JPH08315856A - Lithium secondary battery and manufacture of positive electrode for lithium secondary battery - Google Patents

Lithium secondary battery and manufacture of positive electrode for lithium secondary battery

Info

Publication number
JPH08315856A
JPH08315856A JP7114560A JP11456095A JPH08315856A JP H08315856 A JPH08315856 A JP H08315856A JP 7114560 A JP7114560 A JP 7114560A JP 11456095 A JP11456095 A JP 11456095A JP H08315856 A JPH08315856 A JP H08315856A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
lithium secondary
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7114560A
Other languages
Japanese (ja)
Inventor
Masayoshi Nakajima
匡良 中島
Jun Suzuki
純 鈴木
Kenji Tsuchiya
謙二 土屋
Kazuo Anzai
和雄 安斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7114560A priority Critical patent/JPH08315856A/en
Publication of JPH08315856A publication Critical patent/JPH08315856A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery having high capacity and a manufacturing method of a positive electrode material suitable for constituting the lithium secondary battery having high capacity. CONSTITUTION: A lithium secondary battery is provided with a carbonaceous negative electrode to store and release a lithium ion, lithium ion conductive electrolyte and a positive electrode composed of a lithium containing oxide. The positive electrode has an Li2 MnO3 phase and an LiMn2 O4 phase, and the strongest ray of an X-ray diffraction ray by a Cu-Kα ray is formed of a lithium containing oxide being (ILi2 MnO3 >ILiMn2 O4 ). In a manufacturing method of a positive electrode material for the lithium secondary battery, electrolytic manganese and lithium nitrate are mixed together in the mole ratio 1/3 to 1/7 of Li/Mn, and this mixture is heated to a temperature of 320 to 380 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池および
リチウム二次電池用正極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery and a method for producing a positive electrode for a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴って、その主
電源やメモリーバックアップ用電源として、高性能なリ
チウム二次電池が要望されている。たとえば、コードレ
スホン,コードレス電動工具などのコードレス機器、ビ
デオカメラ,ヘッドホンステレオなどの音響映像機器、
ワードプロセッサー,電子手帳,電子辞書などの文具事
務機器、メモリー内蔵の家電機器、電気自動車、太陽電
池と組み合わせた時計,計算機など、携帯用機器の主電
源やメモリーバックアップ用電源として、長時間かつ経
済的に使用できるリチウム二次電池が要望されている。
2. Description of the Related Art In recent years, with the development of electronic equipment, a high-performance lithium secondary battery has been demanded as a main power source and a memory backup power source. For example, cordless devices such as cordless phones and cordless power tools, audiovisual devices such as video cameras and headphone stereos,
Stationary office equipment such as word processors, electronic notebooks, electronic dictionaries, home appliances with built-in memory, electric vehicles, watches combined with solar cells, calculators, etc. There is a demand for a lithium secondary battery that can be used for.

【0003】ところで、リチウム二次電池においては、
正極活物質として二硫化チタン,五酸化バナジウム,マ
ンガン酸化物などが用いられておりる、資源的に豊富で
安価なマンガン酸化物が注目されている。しかし、マン
ガン酸化物の場合、マンガンと酸素のみで構成(形成)
された二酸化マンガンなどは、可逆性が乏しく充放電特
性が劣るため、たとえばLiMn2 O4 のように、マンガン
酸化物にリチウム塩を導入したリチウムマンガン複合酸
化物の状態で使用することが提案されている(たとえば
米国特許第4,507,371 号明細書)。また、この種のリチ
ウムマンガン複合酸化物としては、前記LiMn2 O4 以外
に、Li2 Mn4 O9 ,Li4 Mn5 O12などのスピネル構造の
化合物[たとえば、Mat.Res.Bull.,25,p 657(199
0)],さらにはLi2 Mn O3 を含有する二酸化マンガン
(特開昭 63-114064号公報)などが知られている。
By the way, in the lithium secondary battery,
Titanium disulfide, vanadium pentoxide, manganese oxide, and the like are used as the positive electrode active material, and resource-rich and inexpensive manganese oxide is drawing attention. However, in the case of manganese oxide, it is composed (formed) of only manganese and oxygen.
Since such manganese dioxide has poor reversibility and poor charge-discharge characteristics, it has been proposed to use it in the state of a lithium manganese composite oxide in which a lithium salt is introduced into manganese oxide, such as LiMn 2 O 4. (For example, US Pat. No. 4,507,371). Further, as the lithium-manganese composite oxide of this type, in addition to the LiMn 2 O 4 , compounds having a spinel structure such as Li 2 Mn 4 O 9 and Li 4 Mn 5 O 12 [for example, Mat.Res.Bull., 25, p 657 (199
[0]], and manganese dioxide containing Li 2 Mn O 3 (JP-A-63-114064) is known.

