
性工学ハンドブック、1987年、丸善発行 によ
る〕。この表に示すように仕事関数の低い金属の多くが
アルカリ金属、アルカリ土類金属又は希土類金属であ
り、一般に空気中で酸化され易いため、そのままでは実
用に供せない。Table 1 shows metals having a low work function [Surface Property Engineering Handbook, published by Maruzen in 1987]. As shown in this table, most of the metals having a low work function are alkali metals, alkaline earth metals or rare earth metals, and generally they are easily oxidized in air, so they cannot be put to practical use as they are.
【0008】[0008]
【表1】 [Table 1]
【0009】そこで、前記の目的を達成するため、本発
明の炭化珪素半導体装置においては、アルミニウムとア
ルミニウムより仕事関数の小さな金属Mとの合金(Al
−M合金)からなるオーミック電極を有するものとす
る。そして、MがMg、Mnのいずれかであるものとす
る。In order to achieve the above object, therefore, in the silicon carbide semiconductor device of the present invention, an alloy of aluminum and a metal M having a work function smaller than that of aluminum (Al
-M alloy). Then, it is assumed that M is either Mg or Mn.
【0010】[0010]
【作用】上記のように、アルミニウムと、例えばMg、
Mnのようなアルミニウムより仕事関数の小さな金属M
との合金(Al−M合金)からなる電極を設ければ、n
型SiCとオーミック接触が容易に形成される。As described above, aluminum and, for example, Mg,
A metal M having a smaller work function than aluminum, such as Mn
If an electrode made of an alloy (Al-M alloy) with
An ohmic contact with the type SiC is easily formed.
【0011】[0011]
【実施例】以下、図面を参照しながら本発明の実施例に
ついて説明する。図1は、本発明第一の実施例のショッ
トキーダイオードの断面図である。6H型の不純物濃度
5×1018cm-3、厚さ400μmのn型SiCサブス
トレート1上に窒素ドープの不純物濃度1×1016cm
-3、厚さ5μmのエピタキシャル層2を成膜したエピタ
キシャルウェハを使用し、n型SiCサブストレート1
の裏面にAl−Mg合金(Mg30重量%)のターゲッ
トを用いて、DCスパッタ法により、厚さ5μmの裏面
電極4を形成した。続いて、約200℃で熱処理を行っ
た。次にエピタキシャル層2の表面上に金(Au)を室
温で烝着しショットキー電極3とした。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a Schottky diode according to the first embodiment of the present invention. 6H-type impurity concentration 5 × 10 18 cm −3 , nitrogen-doped impurity concentration 1 × 10 16 cm 3 on n-type SiC substrate 1 having a thickness of 400 μm
-3 , using an epitaxial wafer on which an epitaxial layer 2 having a thickness of 5 μm is formed, an n-type SiC substrate 1
A back electrode 4 having a thickness of 5 μm was formed by DC sputtering using a target of Al—Mg alloy (Mg 30% by weight) on the back surface of the above. Subsequently, heat treatment was performed at about 200 ° C. Next, gold (Au) was deposited on the surface of the epitaxial layer 2 at room temperature to form a Schottky electrode 3.
【0012】このショツトキーダイオードの電流−電圧
特性を測定したところ、室温から300℃の範囲ですぐ
れたダイオード特性を示し、裏面電極4がオーミック接
触になっていることが確認された。このように、Al−
Mg合金のオーミック電極は、従来のNiのような高温
の熱処理は不要で容易に形成でき、しかもその下の高濃
度ドープ層の深さをそれほど深くしなくても、十分低い
接触抵抗がえられる。The current-voltage characteristics of this Schottky diode were measured, and it was confirmed that the Schottky diode exhibited excellent diode characteristics in the range of room temperature to 300 ° C., and the back electrode 4 was in ohmic contact. Thus, Al-
The ohmic electrode of the Mg alloy can be easily formed without the need for high-temperature heat treatment such as that of conventional Ni, and a sufficiently low contact resistance can be obtained without making the depth of the high-concentration doped layer under the ohmic electrode so deep. .
【0013】Alは、それ自体として単体の仕事関数は
4.28eVであり、比較的低仕事関数の材料である
が、そのままではn型SiCに対し良好なオーミック接
合を得ることはできない。一方でAlは、大気中でその
表面に緻密なアルミナ酸化膜を形成して良好な耐腐食性
を示す。本発明では、このAlと低仕事関数の金属を合
金化して、良好な耐腐食性をもち、低仕事関数の合金を
得るものである。特にMgは仕事関数が3.66eVと
低い上、比較的安価であり、取扱いも容易である等、最
も実用的な材料である。(JISにはMg含有量が5重
量%以下の材料が耐腐食性材料として規定されているほ
どである。)Mgの含有量は高いほど、接触抵抗は下が
り、一方で耐腐食性は低下する傾向にあるが、適切な保
護層の付与や封止等により高い含有率の材料でも実用に
たえることができた。Al itself has a work function of 4.28 eV as a simple substance and is a material having a relatively low work function. However, as it is, an excellent ohmic junction with n-type SiC cannot be obtained. On the other hand, Al forms a fine alumina oxide film on its surface in the air and exhibits good corrosion resistance. In the present invention, this Al is alloyed with a metal having a low work function to obtain an alloy having a good work resistance and a low work function. In particular, Mg is the most practical material because it has a low work function of 3.66 eV, is relatively inexpensive, and is easy to handle. (The JIS defines that a material having a Mg content of 5% by weight or less is defined as a corrosion resistant material.) The higher the Mg content, the lower the contact resistance and the lower the corrosion resistance. Although there is a tendency, a material having a high content could be put to practical use by providing an appropriate protective layer and sealing.
