JP2009170864A - Composite semiconductor device - Google Patents

Composite semiconductor device Download PDF

Info

Publication number
JP2009170864A
JP2009170864A JP2008162766A JP2008162766A JP2009170864A JP 2009170864 A JP2009170864 A JP 2009170864A JP 2008162766 A JP2008162766 A JP 2008162766A JP 2008162766 A JP2008162766 A JP 2008162766A JP 2009170864 A JP2009170864 A JP 2009170864A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor layer
semiconductor
composite
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008162766A
Other languages
Japanese (ja)
Other versions
JP5333893B2 (en
Inventor
Akihiko Matsuzaki
明彦 松崎
Koji Ikeda
孝滋 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2008162766A priority Critical patent/JP5333893B2/en
Publication of JP2009170864A publication Critical patent/JP2009170864A/en
Application granted granted Critical
Publication of JP5333893B2 publication Critical patent/JP5333893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite semiconductor device having a semiconductor element and a sensor element formed on the same semiconductor layer and capable of detecting the temperature of the semiconductor element in a wide temperature region. <P>SOLUTION: In this composite semiconductor device, an FRD and a plurality of SBDs are formed on a first semiconductor layer 1. In the composite semiconductor device, the FRD11 is composed of the first semiconductor layer 1, a P-type second semiconductor layer 2 formed on the first semiconductor layer 1 in an island-like shape, and having a PN junction formed with the first semiconductor layer 1, and a first electrode 5 formed on the second semiconductor layer 2 and electrically connected to the semiconductor layer 2; the SBD 12a is formed with a first electrode 5 forming a Schottky junction between the first semiconductor layer 1 and itself; the SBD 12b is separated from the SBD 12a, and formed with a second electrode 6 forming a Schottky junction between the first semiconductor layer 1 and itself; and the first electrode 5 and the second electrode 6 are formed of materials having leakage current temperature characteristics different from each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スイッチング電源装置の過熱保護回路等に使用され、同一の半導体層上に、半導体素子領域と温度検出用のセンサ素子領域とが形成された複合半導体装置に関する。
The present invention relates to a composite semiconductor device that is used in an overheat protection circuit or the like of a switching power supply device, in which a semiconductor element region and a sensor element region for temperature detection are formed on the same semiconductor layer.

スイッチング電源装置等に用いられる整流素子として機能するダイオードや、スイッチング素子として機能するトランジスタ等の半導体素子は、半導体素子自身の動作及び通電により発熱し、発熱による誤作動や素子破損を招き、電源装置の発煙、発火を引き起こす場合がある。そこで、これらを防止する手段として、ダイオードをセンサ素子として使用した保護回路を設けた電源装置が、特許文献1に開示されている。
A semiconductor element such as a diode functioning as a rectifying element or a transistor functioning as a switching element used in a switching power supply device or the like generates heat due to the operation and energization of the semiconductor element itself, causing malfunction or element damage due to the heat generation, and the power supply device May cause smoke and fire. Therefore, as means for preventing these problems, Patent Document 1 discloses a power supply device provided with a protection circuit using a diode as a sensor element.

図6は、特許文献1に開示される従来のフライバック型スイッチング電源装置の回路構成図である。
直流電源DCから入力される直流電力を、スイッチング素子Qを図示しない制御回路によりオン/オフ制御させることで、トランスTの一次巻線Pに印加する。
スイッチング素子Qがオンする間、トランスTの一次巻線Pに磁気エネルギーが蓄えられ、スイッチング素子Qがオフする間、二次巻線Sから磁気エネルギーを放出する。
放出された磁気エネルギーは、ダイオードD1と平滑コンデンサCとによって整流平滑化され、出力端子OUTを介して図示しない負荷に供給される。
FIG. 6 is a circuit configuration diagram of a conventional flyback switching power supply device disclosed in Patent Document 1. In FIG.
The DC power input from the DC power source DC is applied to the primary winding P of the transformer T by controlling the switching element Q to be turned on / off by a control circuit (not shown).
Magnetic energy is stored in the primary winding P of the transformer T while the switching element Q is turned on, and magnetic energy is released from the secondary winding S while the switching element Q is turned off.
The released magnetic energy is rectified and smoothed by the diode D1 and the smoothing capacitor C and supplied to a load (not shown) via the output terminal OUT.