【0004】さらに、最近では、 Cukα線によるX線回
折パターンにおいて、 2θが19°,21°,33°,37°,
42°,53°および66°付近にピークを有し、かつ21°付
近のピークと19°付近のピークとの強度比 1: 0.7〜
1: 1.2の値を有するリチウムマンガン複合酸化物が、
正極活物質として提案されている(特開平5-174823号公
報)。
Furthermore, recently, in the X-ray diffraction pattern by Cuk α-ray, 2θ is 19 °, 21 °, 33 °, 37 °,
It has peaks near 42 °, 53 ° and 66 °, and intensity ratio between peaks near 21 ° and peaks near 19 ° 1: 0.7〜
1: a lithium manganese composite oxide having a value of 1.2,
It has been proposed as a positive electrode active material (Japanese Patent Laid-Open No. 5-174823).

【0005】[0005]

【発明が解決しようとする課題】しかし、前記リチウム
マンガン複合酸化物は、スピネル系の場合、スピネル構
造において占め得るリチウム(Li)の位置が限定され、
充放電に利用できる有効な電位範囲が小さいという欠点
がある。また、Li2 Mn O3 を含有する二酸化マンガンの
場合は、Li2 Mn O3 が充放電に関与しないため、電池容
量が低下するという問題がある。
However, in the case of the spinel-based lithium manganese composite oxide, the position of lithium (Li) that can be occupied in the spinel structure is limited,
There is a drawback that the effective potential range that can be used for charging and discharging is small. In the case of manganese dioxide containing Li 2 Mn O 3, since Li 2 Mn O 3 is not involved in charging and discharging, there is a problem that the battery capacity decreases.

【0006】本発明は、従来のリチウムマンガン複合酸
化物では、高容量のリチウム二次電池を達成し得ないと
いう問題を解決し、高容量のリチウム二次電池および高
容量リチウム二次電池の構成に適する正極材料の製造方
法を提供することを目的とする。
The present invention solves the problem that a conventional lithium-manganese composite oxide cannot achieve a high-capacity lithium secondary battery, and provides a high-capacity lithium secondary battery and a high-capacity lithium secondary battery. It is an object of the present invention to provide a method for producing a positive electrode material suitable for.

【0007】[0007]

【課題を解決するための手段】本発明に係るリチウム二
次電池は、リチウムイオンを吸蔵・放出する炭素質製の
負極と、リチウムイオン伝導性電解液と、リチウム含有
酸化物からなる正極とを備えたリチウム二次電池におい
て、前記正極はLi2 Mn O3 相およびLiMn2 O 4 相を有
し、かつCu-Kα線によるX線回折線の最強線がILi2 Mn
O3 >ILiMn2 O 4 であるリチウム含有酸化物で形成さ
れていることを特徴とする。
A lithium secondary battery according to the present invention comprises a carbonaceous negative electrode which absorbs and releases lithium ions, a lithium ion conductive electrolyte, and a positive electrode which comprises a lithium-containing oxide. In the provided lithium secondary battery, the positive electrode has a Li 2 Mn O 3 phase and a LiMn 2 O 4 phase, and the strongest line of the X-ray diffraction line by the Cu-Kα line is ILi 2 Mn.
It is characterized by being formed of a lithium-containing oxide in which O 3 > ILiMn 2 O 4 .

【0008】本発明に係るリチウム二次電池用正極材料
の製造方法は、電解マンガンおよび硝酸リチウムを、 L
i/Mnのモル比 1/3〜 1/7で混合し、この混合物を 320〜
380℃の温度に加熱することを特徴とする。
The method for producing a positive electrode material for a lithium secondary battery according to the present invention comprises:
Mix i / Mn at a molar ratio of 1/3 to 1/7 and mix this mixture from 320 to
It is characterized by heating to a temperature of 380 ° C.

