JP2000164528A - Silicon carbide semiconductor device provided with schottky junction - Google Patents

Silicon carbide semiconductor device provided with schottky junction

Info

Publication number
JP2000164528A
JP2000164528A JP10333551A JP33355198A JP2000164528A JP 2000164528 A JP2000164528 A JP 2000164528A JP 10333551 A JP10333551 A JP 10333551A JP 33355198 A JP33355198 A JP 33355198A JP 2000164528 A JP2000164528 A JP 2000164528A
Authority
JP
Japan
Prior art keywords
silicon carbide
schottky
carbide semiconductor
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10333551A
Other languages
Japanese (ja)
Inventor
Tadao Toda
忠夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10333551A priority Critical patent/JP2000164528A/en
Publication of JP2000164528A publication Critical patent/JP2000164528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen a silicon carbide semiconductor device in forward threshold voltage by a method wherein an alloy layer formed by reacting metal contained in a Schottky electrode on a silicon carbide semiconductor is formed on the silicon carbide semiconductor, and a Schottky junction is reduced in barrier height. SOLUTION: A SiC semiconductor Schottky diode is formed of a wafer that comprises an N-type 6H-S-iC (0001) substrate 1 of carrier concentration 3×1018 cm-3 and an N-type epitaxial layer 2 which is off by an angle of 3.5 deg. in a <11-20> direction, 3 μm in thickness, of carrier concentration 1×1018 cm-3, and formed on the substrate 1. An Ni film is deposited on the rear of the SiC substrate 1 to serve as an ohmic electrode 3, and the ohmic electrode 3 is brought into ohmic contact with the substrate 1 by a thermal treatment. Then, a film of metal selected out of Ti, Au, Pd and the like is evaporated on the surface of the epitaxial layer 2, and the metal film is patterned into a Schottky electrode 4. This Schottky junction is thermally treated at a temperature of 500 to 900 deg.C, so that an alloy layer 5 of Schottky electrode metal and SiC semiconductor is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、炭化珪素(Si
C)半導体を用いたショットキ接合を有する半導体装置
に係り、ショットキダイオード、MESFETなど高融
点金属をショットキ電極として用いる半導体装置に関す
る。
TECHNICAL FIELD The present invention relates to a silicon carbide (Si)
C) The present invention relates to a semiconductor device having a Schottky junction using a semiconductor and using a high melting point metal such as a Schottky diode and a MESFET as a Schottky electrode.

【0002】[0002]

【従来の技術】炭化珪素(SiC)半導体は、熱的、化
学的に安定であり、耐放射線性に優れていることから、
耐環境デバイスや高出力デバイスの材料として注目を集
めている。
2. Description of the Related Art Silicon carbide (SiC) semiconductors are thermally and chemically stable and have excellent radiation resistance.
It is attracting attention as a material for environment-resistant devices and high-power devices.

【0003】また、SiC半導体はGaAs半導体に比
べて、電子移動度が約2倍から3倍大きいことから、高
周波半導体素子材料としても開発が行われている。特
に、SiC半導体は、オン抵抗が小さいこととスイッチ
ングスピードが速いことが大きな特徴である。
[0003] SiC semiconductors are being developed as high-frequency semiconductor device materials because their electron mobility is about two to three times greater than that of GaAs semiconductors. In particular, SiC semiconductors are largely characterized by low on-resistance and high switching speed.

【0004】ところで、ショットキ電極と半導体のバリ
ア高さは、n型半導体の場合、金属固有の仕事関数と半
導体の電子親和力の差で与えられる。バリア高さは、半
導体のキャリア濃度にも依存し、温度でも変化すること
になる。一般には、仕事関数の小さい金属は、バリア高
さが低くなる。スイッチング時の順方向特性は、ダイオ
ードの直列抵抗が小さい程、バリア高さ(立ち上がり電
圧)が低い程、スイッチング時の損失が小さい。
In the case of an n-type semiconductor, the barrier height between the Schottky electrode and the semiconductor is given by the difference between the work function inherent to the metal and the electron affinity of the semiconductor. The barrier height also depends on the carrier concentration of the semiconductor and changes with temperature. Generally, a metal having a small work function has a low barrier height. As for the forward characteristics at the time of switching, the loss at the time of switching is smaller as the series resistance of the diode is smaller and as the barrier height (rising voltage) is lower.