【0014】また、6H型のSiC単結晶基板に窒素を
1×1019cm-3添加したn型層をエピタキシャル成長
法により形成した。このn型層の表面上に Al−Mg
合金(Mg20重量%)のターゲットを用いて、DCス
パッタ法により、厚さ5μmの電極を形成した。このと
きの電極膜の組成は、ターゲットの組成とほぼ同じであ
った。また、接触抵抗率は約8×10-4Ωcm2 であ
り、良好なオーミック特性が得られた。Further, an n-type layer in which nitrogen was added at 1 × 10 19 cm −3 was formed on a 6H-type SiC single crystal substrate by an epitaxial growth method. Al-Mg is formed on the surface of the n-type layer.
An electrode having a thickness of 5 μm was formed by a DC sputtering method using an alloy (Mg 20 wt%) target. The composition of the electrode film at this time was almost the same as the composition of the target. Moreover, the contact resistivity was about 8 × 10 −4 Ωcm 2 , and good ohmic characteristics were obtained.
【0015】同様に、6H型のSiC単結晶基板に窒素
を1×1018cm-3添加したn型層をエピタキシャル成
長法により形成した。このn型層の表面上に Al−M
g合金(Mg30重量%)のターゲットを用いて、DC
スパッタ法により、厚さ5μmの電極を形成した。この
ときも電極膜の組成は、ターゲットの組成とほぼ同じで
あった。また、接触抵抗率は約4×10-4Ωcm2 であ
り、良好なオーミック特性が得られた。Similarly, an n-type layer in which nitrogen was added at 1 × 10 18 cm -3 was formed on a 6H type SiC single crystal substrate by an epitaxial growth method. Al-M on the surface of this n-type layer
DC using g alloy (30 wt% Mg) target
An electrode having a thickness of 5 μm was formed by the sputtering method. At this time, the composition of the electrode film was almost the same as the composition of the target. Moreover, the contact resistivity was about 4 × 10 −4 Ωcm 2 , and good ohmic characteristics were obtained.
【0016】更に、6H型のSiC単結晶基板に窒素を
1×1018cm-3添加したn型層をエピタキシャル成長
法により形成した。このn型層の表面上に Al−Mn
合金(Mn50重量%)のターゲットを用いて、DCス
パッタ法により、厚さ5μmの電極を形成した。このと
きの電極膜の組成は、ターゲットの組成とほぼ同じであ
った。また、接触抵抗率は約1×10-3Ωcm2 であ
り、良好なオーミック特性が得られた。Further, an n-type layer in which nitrogen was added at 1 × 10 18 cm -3 was formed on a 6H type SiC single crystal substrate by an epitaxial growth method. Al-Mn is formed on the surface of the n-type layer.
An electrode having a thickness of 5 μm was formed by a DC sputtering method using an alloy (Mn 50% by weight) target. The composition of the electrode film at this time was almost the same as the composition of the target. Moreover, the contact resistivity was about 1 × 10 −3 Ωcm 2 , and good ohmic characteristics were obtained.
【0017】実施例としては、ショットキーダイオード
を上げたが、他の半導体装置例えばバイポーラトランジ
スタ、MOSFETなどにも本発明は適用できることは
いうまでもない。また、SiCには複数の結晶形態があ
り、それぞれ電気的特性が異なるが、現在は作成の容易
さから、6H型のSiCが主に検討されている。以上の
議論では6H型のSiCについて議論を進めたが、本発
明の有効性はその他の結晶形態(3H型、4H型等)で
も同様であり、6H型に限定されるものではない。Although the Schottky diode is used as an example, it goes without saying that the present invention can be applied to other semiconductor devices such as bipolar transistors and MOSFETs. Further, although SiC has a plurality of crystal forms, each of which has different electrical characteristics, 6H-type SiC is mainly studied at present because of its ease of preparation. Although discussion has been made on 6H-type SiC in the above discussion, the effectiveness of the present invention is the same for other crystal forms (3H-type, 4H-type, etc.) and is not limited to 6H-type.