【0009】本発明は鋭意検討を重ねた結果、 Li/Mnの
モル比を 1/3〜 1/7に選択した電解マンガンおよび硝酸
リチウムの混合粉末を 320℃〜 380℃に加熱(焼成)し
て、合成したリチウム含有酸化物を正極活物質として利
用した場合、リチウム二次電池の高容量化がが容易に達
成されることを見出し、本発明を完成するに至った。す
なわち、前記合成されたリチウム含有酸化物中には、Li
2 Mn O3 相およびLiMn2 O 4 相が含有されており、Cu-K
α線によるX線回折線の最強線がILi2 Mn O3>ILiMn
2 O 4 の条件を満たしているものを正極活物質とした場
合、高容量のリチウム二次電池として機能することを確
認した。ここで、加熱(焼成)温度が、320℃以下では
未反応の硝酸リチウムが残存しサイクル寿命が低下す
る。また、加熱(焼成)温度が、 380℃以上では前記Cu
-Kα線によるX線回折線の最強線がILi2 Mn O3 <ILi
Mn2 O 4 となって、理由は明確でないが電池容量の向上
を図り得ない。そして、ここでの加熱(焼成)時間は、
一般的に 2〜10時間程度である。
As a result of extensive studies, the present invention heats (sinters) a mixed powder of electrolytic manganese and lithium nitrate in which the molar ratio of Li / Mn is selected from 1/3 to 1/7 to 320 ° C to 380 ° C. Then, it was found that when the synthesized lithium-containing oxide is used as a positive electrode active material, a high capacity of a lithium secondary battery can be easily achieved, and the present invention has been completed. That is, in the synthesized lithium-containing oxide, Li
Contains 2 Mn O 3 phase and LiMn 2 O 4 phase, Cu-K
The strongest X-ray diffraction line due to α rays is ILi 2 Mn O 3 > ILiMn
It was confirmed that when a positive electrode active material satisfying the conditions of 2 O 4 is used, it functions as a high capacity lithium secondary battery. Here, when the heating (baking) temperature is 320 ° C. or lower, unreacted lithium nitrate remains and the cycle life is reduced. If the heating (firing) temperature is 380 ° C or higher, the Cu content
-The strongest X-ray diffraction line due to Kα rays is ILi 2 Mn O 3 <ILi
It becomes Mn 2 O 4 , but the reason for this is not clear, but the battery capacity cannot be improved. And the heating (firing) time here is
Generally, it is about 2 to 10 hours.

【0010】なお、前記リチウム含有酸化物の合成に使
用する電解マンガンの平均粒径は、特に制限はないが、
平均粒径 5μm 未満では反応が速過ぎてコントロールが
難しいこと、逆に平均粒径が50μm よりも大きいと反応
速度が遅過ぎるので、平均粒径は約 5〜50μm の範囲に
あることが好ましい。また、電解マンガンの比表面積が
10〜50 m2 /gの範囲にあることが望ましい。その理由
は、比表面積が小さいと反応が進行しにくく、逆に比表
面積が大きすぎると嵩密度が小さくなりすぎ活物質の充
填量が減少して放電容量が低下するからである。
The average particle size of electrolytic manganese used in the synthesis of the lithium-containing oxide is not particularly limited,
If the average particle size is less than 5 μm, the reaction is too fast to control, and if the average particle size is more than 50 μm, the reaction rate is too slow. Therefore, the average particle size is preferably in the range of about 5 to 50 μm. Also, the specific surface area of electrolytic manganese
It is desirable to be in the range of 10 to 50 m 2 / g. The reason is that if the specific surface area is small, the reaction is difficult to proceed, and conversely, if the specific surface area is too large, the bulk density becomes too small, and the filling amount of the active material is decreased to lower the discharge capacity.

【0011】前記リチウム含有酸化物の合成に使用する
硝酸リチウムは、粒径や比表面積に制限はないが、乾式
にて混合する場合は電解マンガンよりも小さい粒径が好
ましい。粒径の調節には混合工程の前にメノウ乳鉢など
で粗粉砕することも適宜行われる。
The lithium nitrate used for the synthesis of the lithium-containing oxide is not limited in particle size and specific surface area, but when mixed in a dry system, a particle size smaller than electrolytic manganese is preferable. To adjust the particle size, coarse pulverization may be appropriately performed in an agate mortar or the like before the mixing step.