【0005】n型SiC半導体では、通常、Ni、T
i、Au、Pt等の金属を使用するが、この中で仕事関
数の小さいMgが立ち上がり電圧が低くなる。
In an n-type SiC semiconductor, Ni, T
Metals such as i, Au, and Pt are used. Among them, Mg having a small work function has a low start-up voltage.

【0006】[0006]

【発明が解決しようとする課題】ショットキバリア高さ
を小さくするとスイッチング素子としては、有効である
が、逆方向リーク電流が増えるという問題がある。
When the Schottky barrier height is reduced, it is effective as a switching element, but there is a problem that the reverse leakage current increases.

【0007】また、Mgはバリア高さが0.2Vと低い
値であるが、Mg金属自身は反応性が大きく取り扱いが
難しいという問題があった。
Although Mg has a low barrier height of 0.2 V, there is a problem that Mg metal itself has high reactivity and is difficult to handle.

【0008】この発明は、上記した問題点に鑑みなされ
たものにして、取り扱いが容易な金属を用いて、ショッ
トキバリア高さを低下させ、順方向の立ち上がり電圧を
低減させた半導体装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and provides a semiconductor device in which the height of the Schottky barrier is reduced and the forward rise voltage is reduced by using a metal which is easy to handle. The purpose is to:

【0009】[0009]

【課題を解決するための手段】この発明は、高融点金属
をショットキ電極として炭化珪素半導体上に設けたショ
ットキ接合を有する炭化珪素半導体装置であって、上記
炭化珪素半導体にショットキ電極の金属が反応した合金
層を形成し、ショットキ接合のバリア高さを下げたこと
を特徴とする。
The present invention relates to a silicon carbide semiconductor device having a Schottky junction provided on a silicon carbide semiconductor using a high melting point metal as a Schottky electrode, wherein the metal of the Schottky electrode reacts with the silicon carbide semiconductor. The present invention is characterized in that a barrier height of a Schottky junction is reduced by forming an alloy layer having a reduced thickness.

【0010】上記ショットキ電極用金属は、高温の熱処
理に対して、ダイオード特性が保持される金属を用いる
とよい。
[0010] As the metal for the Schottky electrode, it is preferable to use a metal that retains diode characteristics against high-temperature heat treatment.

【0011】また、上記炭化珪素半導体がn型半導体の
場合には、上記ショットキ電極用高融点金属は、Au、
Ag、Pd、Cr、Co、Ti、W、Pt、Al、N
i、Mo、Cs、Mnの中から選択すると良い。
When the silicon carbide semiconductor is an n-type semiconductor, the refractory metal for a Schottky electrode is Au,
Ag, Pd, Cr, Co, Ti, W, Pt, Al, N
It is preferable to select from i, Mo, Cs, and Mn.

【0012】また、上記炭化珪素半導体がp型半導体の
場合には、上記ショットキ電極用高融点金属は、Au、
Ag、Co、Ni、Pd、Ti、Al、Csの中から選
択すると良い。。
When the silicon carbide semiconductor is a p-type semiconductor, the refractory metal for a Schottky electrode is Au,
It is preferable to select from Ag, Co, Ni, Pd, Ti, Al, and Cs. .

【0013】上記したように、n型SiC半導体又はp
型SiC半導体のショットキ電極として、熱処理を行っ
てもダイオード特性が変化しない金属材料を用いる。不
活性ガス中で、熱処理を行うことにより、金属とSiC
半導体の界面での反応が進み、合金層を形成する。その
結果、ショットキバリアが低下し、立ち上がり電圧が低
減できる。
As described above, an n-type SiC semiconductor or p-type
As the Schottky electrode of the type SiC semiconductor, a metal material whose diode characteristics do not change even when heat treatment is performed is used. By performing heat treatment in an inert gas, metal and SiC
The reaction at the interface of the semiconductor proceeds to form an alloy layer. As a result, the Schottky barrier is reduced, and the rise voltage can be reduced.

