JPH08315810A - Hydrogen absorbing alloy electrode for alkaline storage battery - Google Patents

Hydrogen absorbing alloy electrode for alkaline storage battery

Info

Publication number
JPH08315810A
JPH08315810A JP7148098A JP14809895A JPH08315810A JP H08315810 A JPH08315810 A JP H08315810A JP 7148098 A JP7148098 A JP 7148098A JP 14809895 A JP14809895 A JP 14809895A JP H08315810 A JPH08315810 A JP H08315810A
Authority
JP
Japan
Prior art keywords
electrode
battery
carbon powder
alkaline storage
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7148098A
Other languages
Japanese (ja)
Other versions
JP3416335B2 (en
Inventor
Reizo Maeda
礼造 前田
Katsuhiko Niiyama
克彦 新山
Mutsumi Yano
睦 矢野
Mamoru Kimoto
衛 木本
Mitsuzo Nogami
光造 野上
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14809895A priority Critical patent/JP3416335B2/en
Publication of JPH08315810A publication Critical patent/JPH08315810A/en
Application granted granted Critical
Publication of JP3416335B2 publication Critical patent/JP3416335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To arrange carbon powder modified so as to have hydrophilic nature by sulfonation treatment on the surface of an electrode. CONSTITUTION: Hydrophilic nature of carbon powder on the surface of an electrode is enhanced and oxygen gas generated in a positive electrode during overcharge is quickly reduced. By using this electrode as a negative electrode, an alkaline storage battery with less increase in internal pressure during overcharge and high reliability can be obtained. Especially, when carbon powder whose hydrophilic nature is enhanced by sulfonation treatment is used, increase in internal pressure of the battery during overcharge is retarded, and in addition, the alkaline storage battery with less self-discharge can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用の水
素吸蔵合金電極に係わり、詳しくは過充電時に正極で発
生する酸素ガスを速やかに還元することが可能なアルカ
リ蓄電池用の水素吸蔵合金電極を得ることを目的とし
た、水素吸蔵合金の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode for an alkaline storage battery, and more particularly to a hydrogen storage alloy electrode for an alkaline storage battery capable of rapidly reducing oxygen gas generated in the positive electrode during overcharge. The present invention relates to improvement of a hydrogen storage alloy for the purpose of obtaining

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
水素吸蔵合金を負極に使用したアルカリ蓄電池が、現在
広く使用されているニッケル・カドミウム蓄電池や鉛蓄
電池に比べて、軽量で、エネルギー密度が高いことか
ら、次世代の汎用蓄電池として注目されている。
2. Description of the Related Art In recent years,
Alkaline storage batteries that use a hydrogen storage alloy for the negative electrode are drawing attention as next-generation general-purpose storage batteries because they are lighter in weight and have a higher energy density than nickel-cadmium storage batteries and lead storage batteries that are widely used at present.

【0003】この種のアルカリ蓄電池を完全密閉化する
ために、実用電池では、負極の容量を正極の容量よりも
大きくして電池容量を正極支配とし、過充電時に負極で
水素ガスが発生しないようにするとともに、正極で発生
する酸素ガスを、下式(1)及び(2)の反応により負
極で消費するようにしてある。下式(2)中のMは水素
吸蔵合金を表し、またMHはその水素化物を表す。
In order to completely seal this type of alkaline storage battery, in a practical battery, the capacity of the negative electrode is made larger than the capacity of the positive electrode to control the battery capacity as the positive electrode so that hydrogen gas will not be generated in the negative electrode during overcharge. In addition, the oxygen gas generated in the positive electrode is consumed in the negative electrode by the reactions of the following formulas (1) and (2). In the following formula (2), M represents a hydrogen storage alloy, and MH represents its hydride.