【0012】原料配合比は Li/Mnのモル比に換算して 1
/3〜 1/7となる範囲に選ばれる。Li量がMn量の 1/3を超
えると放電容量が低下し、逆にLi量がMn量の 1/7よりも
少なくなると未反応のγ−β相の二酸化マンガンが多く
なり容量が低下する。
The raw material compounding ratio is converted to a Li / Mn molar ratio of 1
It is selected in the range of / 3 to 1/7. When the amount of Li exceeds 1/3 of the amount of Mn, the discharge capacity decreases, and conversely, when the amount of Li becomes less than 1/7 of the amount of Mn, the unreacted γ-β phase manganese dioxide increases and the capacity decreases. .

【0013】[0013]

【作用】本発明に係るリチウム二次電池は、リチウム含
有酸化物中のLi2 Mn O3 相とLiMn2 O4 相のCu-kα線に
よるX線回折線の最強線がILi2 Mn O3 >ILiMn2 O4
で表される関係を有するものを特に正極活物質として用
いている。そして、このような正極活物質の使用によっ
て、高容量でかつ充放電サイクル特性にすぐれた信頼性
の高いリチウム二次電池として機能する。
In the lithium secondary battery according to the present invention, the strongest X-ray diffraction line by the Cu-kα line of the Li 2 Mn O 3 phase and the LiMn 2 O 4 phase in the lithium-containing oxide is ILi 2 Mn O 3 > ILiMn 2 O 4
In particular, a material having a relationship represented by is used as the positive electrode active material. By using such a positive electrode active material, it functions as a highly reliable lithium secondary battery having high capacity and excellent charge / discharge cycle characteristics.

【0014】また、本発明に係る正極活物質の製造方法
によれば、上記のように実用上すぐれた機能を呈するリ
チウム二次電池の提供が容易になる。
Further, according to the method for producing a positive electrode active material according to the present invention, it becomes easy to provide a lithium secondary battery having a practically excellent function as described above.

【0015】[0015]

【実施例】次に、図1〜図4を参照して本発明の実施例
を説明する。
Embodiments of the present invention will now be described with reference to FIGS.

【0016】実施例1 500mlのポリエチレン樹脂製の瓶に、平均粒径約10μm
,比表面積約 15m2 /gの電解二酸化マンガン 100g
と、予めメノウ乳鉢で粗粉砕した硝酸リチウムを配合モ
ル比で Li/Mn= 3/7になるように所定量秤量し、これを
約 1時間磁性のボールミルに収容して混合を行った。次
いで、この混合粉末約30g を30mm× 200mmの磁性ボート
に収容して電気炉に挿入し、大気雰囲気下 270℃で予備
焼成を 1時間行った後、 320℃で 5時間加熱焼成して、
リチウム含有酸化物系の正極活物質(試料A)を得た。
Example 1 In a 500 ml polyethylene resin bottle, the average particle size was about 10 μm.
, 100g of electrolytic manganese dioxide with a specific surface area of about 15m 2 / g
Then, a predetermined amount of lithium nitrate roughly crushed in an agate mortar in advance was weighed so that the compounding molar ratio was Li / Mn = 3/7, and this was stored in a magnetic ball mill for about 1 hour for mixing. Next, about 30 g of this mixed powder was placed in a magnetic boat of 30 mm × 200 mm, inserted into an electric furnace, pre-baked at 270 ° C for 1 hour in an air atmosphere, and then heated and baked at 320 ° C for 5 hours,
A lithium-containing oxide-based positive electrode active material (Sample A) was obtained.

【0017】実施例2 実施例1の場合と同じ配合モル比の混合粉末約30g を、
を30mm× 200mmの磁性ボートに収容して電気炉に挿入
し、大気雰囲気下 270℃での予備焼成を 1時間行った後
350℃で 5時間加熱焼成して、リチウム含有酸化物系の
正極活物質(試料B)を得た。
Example 2 About 30 g of mixed powder having the same compounding molar ratio as in Example 1 was added.
Was stored in a 30 mm × 200 mm magnetic boat, inserted into an electric furnace, and pre-baked at 270 ° C for 1 hour in the air atmosphere.
It was heated and baked at 350 ° C. for 5 hours to obtain a lithium-containing oxide-based positive electrode active material (Sample B).