【0014】このように、ショットキ電極の熱処理によ
り、ショットキバリア高さが低下し、スイッチング時の
順方向の抵抗成分が減少し、スイッチング損失が小さく
なる。
As described above, by the heat treatment of the Schottky electrode, the height of the Schottky barrier is reduced, the forward resistance component at the time of switching is reduced, and the switching loss is reduced.

【0015】[0015]

【発明の実施の形態】以下、この発明の実施の形態につ
き、図面を参照して説明する。図1は、この発明の実施
の形態に係るSiC半導体を用いたショットキダイオー
ドを示す概略断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a Schottky diode using an SiC semiconductor according to an embodiment of the present invention.

【0016】キャリア濃度3×1018cm-3のn型6H
―SiC(0001)基板1の主面上に<11−20>
方向に3.5°オフした膜厚3μmのキャリア濃度1×
10 18cm-3のn型エピタキシャル層2が形成されてい
るウェハーを用いる。
Carrier concentration 3 × 1018cm-3N-type 6H
-<11-20> on the main surface of the SiC (0001) substrate 1
3 × carrier thickness 1 × turned off 3.5 ° in the direction
10 18cm-3N-type epitaxial layer 2 is formed
Using a wafer.

【0017】上記SiC基板1の裏面にオーミック電極
3としてNi膜を4000オングストロームを蒸着して
設け、熱処理を施してオーミック接触をとる。この熱処
理は、Ar流量1l/min、圧力1Kg/cm2 中で
950℃の温度で10分程度行う。この熱処理により、
オーミック電極3が形成される。
On the back surface of the SiC substrate 1, a Ni film is deposited as an ohmic electrode 3 by depositing 4,000 angstroms, and heat treatment is performed to make ohmic contact. This heat treatment is performed at a temperature of 950 ° C. for about 10 minutes at an Ar flow rate of 1 l / min and a pressure of 1 kg / cm 2 . By this heat treatment,
An ohmic electrode 3 is formed.

【0018】次に、エピタキシャル層2の表面にTi、
Au、Pd等の高融点金属の中から一つの金属膜を40
00オングストローム蒸着する。この金属膜をパターニ
ングして、ショットキ電極4を形成する。
Next, on the surface of the epitaxial layer 2, Ti,
One metal film is formed from a high melting point metal such as Au or Pd by 40
Deposit 00 angstrom. This metal film is patterned to form the Schottky electrode 4.

【0019】この発明では、このショットキ接合のバリ
ア高さを下げるために500〜900℃程度の高温での
熱処理を施し、ショットキ電極用金属とSiC半導体と
の合金層5を形成する。この合金層5の深さは、熱処理
の温度と時間に依存し、温度及び時間を制御すること
で、目標の深さにすることが可能である。この実施の形
態では、合金層5の深さを0.1〜0.2μmの深さに
なるように制御した。
In the present invention, a heat treatment at a high temperature of about 500 to 900 ° C. is performed to lower the barrier height of the Schottky junction, thereby forming an alloy layer 5 of the metal for the Schottky electrode and the SiC semiconductor. The depth of the alloy layer 5 depends on the temperature and time of the heat treatment, and can be set to a target depth by controlling the temperature and time. In this embodiment, the depth of the alloy layer 5 is controlled to be 0.1 to 0.2 μm.

【0020】例えば、ショットキ電極4として、Au又
はPdを用いた場合には、オーミック電極3の形成時と
同じ雰囲気、即ち、Ar流量1l/min、圧力1Kg
/cm2 中で900℃の温度で5分間熱処理を施して合
金層5を形成した。又、ショットキ電極4として、Ti
を用いた場合には、同様の雰囲気条件で500℃の温度
で5分の熱処理を合金層5を形成した。いずれの金属を
用いても、ダイオード特性が保持できる温度及び時間で
熱処理を行う。
For example, when Au or Pd is used as the Schottky electrode 4, the same atmosphere as when the ohmic electrode 3 is formed, that is, an Ar flow rate of 1 l / min and a pressure of 1 kg is used.
The alloy layer 5 was formed by performing a heat treatment at a temperature of 900 ° C./cm 2 for 5 minutes. Also, as the Schottky electrode 4, Ti
Was used, a heat treatment was performed at a temperature of 500 ° C. for 5 minutes under the same atmosphere conditions to form the alloy layer 5. Regardless of which metal is used, heat treatment is performed at a temperature and for a time that can maintain the diode characteristics.