従来のスイッチング電源装置のスイッチング動作時における発熱は、ダイオードD1において最も大きいため、従来のスイッチング電源装置では、センサ素子としてダイオードD2とダイオードD1とを一体化した複合部品を設置している。この複合部品は、トランスTの二次巻線Sの一端と出力端子+OUTとの間に接続され、ダイオードD2は、トランスTの二次巻線Sの一端と過熱検出回路TDCとの間に接続される。ダイオードD1の発熱は、過熱検出回路TDCを介して制御回路にフィードバックされ、制御回路は、ダイオードD1の発熱を低減させるようにスイッチング素子Qを制御する。
Since the heat generated during the switching operation of the conventional switching power supply device is the largest in the diode D1, the conventional switching power supply device is provided with a composite part in which the diode D2 and the diode D1 are integrated as a sensor element. This composite component is connected between one end of the secondary winding S of the transformer T and the output terminal + OUT, and the diode D2 is connected between one end of the secondary winding S of the transformer T and the overheat detection circuit TDC. Is done. The heat generation of the diode D1 is fed back to the control circuit via the overheat detection circuit TDC, and the control circuit controls the switching element Q so as to reduce the heat generation of the diode D1.

ダイオードD2のように温度上昇を検出するセンサ素子は、SBD(Schottky Barrier Diode)やPN接合ダイオード等が一般的であり、温度検出の原理には、SBDの漏れ電流IR特性や、PN接合ダイオードの順方向電流特性などが多く利用されている。
図5は、SBDのIR温度特性の図であり、モリブデンMo及びパラジウムPdからなるショットキー電極を形成したときのIRを示し、SBDのIRが周囲温度に対して優れた線形性を有することを示す図である。
A sensor element that detects a temperature rise like the diode D2 is generally a SBD (Schottky Barrier Diode), a PN junction diode, or the like. The temperature detection principle includes the SBD leakage current IR characteristics, the PN junction diode Many forward current characteristics are used.
FIG. 5 is a diagram of IR temperature characteristics of SBD, showing IR when a Schottky electrode made of molybdenum Mo and palladium Pd is formed, and that IR of SBD has excellent linearity with respect to ambient temperature. FIG.

同一の半導体層上に、半導体素子であるFRD(Fast Recovery Diode)11と、センサ素子であるSBD(Schottky Barrier Diode)12と、が並存するように形成された従来の複合半導体装置を図7に示す。
FRD11が、N型の第1半導体層1と、第1半導体層1上に島状に形成され、且つ、第1半導体層1とPN接合が形成されるP型の第2半導体層2と、第1半導体層1と第2半導体層2との各表面上に形成された絶縁膜4と、第2半導体層2上における絶縁膜4の開口部に形成され第2半導体層2と電気的に接続される第3電極7と、第1半導体層1と電気的に接続される第4電極8と、で構成され、
SBD12が、第1半導体層1と、第1半導体層1上に島状に形成されたP型の第3半導体層3と、第1半導体層1と第3半導体層3との各表面上に形成された絶縁膜4と、第1半導体層1及び第3半導体層3上における絶縁膜4の開口部に形成され且つ第1半導体層1との間にショットキー接合が形成される第1電極5と、第1半導体層1と電気的に接続される第4電極8と、で構成されている。
FIG. 7 shows a conventional composite semiconductor device in which an FRD (Fast Recovery Diode) 11 that is a semiconductor element and an SBD (Schottky Barrier Diode) 12 that is a sensor element coexist on the same semiconductor layer. Show.
FRD 11 is an N-type first semiconductor layer 1, and a P-type second semiconductor layer 2 formed in an island shape on the first semiconductor layer 1 and having a PN junction formed with the first semiconductor layer 1. An insulating film 4 formed on each surface of the first semiconductor layer 1 and the second semiconductor layer 2, and formed in an opening of the insulating film 4 on the second semiconductor layer 2 and electrically connected to the second semiconductor layer 2 The third electrode 7 to be connected and the fourth electrode 8 electrically connected to the first semiconductor layer 1,
The SBD 12 is formed on each surface of the first semiconductor layer 1, a P-type third semiconductor layer 3 formed in an island shape on the first semiconductor layer 1, and the first semiconductor layer 1 and the third semiconductor layer 3. The formed insulating film 4 and the first electrode formed in the opening of the insulating film 4 on the first semiconductor layer 1 and the third semiconductor layer 3 and forming a Schottky junction with the first semiconductor layer 1 5 and a fourth electrode 8 electrically connected to the first semiconductor layer 1.

従来の複合半導体装置において、FRD11の温度上昇は、主に第1半導体層1を介した熱伝導によって、SBD12に伝わり、SBD12の漏れ電流IRが変化することによって検出される。このようにして、半導体素子の温度上昇が第1半導体層1を介して検出される複合半導体装置の例が、特許文献2で開示されている。
In the conventional composite semiconductor device, the temperature rise of the FRD 11 is transmitted to the SBD 12 mainly by heat conduction through the first semiconductor layer 1 and is detected by changing the leakage current IR of the SBD 12. An example of a composite semiconductor device in which a temperature increase of a semiconductor element is detected through the first semiconductor layer 1 in this way is disclosed in Patent Document 2.