【0018】実施例3 実施例1の場合において、予備焼成後 380℃で 5時間加
熱焼成を行った外は、実施例1の場合と同じ製造条件
で、リチウム含有酸化物系の正極活物質(試料C)を得
た。
Example 3 Under the same manufacturing conditions as in Example 1, except that the pre-baking was followed by heating and baking at 380 ° C. for 5 hours, the lithium-containing oxide-based positive electrode active material ( Sample C) was obtained.

【0019】実施例4 実施例1の場合において、 280℃で 1時間予備焼成を行
った外は、実施例1の場合と同じ製造条件で、リチウム
含有酸化物系の正極活物質(試料D)を得た。 比較例1 実施例1の場合において、予備焼成後 300℃で 5時間加
熱焼成を行った外は、実施例1の場合と同じ製造条件
で、リチウム含有酸化物系の正極活物質(試料a)を得
た。
Example 4 A lithium-containing oxide-based positive electrode active material (Sample D) was produced under the same manufacturing conditions as in Example 1 except that pre-baking was performed at 280 ° C. for 1 hour. Got Comparative Example 1 A lithium-containing oxide-based positive electrode active material (Sample a) was produced under the same manufacturing conditions as in Example 1 except that the pre-baking was followed by heating and baking at 300 ° C. for 5 hours. Got

【0020】比較例2 実施例1の場合において、予備焼成後 400℃で 5時間加
熱焼成を行った外は、実施例1の場合と同じ製造条件
で、リチウム含有酸化物系の正極活物質(試料b)を得
た。
Comparative Example 2 Under the same manufacturing conditions as in Example 1, except that the pre-baking was followed by heating and baking at 400 ° C. for 5 hours in the case of Example 1, a lithium-containing oxide-based positive electrode active material ( A sample b) was obtained.

【0021】前記実施例1〜4の試料A,B,C,D、
および比較例1〜2の試料a,bについて、Cu-Kα線に
よるX線回折パターンをそれぞれ測定した。
Samples A, B, C, D of Examples 1 to 4,
And the X-ray diffraction pattern by Cu-K (alpha) ray was each measured about the samples a and b of Comparative Examples 1-2.

【0022】図1は試料A,B,C、Dおよび試料a,
bのX線パターンを、図2は試料A,DのX線パターン
をそれぞれ示す。ここで、各X線パターンは各試料に対
応させてA,B,C,D,a,bの記号を付けて表示し
ている。
FIG. 1 shows samples A, B, C, D and sample a,
FIG. 2 shows the X-ray pattern of b and FIG. 2 shows the X-ray pattern of samples A and D, respectively. Here, each X-ray pattern is displayed with the symbols A, B, C, D, a, b corresponding to each sample.

【0023】図1および図2から明らかなように、試料
A〜D(実施例1〜4)のX線回折パターンは、加熱焼
成温度が高くなるにつれてLiMn2 O4 相の回折パターン
が強くなっている以外は類似している。また、試料A,
B(実施例1,2)は、予備加熱温度が10℃異なってい
るが、類似の回折パターンを示している。
As it is apparent from FIGS. 1 and 2, X-ray diffraction pattern of the sample to D (Examples 1-4), the diffraction pattern of LiMn 2 O 4 phase becomes stronger as firing temperature increases Except that they are similar. In addition, sample A,
B (Examples 1 and 2) show similar diffraction patterns, although the preheating temperature differs by 10 ° C.

【0024】また、試料a(比較例1)の場合は、未反
応のLiNO3 相が残存しており、試料A〜Dの回折パター
ンと異なっている。一方、試料b(比較例2)の場合
は、存在するLi2 Mn O3 相とLiMn2 O4 相のそれぞれの
X線回折パターンの最強ピークがILi2 Mn O3 <ILiMn
2 O4 となっており、前記試料A〜DのX線回折パター
ンと異なっている。
In the case of sample a (Comparative Example 1), the unreacted LiNO3 phase remains, which is different from the diffraction patterns of samples A to D. On the other hand, in the case of sample b (Comparative Example 2), the strongest peaks of the X-ray diffraction patterns of the existing Li 2 Mn O 3 phase and LiMn 2 O 4 phase were ILi 2 Mn O 3 <ILiMn
2 O 4 , which is different from the X-ray diffraction patterns of Samples A to D.