【0021】ショットキ電極4を形成後熱処理を施した
この発明の実施の形態と、熱処理を施していない以外は
この発明と同じ条件で形成したショットキダイオードを
用意し、1μA電流レンジでの順方向の立ち上がり電圧
を測定した結果を図2に示す。図2(a)は、熱処理を
施していないもの、同(b)は、熱処理を施した本実施
の形態のそれぞれのI−V特性図である。尚、このショ
ットキ電極4の金属としては、Tiを用いた。
An embodiment of the present invention in which a heat treatment is performed after the formation of the Schottky electrode 4 and a Schottky diode formed under the same conditions as the present invention except that no heat treatment is performed are prepared. FIG. 2 shows the measurement result of the rising voltage. FIG. 2A is an IV characteristic diagram of the embodiment without heat treatment, and FIG. 2B is an IV characteristic diagram of the embodiment with heat treatment. The metal of the Schottky electrode 4 was Ti.

【0022】図2から分かるように、順方向の立ち上が
り電圧(1μA電流レンジ)は、0.95Vから0.3
Vに低下した。
As can be seen from FIG. 2, the forward rising voltage (1 μA current range) is from 0.95 V to 0.3
V.

【0023】又、同様に、ショットキ電極4として、A
u及びPdを用いたものそれぞれ用意し、1μA電流レ
ンジでの順方向の立ち上がり電圧を測定した。
Similarly, as the Schottky electrode 4, A
Each using u and Pd was prepared, and the rising voltage in the forward direction in the 1 μA current range was measured.

【0024】その結果、順方向の立ち上がり電圧(1μ
A電流レンジ)は、Auの場合には、0.7Vから0.
35V、Pdの場合には、0.7Vから0.5Vとそれ
ぞれ低下した。
As a result, the forward rising voltage (1 μm)
A current range) is 0.7 V to 0.
In the case of 35V and Pd, they decreased from 0.7V to 0.5V, respectively.

【0025】このように、ショットキ電極の熱処理によ
り、ショットキバリア高さが低下し、スイッチング時の
順方向の抵抗成分が減少し、スイッチング損失を小さく
することができる。
As described above, by the heat treatment of the Schottky electrode, the height of the Schottky barrier decreases, the forward resistance component during switching decreases, and the switching loss can be reduced.

【0026】上述した実施の形態においては、ショット
キ電極4の高融点金属としてAu、Pd、Tiを用いた
場合について説明したが、高温の熱処理による金属とS
iC半導体の合金化後も、金属とSiC半導体の接合
(整流)特性が維持できる金属であれば良く、上記金属
以外に、SiC半導体がn型の場合、Ag、Cr、C
o、W、Pt、Al、Ni、Mo、Cs、Mnを用いる
ことができる。
In the above embodiment, the case where Au, Pd, and Ti are used as the refractory metal of the Schottky electrode 4 has been described.
Any metal that can maintain the junction (rectification) characteristics between the metal and the SiC semiconductor even after the alloying of the iC semiconductor may be used.
o, W, Pt, Al, Ni, Mo, Cs, and Mn can be used.

【0027】また、上記実施の形態においては、n型S
iC半導体を用いたが、p型SiC半導体を用いて同様
に構成できる。この時、ショットキ電極用高融点金属
は、Au、Ag、Co、Ni、Pd、Ti、Al、Cs
の中から選択すればよい。
In the above embodiment, the n-type S
Although an iC semiconductor is used, a similar configuration can be made using a p-type SiC semiconductor. At this time, the refractory metal for the Schottky electrode is Au, Ag, Co, Ni, Pd, Ti, Al, Cs.
You can choose from

【0028】上記金属を用いる場合においては、それぞ
れの金属に適した熱処理温度及び時間等の条件を選択す
ればよい。
When the above metals are used, conditions such as heat treatment temperature and time suitable for each metal may be selected.