さらに、従来の複合半導体装置において、半導体素子の発熱に対してより良好な保護機能を付加し、信頼性を向上するため、第1半導体層1上に複数のセンサ素子が配置された複合半導体装置の例が、特許文献3で開示されている。

再表WO2004/017507 特開2006−324412 特公平6−93485
Further, in the conventional composite semiconductor device, a composite semiconductor device in which a plurality of sensor elements are arranged on the first semiconductor layer 1 in order to add a better protection function against heat generation of the semiconductor elements and improve reliability. An example of this is disclosed in Patent Document 3.

Table WO2004 / 017507 JP 2006-324412 A JP 6-93485

このような温度検出用のセンサ素子は、半導体素子の温度上昇を検出し、発熱による誤作動や素子破損から半導体素子を保護するため、高い温度検出精度と安定性とが要求される。しかしながら、図5に示すように、SBDの漏れ電流IRの温度特性は優れた線形性を有するが、高温領域において温度特性の線形性が劣化する場合があるため、高温領域における温度検出精度が不安定になるという欠点があった。
Such a sensor element for temperature detection is required to have high temperature detection accuracy and stability in order to detect a temperature rise of the semiconductor element and protect the semiconductor element from malfunction or damage due to heat generation. However, as shown in FIG. 5, the temperature characteristic of the leakage current IR of the SBD has excellent linearity, but the linearity of the temperature characteristic may deteriorate in the high temperature region, so the temperature detection accuracy in the high temperature region is poor. There was a drawback of becoming stable.

そこで、本発明の目的は、同一の半導体層上に、半導体素子と、半導体素子の温度検出用のセンサ素子と、が並存するように形成され、幅広い温度領域において精度良く半導体素子の温度を検出でき、電源装置の過熱保護回路に用いることができる複合半導体装置を提供することにある。
Accordingly, an object of the present invention is to form a semiconductor element and a sensor element for detecting the temperature of the semiconductor element side by side on the same semiconductor layer, and detect the temperature of the semiconductor element with high accuracy in a wide temperature range. An object of the present invention is to provide a composite semiconductor device that can be used for an overheat protection circuit of a power supply device.

上記課題を解決し上記目的を達成するために、請求項1に係る本発明の複合半導体装置は、パワー半導体素子として機能する半導体素子領域と、前記半導体素子領域の温度上昇を検出するセンサとして機能する複数のセンサ素子領域と、を半導体基体に備えた複合半導体装置において、
前記複数のセンサ素子領域は、前記半導体基体とショットキー接合を形成する第1電極を有する第1センサ素子と、前記第1電極と離間し、前記半導体基体とショットキー接合を形成し、周囲温度に対する漏れ電流が前記第1電極と異なる第2電極を有する第2センサ素子と、からなることを特徴とする。
In order to solve the above problems and achieve the above object, a composite semiconductor device of the present invention according to claim 1 functions as a semiconductor element region functioning as a power semiconductor element and a sensor for detecting a temperature rise in the semiconductor element region. In a composite semiconductor device comprising a plurality of sensor element regions and a semiconductor substrate,
The plurality of sensor element regions include a first sensor element having a first electrode that forms a Schottky junction with the semiconductor substrate, and is spaced apart from the first electrode, forms a Schottky junction with the semiconductor substrate, and has an ambient temperature. And a second sensor element having a second electrode different from the first electrode.

さらに、上記課題を解決し上記目的を達成するために、請求項2に係る本発明の複合半導体装置は、第1電極はMoから構成され、第2電極はPdから構成されていることを特徴とする。
さらに、上記課題を解決し上記目的を達成するために、請求項3に係る本発明の複合半導体装置は、低温領域と高温領域とでセンサ素子を切り替えて温度検出することを特徴とする。
さらに、上記課題を解決し上記目的を達成するために、請求項3に係る本発明の複合半導体装置は、パワー半導体素子として機能する半導体素子領域と、前記半導体素子領域の温度上昇を検出するセンサとして機能する複数のセンサ素子領域と、を半導体基体に備えた複合半導体装置において、スイッチング電源装置の整流素子として使用されることを特徴とする。
Furthermore, in order to solve the above problems and achieve the above object, the composite semiconductor device of the present invention according to claim 2 is characterized in that the first electrode is made of Mo and the second electrode is made of Pd. And
Furthermore, in order to solve the above problems and achieve the above object, the composite semiconductor device of the present invention according to claim 3 is characterized in that the temperature is detected by switching the sensor element between the low temperature region and the high temperature region.
Furthermore, in order to solve the above problems and achieve the above object, a composite semiconductor device according to a third aspect of the present invention includes a semiconductor element region functioning as a power semiconductor element, and a sensor for detecting a temperature rise in the semiconductor element region. In a composite semiconductor device provided with a plurality of sensor element regions functioning as a semiconductor substrate, it is used as a rectifying element of a switching power supply device.

各請求項の発明によれば、幅広い温度領域において、精度良く半導体素子の温度を検出できる。
According to the invention of each claim, the temperature of the semiconductor element can be accurately detected in a wide temperature range.