【0025】次に、前記実施例1〜4および比較例1、
2で合成した正極活物質(試料A,B,C,D,a,
b)の電池特性を単極評価した。単極評価はそれぞれの
活物質に対して以下のように行った。すなわち、正極
は、上記のそれぞれの活物質を80質量部に対して導電材
のアセチレンブラック(AB)17質量部、および結着剤の
テフロ(PTFE)粉末 3質量部を秤量した。先ず、活物質
とアセチレンブラックを自動乳鉢を用いて10分間混合
し、その後テフロンを加え十分繊維化するまで約10分間
混合した。その後、この混合物をロールプレス機で厚さ
0.25〜0.27mmのシート状に延ばし、集電体であるステン
レスネットに圧着した。
Next, Examples 1 to 4 and Comparative Example 1,
2. Positive electrode active material synthesized in 2 (Samples A, B, C, D, a,
The battery characteristics of b) were unipolarly evaluated. Unipolar evaluation was performed as follows for each active material. That is, for the positive electrode, 17 parts by mass of acetylene black (AB) as a conductive material and 3 parts by mass of teflo (PTFE) powder as a binder were weighed with respect to 80 parts by mass of each of the above active materials. First, the active material and acetylene black were mixed in an automatic mortar for 10 minutes, and then Teflon was added and mixed for about 10 minutes until the fibers were sufficiently formed. Then, this mixture is thickened with a roll press.
It was rolled out into a sheet shape of 0.25 to 0.27 mm and pressure-bonded to a stainless steel net as a current collector.

【0026】このようにして得られた正極シ−トから、
長さ15mm×幅10mmの片をそれぞれ切り出し、活物質部分
が10mm×10mmになるよう調整して測定用電極とした。一
方、負極および参照電極としては、集電体のニッケルネ
ットに圧着されたLi金属箔を用い、また、電解液として
は、エチレンカーボネート(EC)−ジメチルカーボネー
ト( DMC)の混合溶液に、 1モルの LiClO4 を溶解した
ものを用いた。
From the positive electrode sheet thus obtained,
Pieces each having a length of 15 mm and a width of 10 mm were cut out and adjusted so that the active material portion was 10 mm × 10 mm to obtain a measurement electrode. On the other hand, as the negative electrode and the reference electrode, a Li metal foil pressure-bonded to the nickel net of the current collector was used, and as the electrolytic solution, 1 mol of ethylene carbonate (EC) -dimethyl carbonate (DMC) mixed solution was used. A solution of LiClO4 of was used.

【0027】図3は単極測定試験の実施態様を模式的に
示したもので、次ぎのような手順で単極評価を行った。
すなわち、ガラス製容器1内に、前記電解液2を収容す
る一方、前記測定用正極3の両側に負極4および参照電
極5を配置する形でそれぞれ浸漬した。なお、これらの
電極は3,4,5はそれぞれ充放電試験器6と電気的に
接続される。
FIG. 3 schematically shows an embodiment of the unipolar measurement test. The unipolar evaluation was carried out by the following procedure.
That is, the electrolytic solution 2 was housed in the glass container 1, while the negative electrode 4 and the reference electrode 5 were arranged on both sides of the measurement positive electrode 3 so as to be immersed. In addition, these electrodes 3, 4 and 5 are electrically connected to the charge / discharge tester 6, respectively.

【0028】前記各正極活物質について、充電電圧(充
電終了時)3.5V,放電電圧(放電終了時)2.0Vカし、20
℃に保った恒温槽中で定電流1mA/cm2 による充放電で行
った。図4は、前記単極充放電特性の測定結果を示すも
ので、比較例2の正極活物質(試料b)は初期容量が約
110mAh/gで、実施例1〜4の正極活物質(試料A〜D)
に比べて容量が小さく、サイクル特性を測定するに値し
なかった。図4より明らかなように実施例1〜4の正極
活物質は、いずれも70サイクルまで放電容量の低下が少
なく良好であるが、比較例1の正極活物質は放電容量の
低下が大きい。
For each of the above positive electrode active materials, charge voltage (at the end of charging) 3.5V, discharge voltage (at the end of discharging) 2.0V, 20
It was charged and discharged at a constant current of 1 mA / cm 2 in a constant temperature bath kept at ℃. FIG. 4 shows the measurement results of the single-pole charge / discharge characteristics. The positive electrode active material (Sample b) of Comparative Example 2 had an initial capacity of about
110 mAh / g, positive electrode active material of Examples 1 to 4 (Samples A to D)
The capacity was smaller than that of, and it was not worth measuring the cycle characteristics. As is clear from FIG. 4, all of the positive electrode active materials of Examples 1 to 4 show good decrease in discharge capacity up to 70 cycles, but the positive electrode active material of Comparative Example 1 shows large decrease in discharge capacity.