【0029】又、上記実施の形態においては、SiC半
導体として、6H型を用いたが、この他に3C型、4H
型でも同様の効果が得られる。
In the above-described embodiment, the 6H type is used as the SiC semiconductor.
Similar effects can be obtained with a mold.

【0030】又、上記実施の形態においては、ショット
キダイオードについて説明したが、ゲート電極として、
ショットキ電極を用いるMESFETにもこの発明は適
用できる。
In the above embodiment, the Schottky diode has been described.
The present invention is also applicable to a MESFET using a Schottky electrode.

【0031】[0031]

【発明の効果】以上説明したように、この発明によれ
ば、熱処理により、ショットキダイオードの立ち上がり
電圧を下げ、スイッチング損失を小さくできる。
As described above, according to the present invention, the heat treatment can lower the rising voltage of the Schottky diode and reduce the switching loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態に係るSiC半導体を用
いたショットキダイオードを示す概略断面図である。
FIG. 1 is a schematic sectional view showing a Schottky diode using a SiC semiconductor according to an embodiment of the present invention.

【図2】ショットキダイオードにおける順方向の立ち上
がり電圧を測定したI−V特性図であり、(a)は、熱
処理を施していないもの、(b)は、熱処理を施した本
実施の形態をそれぞれ示す。
FIGS. 2A and 2B are IV characteristic diagrams obtained by measuring a forward rising voltage in a Schottky diode. FIG. 2A shows a case where heat treatment is not performed, and FIG. Show.

【符号の説明】[Explanation of symbols]

1 n型SiC半導体基板 2 エピタキシャル層 3 オーミック電極 4 ショットキ電極 5 合金層 Reference Signs List 1 n-type SiC semiconductor substrate 2 epitaxial layer 3 ohmic electrode 4 Schottky electrode 5 alloy layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高融点金属をショットキ電極として炭化
珪素半導体上に設けたショットキ接合を有する炭化珪素
半導体装置であって、上記炭化珪素半導体にショットキ
電極の金属が反応した合金層を形成し、ショットキ接合
のバリア高さを下げたことを特徴とするショットキ接合
を有する炭化珪素半導体装置。
1. A silicon carbide semiconductor device having a Schottky junction provided on a silicon carbide semiconductor using a refractory metal as a Schottky electrode, wherein an alloy layer in which a metal of the Schottky electrode has reacted with the silicon carbide semiconductor is formed. A silicon carbide semiconductor device having a Schottky junction, wherein a barrier height of the junction is reduced.
【請求項2】 上記ショットキ電極用金属は、高温の熱
処理に対して、ダイオード特性が保持される金属である
ことを特徴とする請求項1に記載のショットキ接合を有
する炭化珪素半導体装置。
2. The silicon carbide semiconductor device having a Schottky junction according to claim 1, wherein the metal for a Schottky electrode is a metal that retains diode characteristics against high-temperature heat treatment.
【請求項3】 上記炭化珪素半導体がn型半導体であ
り、上記ショットキ電極用高融点金属は、Au、Ag、
Pd、Cr、Co、Ti、W、Pt、Al、Ni、M
o、Cs、Mnの中から選択されることを特徴とする請
求項1に記載のショットキ接合を有する炭化珪素半導体
装置。
3. The silicon carbide semiconductor is an n-type semiconductor, and the refractory metal for a Schottky electrode is Au, Ag,
Pd, Cr, Co, Ti, W, Pt, Al, Ni, M
The silicon carbide semiconductor device having a Schottky junction according to claim 1, wherein the silicon carbide semiconductor device is selected from o, Cs, and Mn.
【請求項4】 上記炭化珪素半導体がp型半導体であ
り、上記ショットキ電極用高融点金属は、Au、Ag、
Co、Ni、Pd、Ti、Al、Csの中から選択され
ることを特徴とする請求項1に記載のショットキ接合を
有する炭化珪素半導体装置。
4. The silicon carbide semiconductor is a p-type semiconductor, and the refractory metal for a Schottky electrode is Au, Ag,
The silicon carbide semiconductor device having a Schottky junction according to claim 1, wherein the device is selected from Co, Ni, Pd, Ti, Al, and Cs.
JP10333551A 1998-11-25 1998-11-25 Silicon carbide semiconductor device provided with schottky junction Pending JP2000164528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10333551A JP2000164528A (en) 1998-11-25 1998-11-25 Silicon carbide semiconductor device provided with schottky junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10333551A JP2000164528A (en) 1998-11-25 1998-11-25 Silicon carbide semiconductor device provided with schottky junction