【0004】 1/2O2 +H2 O+2e- ⇒2OH- …(1) 2MH+1/2O2 ⇒2M+H2 O …(2)1 / 2O 2 + H 2 O + 2e ⇒2OH (1) 2MH + 1 / 2O 2 ⇒2M + H 2 O (2)

【0005】しかし、電池内圧の上昇を抑制して電解液
の漏出、封口体の突出等を完全に防止するためには、過
充電時に正極で発生する酸素ガスを負極で速やかに消費
(還元)するようにする必要があり、そのためには、上
式(1)の反応が速やかに進行するようにすることが有
効である。
However, in order to suppress the rise of the internal pressure of the battery and completely prevent the leakage of the electrolytic solution and the protrusion of the sealing body, the oxygen gas generated at the positive electrode during overcharge is quickly consumed (reduced) at the negative electrode. Therefore, it is effective to make the reaction of the above formula (1) proceed rapidly.

【0006】このため、従来、種々の提案がなされてい
る。例えば、特開昭63−195960号公報には、水
素吸蔵合金電極の表面に、酸素ガス還元反応を促進する
触媒的な機能を有する炭素と、結合剤とからなる酸素ガ
ス吸収層を設けることが開示されている。しかし、上式
(1)の反応は気相(O2 )−液相(H2 O)−固相
(e- )の三相の反応であり、電極表面に三相界面が形
成されて初めて進行する反応であるにもかかわらず、こ
の電極では、電極表面の親水性が低いために、液相(H
2 O)不足により三相のバランスが崩れ、上式(1)の
反応が速やかに進行しにくい。この現象は、電解液の量
が少ないために上記(1)の反応における液相(H
2 O)が不足しがちなアルカリ蓄電池において、特に顕
著にみられる。
Therefore, various proposals have hitherto been made. For example, in Japanese Patent Laid-Open No. 63-195960, an oxygen gas absorption layer composed of carbon and a binder having a catalytic function of promoting an oxygen gas reduction reaction is provided on the surface of a hydrogen storage alloy electrode. It is disclosed. However, the reaction of the above formula (1) is a three-phase reaction of gas phase (O 2 ) -liquid phase (H 2 O) -solid phase (e ), and only when the three-phase interface is formed on the electrode surface. Despite the progressing reaction, this electrode has a low hydrophilicity on the surface of the electrode,
Due to lack of 2 O), the balance of the three phases is lost, and the reaction of the above formula (1) is difficult to proceed rapidly. This phenomenon is due to the fact that the liquid phase (H
This is particularly noticeable in alkaline storage batteries that tend to lack 2 O).

【0007】本発明は、上述の問題を解決するべくなさ
れたものであって、その目的とするところは、過充電時
に正極で発生する酸素ガスを速やかに還元することが可
能なアルカリ蓄電池用の水素吸蔵合金電極を提供するに
ある。また、本発明のさらなる目的は、過充電時に正極
で発生する酸素ガスを速やかに還元することができ、し
かも自己放電を起こしにくいアルカリ蓄電池用の水素吸
蔵合金電極を提供するにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an alkaline storage battery capable of rapidly reducing oxygen gas generated at the positive electrode during overcharge. A hydrogen storage alloy electrode is provided. Further, a further object of the present invention is to provide a hydrogen storage alloy electrode for an alkaline storage battery, which can quickly reduce oxygen gas generated in the positive electrode during overcharge and which is unlikely to cause self-discharge.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ蓄電池用の水素吸蔵合金電極
は、親水化された炭素粉末を電極表面に有するものであ
る。
A hydrogen storage alloy electrode for an alkaline storage battery according to the present invention for achieving the above object has a hydrophilized carbon powder on the electrode surface.