次に、図1〜3を参照して本発明の実施形態に係わる複合半導体装置の一例を説明する。
Next, an example of the composite semiconductor device according to the embodiment of the present invention will be described with reference to FIGS.

図1は本発明の第1実施例の複合半導体装置を示す断面図である。図1において、複合半導体装置は、同一の半導体層上に、半導体素子であるFRD(Fast Recovery Diode)11と、センサ素子である複数のSBD(Schottky Barrier Diode)12a、12bと、が並存するように形成された複合半導体装置であって、
FRD11が、240μm程度の厚みを有するN型の第1半導体層1と、第1半導体層1上に島状に形成され、且つ、第1半導体層1とPN接合が形成されるP型の第2半導体層2と、第1半導体層1と第2半導体層2との各表面上に形成された絶縁膜4と、第2半導体層2上における絶縁膜4の開口部に形成され第2半導体層2と電気的に接続される5〜8μm程度の厚みを有する第3電極7と、第1半導体層1上に形成され第1半導体層1と電気的に接続される第4電極8と、で構成され、
SBD12aが、第1半導体層1と、第1半導体層1上に島状に形成されたP型の第3半導体層3と、第1半導体層1と第3半導体3との各表面上に形成された絶縁膜4と、第1半導体層1及び第3半導体層3上における絶縁膜4の開口部に形成され、且つ、第1半導体層1との間にショットキー接合が形成される第1電極5と、第1半導体層1と電気的に接続される第4電極8と、で構成され、
SBD12bが、第1半導体層1と、第1半導体層1上に島状に形成されたP型の第3半導体層3と、第1半導体層1と第3半導体層3の各表面上に形成された絶縁膜4と、第1半導体層1上における絶縁膜4の開口部に形成され、且つ、第1半導体層1との間にショットキー接合が形成される第2電極6と、第1半導体層1と電気的に接続される第4電極8と、で構成され、
SBD12a、12bを構成する第1電極5及び第2電極6は、互いに離間して形成され、第1電極5はモリブデンMoからなり、第2電極6はパラジウムPdからなるように形成される。
なお、第1電極5と第2電極6とは第1半導体層1とショットキー接合を形成する材料で構成されているが、第1電極5と第2電極6とは周囲温度に対する漏れ電流が互いに異なるようにバリアハイトΦBが異なる材料から選択されている。ちなみに第1電極5及び第2電極6はモリブデンMo、パラジウムPd、バナジウムV、クロムCr、アルミニウムAl、プラチナPtのうちいずれかから選択される。
FIG. 1 is a sectional view showing a composite semiconductor device according to a first embodiment of the present invention. In FIG. 1, in the composite semiconductor device, an FRD (Fast Recovery Diode) 11 that is a semiconductor element and a plurality of SBDs (Shotky Barrier Diode) 12a and 12b that are sensor elements coexist on the same semiconductor layer. A composite semiconductor device formed on
FRD 11 is an N-type first semiconductor layer 1 having a thickness of about 240 μm, an island shape formed on first semiconductor layer 1, and a P-type first semiconductor layer 1 and a PN junction formed with PN junction. 2 semiconductor layer 2, insulating film 4 formed on each surface of first semiconductor layer 1 and second semiconductor layer 2, and second semiconductor formed in an opening of insulating film 4 on second semiconductor layer 2 A third electrode 7 having a thickness of about 5 to 8 μm electrically connected to the layer 2, a fourth electrode 8 formed on the first semiconductor layer 1 and electrically connected to the first semiconductor layer 1; Consists of
An SBD 12 a is formed on each surface of the first semiconductor layer 1, a P-type third semiconductor layer 3 formed in an island shape on the first semiconductor layer 1, and the first semiconductor layer 1 and the third semiconductor 3. The first insulating layer 4 is formed in the opening of the insulating film 4 on the first semiconductor layer 1 and the third semiconductor layer 3 and a Schottky junction is formed between the first semiconductor layer 1 and the first semiconductor layer 1. An electrode 5 and a fourth electrode 8 electrically connected to the first semiconductor layer 1;
The SBD 12b is formed on each surface of the first semiconductor layer 1, the P-type third semiconductor layer 3 formed in an island shape on the first semiconductor layer 1, and the first semiconductor layer 1 and the third semiconductor layer 3. A second electrode 6 formed in the opening of the insulating film 4 on the first semiconductor layer 1 and having a Schottky junction formed with the first semiconductor layer 1; A fourth electrode 8 electrically connected to the semiconductor layer 1;
The first electrode 5 and the second electrode 6 constituting the SBDs 12a and 12b are formed so as to be separated from each other, the first electrode 5 is made of molybdenum Mo, and the second electrode 6 is made of palladium Pd.
The first electrode 5 and the second electrode 6 are made of a material that forms a Schottky junction with the first semiconductor layer 1, but the first electrode 5 and the second electrode 6 have a leakage current with respect to the ambient temperature. Different barrier heights ΦB are selected from different materials. Incidentally, the first electrode 5 and the second electrode 6 are selected from any of molybdenum Mo, palladium Pd, vanadium V, chromium Cr, aluminum Al, and platinum Pt.