【0018】[0018]
【発明の効果】以上説明したように、本発明によれば、
アルミニウムとアルミニウムより仕事関数の小さな金属
Mとの合金(例えばAl−Mg、Al−Mn合金)を用
いることによって、n型の炭化珪素上に接触抵抗の小さ
なオーミック電極が容易に形成でき、オン電圧の低い炭
化珪素半導体装置が容易に製造できる。よって本発明
は、特に炭化珪素を用いたパワー用半導体装置の発展に
大きく寄与するものである。As described above, according to the present invention,
By using an alloy of aluminum and a metal M having a work function smaller than that of aluminum (for example, Al-Mg, Al-Mn alloy), an ohmic electrode having a small contact resistance can be easily formed on the n-type silicon carbide, and the on-voltage can be increased. A silicon carbide semiconductor device having a low power consumption can be easily manufactured. Therefore, the present invention greatly contributes to the development of a power semiconductor device using silicon carbide.
【図1】SiCショットキーダイオードの断面図FIG. 1 is a cross-sectional view of a SiC Schottky diode.
【図2】(a)は金属とn型SiCの接触前のエネルギ
ーバンド図、(b)は接触後のエネルギーバンド図2A is an energy band diagram before contact between a metal and n-type SiC, and FIG. 2B is an energy band diagram after contact.
1 SiCサブストレート 2 SiCエピタキシャル層 3 ショットキー電極 4 裏面電極 1 SiC substrate 2 SiC epitaxial layer 3 Schottky electrode 4 Backside electrode
Claims (2)
の小さな金属Mとの合金(Al−M合金)からなるオー
ミック電極を有することを特徴とする炭化珪素半導体装
置。1. A silicon carbide semiconductor device comprising an ohmic electrode made of an alloy of aluminum and a metal M having a work function smaller than that of aluminum (Al-M alloy).
徴とする請求項1に記載の炭化珪素半導体装置。2. The silicon carbide semiconductor device according to claim 1, wherein M is either Mg or Mn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7115553A JPH08316172A (en) | 1995-05-15 | 1995-05-15 | Sic semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7115553A JPH08316172A (en) | 1995-05-15 | 1995-05-15 | Sic semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08316172A true JPH08316172A (en) | 1996-11-29 |
Family
ID=14665397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7115553A Pending JPH08316172A (en) | 1995-05-15 | 1995-05-15 | Sic semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08316172A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8436365B2 (en) | 2010-02-23 | 2013-05-07 | Denso Corporation | SiC semiconductor device having Schottky barrier diode and method for manufacturing the same |
EP2908343A2 (en) * | 2014-02-17 | 2015-08-19 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
-
1995
- 1995-05-15 JP JP7115553A patent/JPH08316172A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8436365B2 (en) | 2010-02-23 | 2013-05-07 | Denso Corporation | SiC semiconductor device having Schottky barrier diode and method for manufacturing the same |
EP2908343A2 (en) * | 2014-02-17 | 2015-08-19 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
JP2015153960A (en) * | 2014-02-17 | 2015-08-24 | 株式会社東芝 | Semiconductor device and method of manufacturing the same |
US9793354B2 (en) | 2014-02-17 | 2017-10-17 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5539217A (en) | Silicon carbide thyristor | |
US9059071B2 (en) | Semiconductor device and method of manufacturing the same | |
JP4690485B2 (en) | Manufacturing method of semiconductor device | |
US5789311A (en) | Manufacturing method of SiC Schottky diode | |
US7696584B2 (en) | Reduced leakage power devices by inversion layer surface passivation | |
US10600921B2 (en) | Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device | |
KR100406247B1 (en) | A method of manufacturing an ohmic contact and a semiconductor device having such an ohmic contact | |
JP3361061B2 (en) | Semiconductor device | |
JP3361062B2 (en) | Semiconductor device | |
JPH05347413A (en) | Manufacture of semiconductor device | |
EP2079101A1 (en) | OHMIC ELECTRODE FOR SiC SEMICONDUCTOR, METHOD FOR MANUFACTURE OF OHMIC ELECTRODE FOR SiC SEMICONDUCTOR, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURE OF SEMICONDUCTOR DEVICE | |
CN100370621C (en) | Semiconductor device and manufacturing method thereof | |
JP2003258271A (en) | Silicon carbide schottky diode and manufacturing method of the same | |
US4301592A (en) | Method of fabricating semiconductor junction device employing separate metallization | |
JP3085078B2 (en) | Method for manufacturing silicon carbide electronic device | |
JPH0864800A (en) | Silicon carbide semiconductor device | |
JP4091931B2 (en) | SiC semiconductor device and method of manufacturing SiC semiconductor device | |
JP2000164528A (en) | Silicon carbide semiconductor device provided with schottky junction | |
JPH08316172A (en) | Sic semiconductor device | |
Luo et al. | High voltage (> 1kV) and high current gain (32) 4H-SiC power BJTs using Al-free ohmic contact to the base | |
JP3970142B2 (en) | Silicon carbide ohmic electrode structure and semiconductor device | |
JP2006086183A (en) | SiC SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD | |
CN210272370U (en) | Schottky diode chip | |
JP2000299479A (en) | Schottky diode and manufacture thereof | |
JP2006332230A (en) | Schottky barrier diode and method of manufacturing the same |