【0009】炭素粉末を親水化するための処理法として
は、炭素粉末を発煙硫酸等のスルホン化剤にて処理す
る方法、炭素粉末にフッ素ガス、酸素ガス及び亜硫酸
ガスの混合気体を接触させるフッ素ガス処理法、酸素
ガス又は空気中で炭素粉末をプラズマ処理、紫外線照射
処理又はコロナ放電処理する方法が例示される。なかで
も、スルホン化剤にて親水化するスルホン化処理法が好
ましい。スルホン基(−SO3 H)には、強親水基とし
て炭素粉末の親水性を高めるという機能の外に、水素吸
蔵合金から電解液中に溶出した金属イオン(コバルトイ
オンなど)を捕捉するという機能があるので、過充電時
の電池内圧の上昇が抑制されるという効果の外に、自己
放電を抑制するという効果が得られるからである。
As the treatment method for making the carbon powder hydrophilic, the carbon powder is treated with a sulfonating agent such as fuming sulfuric acid, or the carbon powder is brought into contact with a mixed gas of fluorine gas, oxygen gas and sulfurous acid gas. Examples thereof include a gas treatment method, a plasma treatment of carbon powder in oxygen gas or air, an ultraviolet irradiation treatment, or a corona discharge treatment. Among them, a sulfonation method in which a sulfonating agent is used for hydrophilicity is preferable. The sulfone group (-SO 3 H), strong out of the function of increasing the hydrophilicity of the carbon powder as a hydrophilic group, function of capturing the metal ions eluted from the hydrogen storage alloy in the electrolytic solution (such as cobalt ions) This is because, in addition to the effect of suppressing the rise in battery internal pressure during overcharge, the effect of suppressing self-discharge can be obtained.

【0010】なお、特開昭62−115657号公報
に、自己放電を抑制するために、セパレータとしてオレ
フィン系樹脂をスルホン化処理したものを使用すること
が提案されているが、スルホン化処理によりセパレータ
の強度が低下するので、内部短絡が起こり易くなり、充
放電サイクル寿命が短くなる。これに対して、負極表面
をスルホン化した電池では、このような不都合は生じな
い。また、自己放電を抑制する効果についても、セパレ
ータをスルホン化したものでは、電極表面をスルホン化
したものほど、十分な効果は期待できない。負極から溶
出した不純物としての金属イオンは、自己放電防止のた
めに確実にスルホン基により捕捉する必要があるにもか
かわらず、セパレータをスルホン化したものでは、金属
イオンとスルホン基とが離間しているため捕捉しにくい
からである。負極表面にスルホン基を有する電池では、
このような不都合は生じない。
In Japanese Patent Laid-Open No. 62-115657, it is proposed to use a sulfonated olefin resin as a separator in order to suppress self-discharge. , The internal short circuit is likely to occur and the charge / discharge cycle life is shortened. On the other hand, such a problem does not occur in the battery in which the surface of the negative electrode is sulfonated. Regarding the effect of suppressing self-discharge, a sulfonation of the separator cannot be expected to have a sufficient effect as compared with the sulfonation of the electrode surface. Metal ions as impurities eluted from the negative electrode must be reliably captured by the sulfone group to prevent self-discharge, but in the case where the separator is sulfonated, the metal ion and the sulfone group are separated from each other. Because it is difficult to capture. In a battery having a sulfone group on the negative electrode surface,
Such inconvenience does not occur.

【0011】[0011]

【作用】電極表面の炭素粉末が、触媒として機能して酸
素ガス還元反応を促進する。また、その炭素粉末の親水
性が高められているので、電解液と水素吸蔵合金とが接
触し易くなり、過充電時に気相(O2 )−液相(H
2 O)−固相(e- )の三相がバランス良く形成され
る。これらの結果、過充電時に正極で発生する酸素ガス
が速やかに還元され、電池内圧が上昇しにくくなる。
The carbon powder on the surface of the electrode functions as a catalyst to promote the oxygen gas reduction reaction. In addition, since the hydrophilicity of the carbon powder is enhanced, the electrolytic solution and the hydrogen storage alloy are likely to come into contact with each other, and the gas phase (O 2 ) -liquid phase (H 2
The two phases of 2 O) -solid phase (e ) are formed in good balance. As a result, the oxygen gas generated at the positive electrode during overcharge is rapidly reduced, and the internal pressure of the battery is less likely to rise.