従って、本発明の実施形態に係わる複合半導体装置は、同一の半導体層上にセンサ素子として複数のSBD12a、12bを構成する第1電極5及び第2電極6が互いに離間して形成され、さらに第1電極5及び第2電極6の材質が互いに異なるように選択され形成されている点で、従来の複合半導体装置と相違し、この他は従来の複合半導体装置と同一に構成されている。
Therefore, in the composite semiconductor device according to the embodiment of the present invention, the first electrode 5 and the second electrode 6 constituting the plurality of SBDs 12a and 12b as sensor elements are formed on the same semiconductor layer so as to be separated from each other. The first electrode 5 and the second electrode 6 are different from the conventional composite semiconductor device in that the materials of the first electrode 5 and the second electrode 6 are selected so as to be different from each other. The rest of the configuration is the same as that of the conventional composite semiconductor device.

SBDの漏れ電流IRの温度特性は、図5に示すように、ショットキー電極の材料に依存し、同一の周囲温度に対するIRの値はショットキー電極の材料に応じて異なる。例えば、Mo、Pdはともに温度が高くなるほどIRは大きくなるという線形性を有するが、Moは比較的低い温度領域においてPdよりもIRは大きい。又、比較的高い温度領域において、Moの線形性は崩れるが、Pdの線形性は良好である。
As shown in FIG. 5, the temperature characteristic of the leakage current IR of the SBD depends on the material of the Schottky electrode, and the IR value for the same ambient temperature differs depending on the material of the Schottky electrode. For example, both Mo and Pd have a linearity that IR increases as the temperature increases, but Mo has a higher IR than Pd in a relatively low temperature region. Further, in a relatively high temperature region, the linearity of Mo is broken, but the linearity of Pd is good.

第1実施例によれば、MoからなるSBD12aとPdからなるSBD12bとは互いにIRの温度特性が異なる材料で形成されているため、高温領域においては、SBD12aのIRの温度特性の線形性が劣化するが、SBD12bから検出するように切り替えることで、SBD12bのIRの温度特性から精度良くFRDの温度を推定できる。又、低温領域においてはSBD12bのIRが小さくなるが、SBD12aから検出するように切り替えることで、比較的大きなIRが流れるので、精度良く温度を推定できる。このようにFRD11の温度に応じてSBD12a、12bを切り替えて温度検出させることで、幅広い温度領域において、精度良くFRD11の温度を検出できる。
According to the first embodiment, since the SBD 12a made of Mo and the SBD 12b made of Pd are formed of materials having different IR temperature characteristics, the linearity of the IR temperature characteristics of the SBD 12a deteriorates in the high temperature region. However, by switching to detect from the SBD 12b, the temperature of the FRD can be accurately estimated from the IR temperature characteristics of the SBD 12b. Moreover, although IR of SBD12b becomes small in a low temperature area | region, since comparatively big IR flows by switching so that it may detect from SBD12a, temperature can be estimated accurately. As described above, the temperature of the FRD 11 can be accurately detected in a wide temperature range by switching the SBDs 12a and 12b according to the temperature of the FRD 11 to detect the temperature.

なお、第1電極5及び第2電極6の端部直下の第1半導体層1上に島状に形成されたP型の第3半導体層3は、第3半導体層3で挟まれた第1電極5及び第2電極6直下の第1半導体層1の部分を完全に空乏化させるために配設するように図示しているが、第3半導体層3は配設しなくても良い。
The P-type third semiconductor layer 3 formed in an island shape on the first semiconductor layer 1 immediately below the end portions of the first electrode 5 and the second electrode 6 is sandwiched between the first semiconductor layer 3 and the first semiconductor layer 1. Although the portion of the first semiconductor layer 1 directly below the electrode 5 and the second electrode 6 is shown to be completely depleted, the third semiconductor layer 3 may not be provided.

図2は本発明の第2実施例の複合半導体装置を示す断面図である。図2において、複合半導体装置は、絶縁膜4上において、第1半導体層1及び絶縁膜4よりも高い熱伝導率を有する熱伝導性材料からなる伝熱板9が配設されている。伝熱板9は、絶縁膜4上において、第1電極5及び第2電極6及び第3電極7のうち少なくとも1つの電極の端部に機械的に接触し、その電極の端部から他の電極側に向かって配設されている。従って伝熱板9は、第1電極5から第3電極7までの距離または/且つ第2電極6から第3電極7までの距離を縮めるように配設されている。
FIG. 2 is a sectional view showing a composite semiconductor device according to the second embodiment of the present invention. In FIG. 2, in the composite semiconductor device, a heat transfer plate 9 made of a thermally conductive material having a higher thermal conductivity than the first semiconductor layer 1 and the insulating film 4 is disposed on the insulating film 4. The heat transfer plate 9 is in mechanical contact with the end of at least one of the first electrode 5, the second electrode 6, and the third electrode 7 on the insulating film 4. It is arranged toward the electrode side. Therefore, the heat transfer plate 9 is disposed so as to reduce the distance from the first electrode 5 to the third electrode 7 and / or the distance from the second electrode 6 to the third electrode 7.