Publications (1)

Publication Number Publication Date
JP2000164528A true JP2000164528A (en) 2000-06-16

Family

ID=18267318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10333551A Pending JP2000164528A (en) 1998-11-25 1998-11-25 Silicon carbide semiconductor device provided with schottky junction

Country Status (1)

Country Link
JP (1) JP2000164528A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739753A1 (en) * 2004-03-26 2007-01-03 Central Research Institute of Electric Power Industry Process for producing schottky junction type semiconductor device
JP2007103538A (en) * 2005-09-30 2007-04-19 Toshiba Corp Light emitting diode and method of manufacturing same
US7294858B2 (en) 2002-03-28 2007-11-13 Rohm Co., Ltd. Semiconductor device and method of manufacturing the same
DE102008047159A1 (en) 2007-10-11 2009-04-16 Mitsubishi Electric Corp. A method of manufacturing a silicon carbide semiconductor device
JP2009094433A (en) * 2007-10-12 2009-04-30 National Institute Of Advanced Industrial & Technology Silicon carbide equipment
JP2009170864A (en) * 2007-12-17 2009-07-30 Sanken Electric Co Ltd Composite semiconductor device
WO2010073455A1 (en) * 2008-12-26 2010-07-01 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor element
US7902054B2 (en) 2006-02-16 2011-03-08 Central Research Institute Of Electric Power Industry Schottky barrier semiconductor device and method for manufacturing the same
JP2011142355A (en) * 2011-04-21 2011-07-21 Sumitomo Electric Ind Ltd Rectifying element
CN102427041A (en) * 2011-11-21 2012-04-25 上海先进半导体制造股份有限公司 Manufacturing method of schottky diode with high performance
JP2014063948A (en) * 2012-09-24 2014-04-10 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device manufacturing method
JP2016167537A (en) * 2015-03-10 2016-09-15 富士電機株式会社 Vertical mosfet
KR20170070104A (en) 2015-02-18 2017-06-21 신닛테츠스미킨 카부시키카이샤 Method for producing silicon carbide single crystal epitaxial wafer and silicon carbide single crystal epitaxial wafer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478604B2 (en) 2002-03-28 2016-10-25 Rohm Co., Ltd. Semiconductor device and method of manufacturing the same
US9059071B2 (en) 2002-03-28 2015-06-16 Rohm Co., Ltd. Semiconductor device and method of manufacturing the same
US7294858B2 (en) 2002-03-28 2007-11-13 Rohm Co., Ltd. Semiconductor device and method of manufacturing the same
US7999346B2 (en) 2002-03-28 2011-08-16 Rohm Co., Ltd. Semiconductor device and method of manufacturing the same
US7745317B2 (en) 2002-03-28 2010-06-29 Rohm Co., Ltd. Semiconductor device and method of manufacturing the same
EP1739753A4 (en) * 2004-03-26 2008-08-27 Central Res Inst Elect Process for producing schottky junction type semiconductor device
EP1739753A1 (en) * 2004-03-26 2007-01-03 Central Research Institute of Electric Power Industry Process for producing schottky junction type semiconductor device
US7507650B2 (en) 2004-03-26 2009-03-24 Central Research Institute Of Electric Power Industry Process for producing Schottky junction type semiconductor device
JP2007103538A (en) * 2005-09-30 2007-04-19 Toshiba Corp Light emitting diode and method of manufacturing same
US7902054B2 (en) 2006-02-16 2011-03-08 Central Research Institute Of Electric Power Industry Schottky barrier semiconductor device and method for manufacturing the same
JP2009094392A (en) * 2007-10-11 2009-04-30 Mitsubishi Electric Corp Method for manufacturing silicon carbide semiconductor device
DE102008047159A1 (en) 2007-10-11 2009-04-16 Mitsubishi Electric Corp. A method of manufacturing a silicon carbide semiconductor device
US8377811B2 (en) 2007-10-11 2013-02-19 Mitsubishi Electric Corporation Method for manufacturing silicon carbide semiconductor device
JP2009094433A (en) * 2007-10-12 2009-04-30 National Institute Of Advanced Industrial & Technology Silicon carbide equipment
JP2009170864A (en) * 2007-12-17 2009-07-30 Sanken Electric Co Ltd Composite semiconductor device
JP2010157547A (en) * 2008-12-26 2010-07-15 Showa Denko Kk Method of manufacturing silicon carbide semiconductor device
US8404574B2 (en) 2008-12-26 2013-03-26 Showa Denko K.K. Method for manufacturing silicon carbide semiconductor device
WO2010073455A1 (en) * 2008-12-26 2010-07-01 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor element
JP2011142355A (en) * 2011-04-21 2011-07-21 Sumitomo Electric Ind Ltd Rectifying element
CN102427041A (en) * 2011-11-21 2012-04-25 上海先进半导体制造股份有限公司 Manufacturing method of schottky diode with high performance
CN102427041B (en) * 2011-11-21 2014-03-12 上海先进半导体制造股份有限公司 Manufacturing method of schottky diode with high performance
JP2014063948A (en) * 2012-09-24 2014-04-10 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device manufacturing method
KR20170070104A (en) 2015-02-18 2017-06-21 신닛테츠스미킨 카부시키카이샤 Method for producing silicon carbide single crystal epitaxial wafer and silicon carbide single crystal epitaxial wafer
US10727047B2 (en) 2015-02-18 2020-07-28 Showa Denko K.K. Epitaxial silicon carbide single crystal wafer and process for producing the same
US11114295B2 (en) 2015-02-18 2021-09-07 Showa Denko K.K. Epitaxial silicon carbide single crystal wafer and process for producing the same
JP2016167537A (en) * 2015-03-10 2016-09-15 富士電機株式会社 Vertical mosfet