【0012】特に、スルホン化処理によりスルホン基を
付加して親水化した炭素粉末を電極表面に有する水素吸
蔵合金電極においては、付加せるスルホン基が水素吸蔵
合金から電解液中に溶出した自己放電の原因となる金属
イオンを捕捉する働きをするので、電池内圧の上昇が抑
制されることに加えて、自己放電も抑制される。
Particularly, in a hydrogen storage alloy electrode having on the surface of the electrode a carbon powder which is hydrophilized by adding a sulfone group by a sulfonation treatment, the added sulfone group causes self-discharge which is eluted from the hydrogen storage alloy into the electrolytic solution. Since it acts to capture the causative metal ions, in addition to suppressing an increase in battery internal pressure, self-discharge is also suppressed.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0014】(実施例1) 〔水素吸蔵合金の作製〕Mm(La:Ce:Pr:Nd
の重量比25:50:8:17)、Ni、Co、Al及
びMnをモル比1.0:3.2:1.0:0.2:0.
6で秤量混合し、プレスしてペレット化し、アルゴンガ
ス雰囲気下のアーク溶解炉内で溶解させ、水冷鋳型にて
冷却してインゴットを作製し、このインゴットを機械的
に粉砕して、篩にかけて、粒度100〜500メッシュ
の粒子からなる水素吸蔵合金(粉末)を作製した。
Example 1 Production of Hydrogen Storage Alloy Mm (La: Ce: Pr: Nd
25: 50: 8: 17) and a molar ratio of Ni, Co, Al and Mn of 1.0: 3.2: 1.0: 0.2: 0.
6, weigh and mix, press and pelletize, melt in an arc melting furnace under an argon gas atmosphere, cool with a water-cooled mold to make an ingot, mechanically crush this ingot, sieve, A hydrogen storage alloy (powder) composed of particles having a particle size of 100 to 500 mesh was produced.

【0015】〔スルホン化炭素粉末の作製〕アセチレン
ブラック(炭素粉末)と発煙硫酸とを攪拌混合して、ア
セチレンブラックをスルホン化し、水で希釈した後、ろ
過、水洗、乾燥して、スルホン化炭素粉末を作製した。
[Preparation of sulfonated carbon powder] Acetylene black (carbon powder) and fuming sulfuric acid are stirred and mixed to sulfonate the acetylene black, diluted with water, filtered, washed with water and dried to obtain sulfonated carbon. A powder was made.

【0016】〔水素吸蔵合金電極の作製〕上記の水素吸
蔵合金100重量部及びポリエチレンオキシド0.5重
量部に、水を加えて混合し、粘度30000mPa・s
のスラリーを調製した。なお、粘度は、東京計器社製の
B型粘度計B8U型(スピンドルT−B、回転速度20
rpm)を使用して測定した。上記スラリーを容器に入
れ、このスラリー中に導電性のパンチングメタル(鉄に
ニッケルめっきしたもの)を通過させてスラリーを塗布
した後、乾燥して、電極を作製した。次いで、上記スル
ホン化炭素粉末10重量部をポリビニルアルコールの
0.1重量%水溶液90重量部に懸濁させ、得られた懸
濁液をローラにて上記電極の表面に塗布し(塗膜の乾固
重量:0.6mg/cm2 )、乾燥し、ローラにて加圧
成形して、スルホン化炭素粉末を電極表面に有する水素
吸蔵合金電極(本発明電極)を作製した。
[Preparation of hydrogen storage alloy electrode] Water was added to 100 parts by weight of the above hydrogen storage alloy and 0.5 parts by weight of polyethylene oxide and mixed to give a viscosity of 30,000 mPa · s.
Was prepared. In addition, the viscosity is B type viscometer B8U type (spindle TB, rotation speed 20 made by Tokyo Keiki Co., Ltd.
rpm). The above slurry was placed in a container, and a conductive punching metal (iron plated with nickel) was passed through the slurry to apply the slurry, followed by drying to prepare an electrode. Next, 10 parts by weight of the sulfonated carbon powder was suspended in 90 parts by weight of a 0.1% by weight aqueous solution of polyvinyl alcohol, and the obtained suspension was applied to the surface of the electrode by a roller (drying of the coating film). Solid weight: 0.6 mg / cm 2 ), dried, and pressure-molded with a roller to prepare a hydrogen storage alloy electrode (electrode of the present invention) having sulfonated carbon powder on the electrode surface.