第2実施例によれば、第1電極5と第3電極7との間及び第2電極6と第3電極7との間の絶縁膜4が、製造上の加工性が良く、第1半導体層1よりも薄く且つ第1半導体層1とほぼ等しい熱伝導率を有している。従って、伝熱板9を配設することで、FRD11の温度上昇が、絶縁膜4から第1電極5又は第2電極6へとすばやく良好に検出されるため、従来のように第1半導体層1を介してSBD12a、12bで検出される場合に比べ、高い応答速度で温度上昇を検出できる。
According to the second embodiment, the insulating film 4 between the first electrode 5 and the third electrode 7 and between the second electrode 6 and the third electrode 7 has good workability in manufacturing, and the first semiconductor It is thinner than the layer 1 and has a thermal conductivity substantially equal to that of the first semiconductor layer 1. Therefore, by arranging the heat transfer plate 9, an increase in the temperature of the FRD 11 is detected quickly and satisfactorily from the insulating film 4 to the first electrode 5 or the second electrode 6, so that the first semiconductor layer as in the prior art is used. As compared with the case where the SBDs 12a and 12b are used to detect the temperature rise, the temperature rise can be detected at a higher response speed.

図3は本発明の第3実施例の複合半導体装置を示す断面図である。図3において、複合半導体装置は、第1電極5及び第2電極6上に、第1半導体層1及び絶縁膜4よりも高い熱伝導率を有する熱伝導性材料からなる伝熱板9a、9bが配設されている。伝熱板9a、9bは夫々、第1電極5及び第2電極6と機械的に接触し、平面的に見て、第3電極7と重なる領域を有するように第1電極5へと延伸して形成されている。
FIG. 3 is a sectional view showing a composite semiconductor device according to the third embodiment of the present invention. In FIG. 3, the composite semiconductor device includes heat transfer plates 9 a and 9 b made of a heat conductive material having a higher thermal conductivity than the first semiconductor layer 1 and the insulating film 4 on the first electrode 5 and the second electrode 6. Is arranged. The heat transfer plates 9a and 9b are in mechanical contact with the first electrode 5 and the second electrode 6, respectively, and extend to the first electrode 5 so as to have a region overlapping the third electrode 7 in plan view. Is formed.

第3実施例によれば、断面的に見て、伝熱板9a、9bの延伸された一部と第1電極5との間の絶縁膜4が第1半導体層1よりも薄く、且つ、伝熱板9a、9bは第1半導体層1よりも高い熱伝導率を有する熱伝導性材料から形成されている。従って、FRD11の温度上昇が、絶縁膜4及び伝熱板9a、9bを介して第1電極5及び第2電極6へとすばやく良好に検出されるため、従来のように第1半導体層1を介してSBD12a、12bで検出される場合に比べ、高い応答速度で温度上昇を検出できる。
According to the third embodiment, the insulating film 4 between the extended portion of the heat transfer plates 9a and 9b and the first electrode 5 is thinner than the first semiconductor layer 1 when viewed in cross section, and The heat transfer plates 9 a and 9 b are made of a heat conductive material having a higher heat conductivity than that of the first semiconductor layer 1. Therefore, since the temperature rise of the FRD 11 is detected quickly and satisfactorily to the first electrode 5 and the second electrode 6 through the insulating film 4 and the heat transfer plates 9a and 9b, the first semiconductor layer 1 is formed as in the conventional case. As compared with the case where the SBDs 12a and 12b detect the temperature rise, the temperature rise can be detected at a higher response speed.

本発明の複合半導体装置を構成する半導体素子領域は、FRDに限定されず、その他のダイオードや、IGBT、FET等のトランジスタで構成されてもよい。さらに、伝熱板9、9a、9bは、導電性材料に限定されず、第1半導体層1よりも高い熱伝導性を有する材料に置き換えることができる。さらに、伝熱板9a、9bは、第3電極7と接触し、第1電極5及び第2電極6へと延伸して形成されても良い。又、第2半導体層2と第3電極7との間にモリブデンMo、パラジウムPd、バナジウムV、プラチナPt等から構成されるバリアメタル膜を介在させても良い。
The semiconductor element region constituting the composite semiconductor device of the present invention is not limited to the FRD, and may be composed of other diodes, transistors such as IGBTs and FETs. Furthermore, the heat transfer plates 9, 9 a, 9 b are not limited to conductive materials, and can be replaced with materials having higher thermal conductivity than the first semiconductor layer 1. Furthermore, the heat transfer plates 9 a and 9 b may be formed by contacting the third electrode 7 and extending to the first electrode 5 and the second electrode 6. Further, a barrier metal film made of molybdenum Mo, palladium Pd, vanadium V, platinum Pt, or the like may be interposed between the second semiconductor layer 2 and the third electrode 7.