【0029】また、前記正極シ−トからそれぞれ切り出
した直径15.1mmの円盤状片、集電体のニッケルネットに
圧着された直径16mmの円盤状Li金属箔(負極)片、エチ
レンカーボネート−ジメチルカーボネート混合溶液に 1
モルの LiClO4 を溶解した電解液、この電解液を担持す
るとともに、正極片と負極片の間に介挿配置するセパレ
ータとを組み合わせ、常套的な手段でボタン型リチウム
二次電池をそれぞれ構成した。これらのボタン型リチウ
ム二次電池について、充放電特性をそれぞれ測定・評価
したところ、前記単極充放電特性に対応した結果が認め
られた。
Further, a disc-shaped piece having a diameter of 15.1 mm cut out from each of the positive electrode sheets, a disc-shaped Li metal foil (negative electrode) piece having a diameter of 16 mm crimped to a nickel net of a current collector, ethylene carbonate-dimethyl carbonate 1 to mixed solution
A button-type lithium secondary battery was constructed by a conventional means by combining an electrolytic solution in which a molar amount of LiClO4 was dissolved and a separator which supported the electrolytic solution and was interposed between the positive electrode piece and the negative electrode piece. The charge / discharge characteristics of these button-type lithium secondary batteries were measured and evaluated, respectively, and the results corresponding to the single-pole charge / discharge characteristics were found.

【0030】なお、本発明は上記実施例に限定されるも
のでなく、発明の趣旨を逸脱しない範囲でいろいろの変
形を採ることができる。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention.

【0031】[0031]

【発明の効果】以上に説明したように、本発明によれ
ば、電解マンガンおよび硝酸リチウムを320℃〜 380℃
の温度に加熱して合成され、かつ含まれている化合物の
うち、Li2 Mn O3 相とLiMn2 O4 相のCu-kα線によるX
線回折線の最強線がILi2 Mn O3>ILiMn2 O4 で表さ
れる関係を有する正極活物質を用いる。そして、このよ
うな正極活物質の応用・利用によって、高容量でかつ充
放電サイクル特性にすぐれたリチウム二次電池の提供が
可能となった。
As described above, according to the present invention, electrolytic manganese and lithium nitrate are added at 320 ° C to 380 ° C.
Of the compounds synthesized and heated by heating to the temperature of Li 2 Mn O 3 phase and LiMn 2 O 4 phase by Cu-kα ray
A positive electrode active material having a relationship in which the strongest line of the line diffraction lines is represented by ILi 2 Mn O 3 > ILiMn 2 O 4 is used. By applying and using such a positive electrode active material, it has become possible to provide a lithium secondary battery having a high capacity and excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るリチウム二次電池が具備する正極
活物質のX線回折線パターン例を本発明外の正極活物質
のX線回折線パターンと比較して示す曲線図。
FIG. 1 is a curve diagram showing an example of an X-ray diffraction line pattern of a positive electrode active material included in a lithium secondary battery according to the present invention in comparison with an X-ray diffraction line pattern of a positive electrode active material other than the present invention.

【図2】本発明に係るリチウム二次電池が具備する正極
活物質のX線回折線パターン例を比較して示す曲線図。
FIG. 2 is a curve diagram showing a comparison of X-ray diffraction line pattern examples of the positive electrode active material included in the lithium secondary battery according to the present invention.

【図3】リチウム二次電池が具備する正極活物質につい
て単極充放電特性の評価・測定の実施態様を示す模式
図。
FIG. 3 is a schematic diagram showing an embodiment of evaluation / measurement of single-pole charge / discharge characteristics of a positive electrode active material included in a lithium secondary battery.

【図4】本発明に係るリチウム二次電池例および本発明
外のリチウム二次電池について放電比容量変化を比較し
て示す曲線図。
FIG. 4 is a curve diagram showing changes in discharge specific capacities of an example of a lithium secondary battery according to the present invention and a lithium secondary battery outside the present invention.