【0017】〔電池の作製〕上記の水素吸蔵合金電極
(負極)と、理論容量1000mAhの公知の焼結式ニ
ッケル極(正極)とをセパレータを介して巻回して渦巻
電極体を作製し、これを電池缶に挿入し、電解液を注液
し、作動圧15kg/cm2 の安全弁を装着し、封口し
て、正極支配型のAAサイズの密閉型ニッケル−水素ア
ルカリ蓄電池Xを作製した。なお、セパレータとして
は、ポリアミド製の不織布を、また電解液としては30
重量%水酸化カリウム水溶液2.4gを、それぞれ使用
した。
[Production of Battery] The hydrogen storage alloy electrode (negative electrode) and a known sintered nickel electrode (positive electrode) having a theoretical capacity of 1000 mAh are wound around a separator to produce a spiral electrode body. Was inserted into a battery can, an electrolytic solution was injected, a safety valve with an operating pressure of 15 kg / cm 2 was attached, and the container was sealed to produce a positive electrode-dominated AA size sealed nickel-hydrogen alkaline storage battery X. A polyamide non-woven fabric was used as the separator, and an electrolyte solution was used as the separator.
2.4 g of a weight% aqueous potassium hydroxide solution was used, respectively.

【0018】(比較例1)アセチレンブラックをスルホ
ン化しなかったこと以外は実施例1と同様にして水素吸
蔵合金電極を作製し、これを使用して比較電池Aを作製
した。
Comparative Example 1 A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 except that acetylene black was not sulfonated, and a comparative battery A was prepared.

【0019】(比較例2)アセチレンブラックを電極表
面に形成しなかったこと以外は実施例1と同様にして水
素吸蔵合金電極を作製し、これを使用して比較電池Bを
作製した。
(Comparative Example 2) A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 except that acetylene black was not formed on the electrode surface, and a comparative battery B was prepared.

【0020】〈過充電時の電池内圧〉1.5A(1.5
Cに相当)で充電し、充電開始後100分経過後の各電
池の電池内圧(kg/cm2 )を、電池缶の缶底に圧力
計を取り付けて測定した。結果を表1に示す。
<Battery internal pressure during overcharge> 1.5 A (1.5
The battery internal pressure (kg / cm 2 ) of each battery 100 minutes after the start of charging was measured by attaching a pressure gauge to the bottom of the battery can. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1に示すように、本発明電極を使用した
電池Xの電池内圧は8kg/cm2であり、電解液が漏
出するおそれが無く信頼性が高い。これに対して、比較
電池Bの電池内圧は15kg/cm2 であり、すでに安
全弁が作動して電解液が漏出していた。また、比較電池
Aでは、酸素ガス還元反応を促進する触媒的な機能を有
する炭素粉末が電極表面に塗着されているため、電解液
の漏出はなかったものの、炭素粉末がスルホン化されて
いないために、電池内圧が13kg/cm2 と安全弁の
作動圧15kg/cm2 に近く、量産される実用電池の
バラツキを考慮するとき、液洩れのおそれがあることが
分かる。
As shown in Table 1, the battery X using the electrode of the present invention has a battery internal pressure of 8 kg / cm 2 , and is highly reliable without the risk of electrolyte leakage. On the other hand, the battery internal pressure of the comparative battery B was 15 kg / cm 2 , and the safety valve had already actuated and the electrolyte had leaked. Further, in the comparative battery A, since the carbon powder having the catalytic function of promoting the oxygen gas reduction reaction was coated on the electrode surface, there was no leakage of the electrolytic solution, but the carbon powder was not sulfonated. for the near battery internal pressure in the operating pressure 15 kg / cm 2 for 13 kg / cm 2 and the safety valve, when considering the variation of the practical battery to be mass-produced, it can be seen that there is a risk of leakage liquid.