また、本発明の実施形態に係る複合半導体装置は、図6に示すフライバック型スイッチング電源装置に限定されず、以下に示すような回路に適用することができる。なお、ダイオードD3は、センサ素子であって、ダイオードD2とはIRの温度特性が異なるSBDである。
即ち、図4(a)に示すフォワード型におけるトランスTの二次巻線Sと並列に接続しても良い。あるいは、図4(b)に示すプッシュプル型におけるトランスTの二次巻線S1の一端と出力端子との間、および二次巻線S2の一端と出力端子との間に接続しても良い。あるいは、図4(c)に示す降圧チョッパ型におけるスイッチング素子Qを介して直流電源DCと並列に接続しても良い。このように様々なスイッチング電源における、発熱の大きい半導体素子と本発明の実施形態に係る複合半導体装置とを置き換えることで、応答の速い過熱保護が実現できる。
Further, the composite semiconductor device according to the embodiment of the present invention is not limited to the flyback type switching power supply device shown in FIG. 6, and can be applied to the following circuit. The diode D3 is a sensor element, and is an SBD having a different IR temperature characteristic from the diode D2.
That is, you may connect in parallel with the secondary winding S of the transformer T in the forward type shown to Fig.4 (a). Alternatively, the push-pull transformer shown in FIG. 4B may be connected between one end of the secondary winding S1 and the output terminal of the transformer T and between one end of the secondary winding S2 and the output terminal. . Alternatively, the DC power supply DC may be connected in parallel through the switching element Q in the step-down chopper type shown in FIG. Thus, by replacing the semiconductor element that generates a large amount of heat in various switching power supplies with the composite semiconductor device according to the embodiment of the present invention, it is possible to realize overheat protection with quick response.

本発明の第1実施例の複合半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the composite semiconductor device of 1st Example of this invention. 本発明の第2実施例の複合半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the composite semiconductor device of 2nd Example of this invention. 本発明の第3実施例の複合半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the composite semiconductor device of 3rd Example of this invention. 本発明の複合半導体装置を適用したスイッチング電源装置の構成を示す回路構成図である。It is a circuit block diagram which shows the structure of the switching power supply device to which the composite semiconductor device of this invention is applied. SBDの漏れ電流IRの温度特性を示す図である。It is a figure which shows the temperature characteristic of the leakage current IR of SBD. 従来のスイッチング電源装置の構成を示す回路構成図である。It is a circuit block diagram which shows the structure of the conventional switching power supply apparatus. 従来の複合半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional composite semiconductor device.

符号の説明Explanation of symbols

1 第1半導体層
2 第2半導体層
3 第3半導体層
4 絶縁膜
5 第1電極
6 第2電極
7 第3電極
8 第4電極
9、9a、9b 伝熱板
11 FRD
12、12a、12b SBD
DESCRIPTION OF SYMBOLS 1 1st semiconductor layer 2 2nd semiconductor layer 3 3rd semiconductor layer 4 Insulating film 5 1st electrode 6 2nd electrode 7 3rd electrode 8 4th electrode 9, 9a, 9b Heat-transfer plate 11 FRD
12, 12a, 12b SBD

Claims (4)