Similar Documents

Publication Publication Date Title
US5442200A (en) Low resistance, stable ohmic contacts to silcon carbide, and method of making the same
US5409859A (en) Method of forming platinum ohmic contact to p-type silicon carbide
JP2509713B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2000164528A (en) Silicon carbide semiconductor device provided with schottky junction
JP4021448B2 (en) Manufacturing method of Schottky junction type semiconductor device
WO2007094421A1 (en) Schottky junction type semiconductor element and method for manufacturing same
JP5565895B2 (en) Semiconductor device
WO2005093840A1 (en) Process for producing schottky junction type semiconductor device
WO2007060970A1 (en) Schottky barrier diode and method for using the same
JP3361062B2 (en) Semiconductor device
US6468890B2 (en) Semiconductor device with ohmic contact-connection and method for the ohmic contact-connection of a semiconductor device
JP3934822B2 (en) Schottky diode and manufacturing method thereof
JP3249189B2 (en) Group IV semiconductor device containing carbon
JP3970142B2 (en) Silicon carbide ohmic electrode structure and semiconductor device
JP3665548B2 (en) Schottky junction semiconductor devices
JP3996282B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH10163468A (en) Film-shaped complex structure
JP2006332230A (en) Schottky barrier diode and method of manufacturing the same
US8735907B2 (en) Ohmic electrode for use in a semiconductor diamond device
JP3107368B2 (en) Semiconductor device
JP2007235162A (en) Schottky junction semiconductor device
Kolaklieva et al. Ohmic contacts for high power and high temperature microelectronics
JP2000236099A (en) SiC SCHOTTKY DIODE MANUFACTURE METHOD
JPH09283738A (en) Ohmic electrode for n-type silicon carbide and manufacturing method thereof
Zhao et al. Rapid melt growth of germanium tunnel junctions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222