【0023】〈保存特性〉ポリオレフィン不織布を発煙
硫酸にてスルホン化した後、水洗、乾燥して、スルホン
化ポリオレフィン不織布を作製し、これをセパレータと
して使用するとともに、電極表面に炭素粉末を形成しな
かったこと以外は実施例1と同様にして、比較電池Cを
作製した。この比較電池C及び上記の各電池を、100
mAで12時間充電し、45°Cで2週間保存した後、
100mAで電池電圧が1.0Vに下がるまで放電し
て、保存後の残存容量(mAh)を調べた。結果を表2
に示す。
<Preservation characteristics> A polyolefin nonwoven fabric is sulfonated with fuming sulfuric acid, washed with water and dried to prepare a sulfonated polyolefin nonwoven fabric, which is used as a separator and does not form carbon powder on the electrode surface. A comparative battery C was produced in the same manner as in Example 1 except for the above. This comparative battery C and each of the above batteries were replaced with 100
After charging at mA for 12 hours and storing at 45 ° C for 2 weeks,
The battery was discharged at 100 mA until the battery voltage dropped to 1.0 V, and the remaining capacity (mAh) after storage was examined. Table 2 shows the results
Shown in

【0024】[0024]

【表2】 [Table 2]

【0025】表2に示すように、電池Xの残存容量は、
比較電池A〜Cの残存容量と比べて、大きい。電極表面
のスルホン基により自己放電が有効に抑制されたためで
ある。比較電池Cの残存容量は、セパレータがスルホン
化されているため、比較電池A、Bの残存容量に比べる
と大きいが、電池Xと比べると若干小さい。比較電池C
では、スルホン基が負極表面に存在せず、水素吸蔵合金
から離間したセパレータ表面に存在するために、金属イ
オンの捕捉能力が電池Xと比べて劣るからである。
As shown in Table 2, the remaining capacity of the battery X is
It is larger than the residual capacities of the comparative batteries A to C. This is because the self-discharge was effectively suppressed by the sulfone group on the electrode surface. The remaining capacity of the comparative battery C is larger than that of the comparative batteries A and B because the separator is sulfonated, but is slightly smaller than that of the battery X. Comparative battery C
Then, since the sulfone group does not exist on the negative electrode surface but exists on the separator surface separated from the hydrogen storage alloy, the metal ion capturing ability is inferior to that of the battery X.

【0026】上記実施例では、炭素粉末としてアセチレ
ンブラックを使用したが、黒鉛、ピッチなどを使用して
もよい。
In the above embodiment, acetylene black was used as the carbon powder, but graphite, pitch, etc. may be used.

【0027】[0027]