パワー半導体素子として機能する半導体素子領域と、前記半導体素子領域の温度上昇を検出するセンサとして機能する複数のセンサ素子領域と、を半導体基体に備えた複合半導体装置において、
前記複数のセンサ素子領域は、前記半導体基体とショットキー接合を形成する第1電極を有する第1センサ素子と、前記第1電極と離間し、前記半導体基体とショットキー接合を形成し、周囲温度に対する漏れ電流が前記第1電極と異なる第2電極を有する第2センサ素子と、からなることを特徴とする複合半導体装置。
In a composite semiconductor device comprising a semiconductor substrate, a semiconductor element region functioning as a power semiconductor element, and a plurality of sensor element regions functioning as sensors for detecting a temperature rise in the semiconductor element region.
The plurality of sensor element regions include a first sensor element having a first electrode that forms a Schottky junction with the semiconductor substrate, and is spaced apart from the first electrode, forms a Schottky junction with the semiconductor substrate, and has an ambient temperature. And a second sensor element having a second electrode having a leakage current different from that of the first electrode.
第1電極はMoから構成され、第2電極はPdから構成されていることを特徴とする請求項1の複合半導体装置。
2. The composite semiconductor device according to claim 1, wherein the first electrode is made of Mo and the second electrode is made of Pd.
低温領域と高温領域とでセンサ素子を切り替えて温度検出することを特徴とする請求項1又は2の複合半導体装置。
3. The composite semiconductor device according to claim 1, wherein the temperature is detected by switching the sensor element between a low temperature region and a high temperature region.
パワー半導体素子として機能する半導体素子領域と、前記半導体素子領域の温度上昇を検出するセンサとして機能する複数のセンサ素子領域と、を半導体基体に備えた複合半導体装置において、
スイッチング電源装置の整流素子として使用される複合半導体素子。
In a composite semiconductor device comprising a semiconductor substrate, a semiconductor element region functioning as a power semiconductor element, and a plurality of sensor element regions functioning as sensors for detecting a temperature rise in the semiconductor element region.
A composite semiconductor element used as a rectifying element for a switching power supply.
JP2008162766A 2007-12-17 2008-06-23 Composite semiconductor device Active JP5333893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162766A JP5333893B2 (en) 2007-12-17 2008-06-23 Composite semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007324861 2007-12-17
JP2007324861 2007-12-17
JP2008162766A JP5333893B2 (en) 2007-12-17 2008-06-23 Composite semiconductor device

Publications (2)

Publication Number Publication Date
JP2009170864A true JP2009170864A (en) 2009-07-30
JP5333893B2 JP5333893B2 (en) 2013-11-06

Family

ID=40971672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162766A Active JP5333893B2 (en) 2007-12-17 2008-06-23 Composite semiconductor device

Country Status (1)

Country Link
JP (1) JP5333893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860089B2 (en) 2012-09-04 2014-10-14 Samsung Electronics Co., Ltd. High electron mobility transistor and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540064A (en) * 1991-08-06 1993-02-19 Mitsuteru Kimura Schottky junction temperature sensor
JP2000164528A (en) * 1998-11-25 2000-06-16 Sanyo Electric Co Ltd Silicon carbide semiconductor device provided with schottky junction
JP2001045655A (en) * 1999-07-28 2001-02-16 Fujitsu Ltd Temperature switching circuit
WO2004068686A1 (en) * 2003-01-28 2004-08-12 Sanken Electric Co., Ltd. Power supply device
JP2006351628A (en) * 2005-06-13 2006-12-28 Denso Corp Semiconductor device
JP2008072863A (en) * 2006-09-15 2008-03-27 Sanken Electric Co Ltd Overheating detection circuit for power supply unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540064A (en) * 1991-08-06 1993-02-19 Mitsuteru Kimura Schottky junction temperature sensor
JP2000164528A (en) * 1998-11-25 2000-06-16 Sanyo Electric Co Ltd Silicon carbide semiconductor device provided with schottky junction
JP2001045655A (en) * 1999-07-28 2001-02-16 Fujitsu Ltd Temperature switching circuit
WO2004068686A1 (en) * 2003-01-28 2004-08-12 Sanken Electric Co., Ltd. Power supply device
JP2006351628A (en) * 2005-06-13 2006-12-28 Denso Corp Semiconductor device
JP2008072863A (en) * 2006-09-15 2008-03-27 Sanken Electric Co Ltd Overheating detection circuit for power supply unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860089B2 (en) 2012-09-04 2014-10-14 Samsung Electronics Co., Ltd. High electron mobility transistor and method of manufacturing the same

Also Published As

Publication number Publication date
JP5333893B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
KR101317590B1 (en) Power conversion device and semiconductor switch
JP2008072848A (en) Semiconductor device
JP2006310769A (en) Group iii nitride integrated schottky electrode and power elements
CN103650141A (en) Super-junction semiconductor device
JP2010259241A (en) Switching control circuit
JP2012004253A (en) Bidirectional switch, two-wire ac switch, switching power circuit, and method for driving bidirectional switch
JP6046262B2 (en) Semiconductor device
US8017996B2 (en) Semiconductor device, and energy transmission device using the same
JP6543438B2 (en) Semiconductor device
JP2002280556A (en) Power semiconductor device
WO2014203487A1 (en) Semiconductor device, control ic for switching power supply, and switching power supply device
JP2008235856A (en) Semiconductor device
KR101444082B1 (en) Semiconductor device
JP5333893B2 (en) Composite semiconductor device
JP5279896B2 (en) Power supply
JP5030434B2 (en) Silicon carbide semiconductor device
JP5710995B2 (en) Semiconductor device
JP2018137391A (en) Semiconductor device
JP5531384B2 (en) Composite semiconductor device
JP2008072863A (en) Overheating detection circuit for power supply unit
JP4762663B2 (en) Semiconductor device
JP5678407B2 (en) Semiconductor device
TWI641152B (en) Resistor having increasing resistance with increasing voltage
JP2019204809A (en) Thermoelectric conversion device
JP2011023527A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5333893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250