【符号の説明】[Explanation of symbols]

1………ガラス製容器 2………電解液 3………正極 4………負極 5………参照電極 6………充放電試験器 1 ... Glass container 2 ... Electrolyte 3 ... Positive electrode 4 ... Negative electrode 5 ... Reference electrode 6 ... Charge / discharge tester

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安斎 和雄 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Ansai 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出する炭素質
製の負極と、リチウムイオン伝導性電解液と、リチウム
含有酸化物からなる正極とを備えたリチウム二次電池に
おいて、 前記正極はLi2 Mn O3 相およびLiMn2 O 4 相を有し、か
つCu-Kα線によるX線回折線の最強線がILi2 Mn O3
ILiMn2 O 4 であるリチウム含有酸化物で形成されてい
ることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a carbonaceous negative electrode that absorbs and releases lithium ions, a lithium ion conductive electrolyte, and a positive electrode composed of a lithium-containing oxide, wherein the positive electrode is Li 2 Mn. It has an O 3 phase and a LiMn 2 O 4 phase, and the strongest line of the X-ray diffraction line by Cu-Kα ray is ILi 2 Mn O 3 >
A lithium secondary battery, which is formed of a lithium-containing oxide which is ILiMn 2 O 4 .
【請求項2】 電解マンガンおよび硝酸リチウムを、 L
i/Mnのモル比 1/3〜1/7で混合し、この混合物を 320〜
380℃の温度に加熱することを特徴とするリチウム二次
電池用正極材料の製造方法。
2. Electrolytic manganese and lithium nitrate are added to L
Mix i / Mn at a molar ratio of 1/3 to 1/7 and mix this mixture from 320 to
A method for producing a positive electrode material for a lithium secondary battery, which comprises heating to a temperature of 380 ° C.
JP7114560A 1995-05-12 1995-05-12 Lithium secondary battery and manufacture of positive electrode for lithium secondary battery Withdrawn JPH08315856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7114560A JPH08315856A (en) 1995-05-12 1995-05-12 Lithium secondary battery and manufacture of positive electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7114560A JPH08315856A (en) 1995-05-12 1995-05-12 Lithium secondary battery and manufacture of positive electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08315856A true JPH08315856A (en) 1996-11-29

Family

ID=14640873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7114560A Withdrawn JPH08315856A (en) 1995-05-12 1995-05-12 Lithium secondary battery and manufacture of positive electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08315856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040383A1 (en) * 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
CN108963217A (en) * 2004-09-03 2018-12-07 芝加哥大学阿尔贡有限责任公司 Manganese oxide composite electrodes for lithium batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963217A (en) * 2004-09-03 2018-12-07 芝加哥大学阿尔贡有限责任公司 Manganese oxide composite electrodes for lithium batteries
CN108963217B (en) * 2004-09-03 2022-05-03 芝加哥大学阿尔贡有限责任公司 Manganese oxide composite electrode for lithium battery
WO2011040383A1 (en) * 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
US9249034B2 (en) 2009-09-30 2016-02-02 Toda Kogyo Corporation Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US7309546B2 (en) Positive active material for rechargeable lithium battery
TW201031044A (en) Positive electrode materials for high discharge capacity lithium ion batteries
US5490320A (en) Method of making a positive electrode for lithium secondary battery
KR20020070495A (en) Nonaqueous electrolyte secondary cell and positive electrode active material
JP3562187B2 (en) Non-aqueous electrolyte secondary battery
JP2000128539A (en) Lithium transition metal based halogenated oxide and its production and its utilization
JP2001345101A (en) Secondary battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JPS63299056A (en) Organic electrolyte secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JPH08315856A (en) Lithium secondary battery and manufacture of positive electrode for lithium secondary battery
JP2000040512A (en) Manufacture of positive electrode material for lithium secondary battery
JPH06275275A (en) Nonaqueous battery
JP3188108B2 (en) Non-aqueous electrolyte secondary battery
JPH05174823A (en) Lithium secondary battery and its manufacture
JP2002008654A (en) Positive electrode active material and its manufacturing method and non-aqueous electrolyte battery and its manufacturing method
JP3407880B2 (en) Spinel-type positive electrode material for lithium secondary battery and manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806