【発明の効果】本発明電極は、電極表面の炭素粉末の親
水性が高められているので、過充電時に正極で発生する
酸素ガスを速やかに還元することが可能である。したが
って、これをアルカリ蓄電池の負極として使用すること
により、過充電時の電池内圧の上昇が少ない信頼性の高
いアルカリ蓄電池を得ることが可能となる。特に、スル
ホン化処理により炭素粉末の親水性が高められたものを
使用した場合は、過充電時の電池内圧の上昇が少なく、
しかも自己放電の少ないアルカリ蓄電池を得ることが可
能となる。
EFFECT OF THE INVENTION In the electrode of the present invention, the carbon powder on the surface of the electrode is made more hydrophilic, so that oxygen gas generated at the positive electrode during overcharge can be reduced rapidly. Therefore, by using this as the negative electrode of the alkaline storage battery, it becomes possible to obtain a highly reliable alkaline storage battery in which the increase in the battery internal pressure during overcharge is small. In particular, when a carbon powder whose hydrophilicity is increased by sulfonation is used, the increase in battery internal pressure during overcharge is small,
Moreover, it is possible to obtain an alkaline storage battery with less self-discharge.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mamoru Kimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kozo Nogami 2-chome, Keihanhondori, Moriguchi-shi, Osaka 5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito Keihan Hondori, Moriguchi City, Osaka Prefecture 2-5-5 Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】親水化された炭素粉末を電極表面に有する
アルカリ蓄電池用の水素吸蔵合金電極。
1. A hydrogen storage alloy electrode for an alkaline storage battery, which has hydrophilized carbon powder on the electrode surface.
【請求項2】前記炭素粉末が、スルホン化処理により親
水化されたものである請求項1記載のアルカリ蓄電池用
の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the carbon powder is hydrophilized by a sulfonation treatment.
JP14809895A 1995-05-22 1995-05-22 Hydrogen storage alloy electrodes for alkaline storage batteries Expired - Fee Related JP3416335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14809895A JP3416335B2 (en) 1995-05-22 1995-05-22 Hydrogen storage alloy electrodes for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14809895A JP3416335B2 (en) 1995-05-22 1995-05-22 Hydrogen storage alloy electrodes for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH08315810A true JPH08315810A (en) 1996-11-29
JP3416335B2 JP3416335B2 (en) 2003-06-16

Family

ID=15445209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14809895A Expired - Fee Related JP3416335B2 (en) 1995-05-22 1995-05-22 Hydrogen storage alloy electrodes for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3416335B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803148B2 (en) 2000-04-04 2004-10-12 Matsushita Electric Industrial, Co., Ltd. Nickel positive electrode plate and akaline storage battery
WO2006137346A1 (en) * 2005-06-21 2006-12-28 Dainippon Ink And Chemicals, Inc. Separator for fuel cell, process for producing the same, and fuel cell
WO2009116688A1 (en) 2008-03-19 2009-09-24 住友化学株式会社 Electrode and battery having the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803148B2 (en) 2000-04-04 2004-10-12 Matsushita Electric Industrial, Co., Ltd. Nickel positive electrode plate and akaline storage battery
US7364818B2 (en) 2000-04-04 2008-04-29 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode plate and alkaline storage battery
WO2006137346A1 (en) * 2005-06-21 2006-12-28 Dainippon Ink And Chemicals, Inc. Separator for fuel cell, process for producing the same, and fuel cell
US7960065B2 (en) 2005-06-21 2011-06-14 Dainippon Ink And Chemicals, Inc. Separator for fuel cell, method for producing the same, and fuel cell
WO2009116688A1 (en) 2008-03-19 2009-09-24 住友化学株式会社 Electrode and battery having the same

Also Published As

Publication number Publication date
JP3416335B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP2003249222A (en) Nickel/hydrogen storage battery
JP3416335B2 (en) Hydrogen storage alloy electrodes for alkaline storage batteries
JP3482606B2 (en) Sealed alkaline storage battery
JP3416336B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and core of hydrogen storage alloy electrode for alkaline storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP2966627B2 (en) Metal hydride storage battery
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JPH11162468A (en) Alkaline secondary battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JP3326274B2 (en) Sealed alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2004139909A (en) Sealed nickel-zinc primary battery
JP3268938B2 (en) Nickel-hydrogen storage battery
JP2010262763A (en) Surface treatment method of hydrogen storage alloy powder, anode active material for nickel-hydrogen battery, anode for nickel-hydrogen battery, and nickel-hydrogen battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JPH08213003A (en) Nickel-metal hydride battery
JP3407989B2 (en) Metal hydride electrode
JPH1021904A (en) Alkaline storage battery
JP2005093289A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JPH06333568A (en) Sealed metal oxide-hydrogen battery, and its manufacture
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3152845B2 (en) Nickel-metal hydride battery
JP3351227B2 (en) Hydrogen storage alloy powder for battery and its manufacturing method
JPH05225974A (en) Hydrogen storage alloy electrode
JP2001338677A (en) Method of manufacturing alkalistorage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees