JPH08303461A - Magnetic bearing controller - Google Patents

Magnetic bearing controller

Info

Publication number
JPH08303461A
JPH08303461A JP7110638A JP11063895A JPH08303461A JP H08303461 A JPH08303461 A JP H08303461A JP 7110638 A JP7110638 A JP 7110638A JP 11063895 A JP11063895 A JP 11063895A JP H08303461 A JPH08303461 A JP H08303461A
Authority
JP
Japan
Prior art keywords
magnetic bearing
force
control circuit
frequency
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7110638A
Other languages
Japanese (ja)
Inventor
Katsuhisa Toyama
勝久 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7110638A priority Critical patent/JPH08303461A/en
Publication of JPH08303461A publication Critical patent/JPH08303461A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE: To provide a magnetic bearing controller in which stabilization in the natural frequency range is achieved. CONSTITUTION: In a magnetic bearing controller provided with a position sensor 1 for detecting the floating position of a target shaft, a gain circuit 2 for receiving the output of the position sensor 1, and a control circuit 3 for receiving the output of the gain circuit 2 and sending an exciting signal to an electromagnet 4 for floating the target shaft, a lag filter 7 is provided between the gain circuit 2 and the control circuit 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はターボ分子ポンプ,ター
ビン等の高速回転体に用いる磁気軸受に適用される磁気
軸受制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing control device applied to a magnetic bearing used for a high speed rotating body such as a turbo molecular pump or a turbine.

【0002】[0002]

【従来の技術】回転体を浮上保持する手段として、電磁
石を用いた磁気軸受がある。この磁気軸受は従来の流体
潤滑軸受よりもロスが小さく、軸受のドライ化、雰囲気
のクリーン化がはがれ、特に真空状態では有用な軸受で
ある。
2. Description of the Related Art A magnetic bearing using an electromagnet is known as a means for floatingly holding a rotating body. This magnetic bearing has a smaller loss than the conventional fluid lubrication bearing, and the dryness of the bearing and the cleanliness of the atmosphere are removed, and it is a useful bearing especially in a vacuum state.

【0003】この磁気軸受において、回転体の浮上位置
を設定する手段として、浮上物の浮上位置を計測し、そ
の計測信号に基づいて電磁石に流す電流値を決め、電磁
石から発生する磁力の大きさを定める手段がある。
In this magnetic bearing, as a means for setting the levitation position of the rotating body, the levitation position of the levitation object is measured, the current value to be flown to the electromagnet is determined based on the measurement signal, and the magnitude of the magnetic force generated from the electromagnet is determined. There is a means to determine.

【0004】図6は、その手段の制御系のブロック線図
である。スラスト位置センサ1は浮上物の位置(変位)
を測るためのセンサであり、渦電流変位計等がその一例
である。ゲイン回路(位置フィードバックゲイン)2
は、スラスト位置センサ1で得られた信号の大きさを必
要な大きさに比例倍する為のものである。制御回路3は
位置フィードバックゲイン2で得られた信号を、電磁石
4に適切な形にして入力するための信号処理回路からな
る。この信号処理回路としては、例えばPID(比例,
積分,微分)回路や位相補償回路、さらにはその組合わ
せ回路等がある。電磁石4は鉄心にコイルが巻かれたも
のであり、制御回路3から入力された電流に応じて、浮
上用の磁力を発生するものである。
FIG. 6 is a block diagram of a control system of the means. The thrust position sensor 1 is the position (displacement) of the floating object.
An eddy current displacement meter or the like is an example of such a sensor for measuring. Gain circuit (position feedback gain) 2
Is for multiplying the magnitude of the signal obtained by the thrust position sensor 1 by a required magnitude. The control circuit 3 comprises a signal processing circuit for inputting the signal obtained by the position feedback gain 2 into the electromagnet 4 in an appropriate form. As this signal processing circuit, for example, PID (proportional,
There are integration and differentiation circuits, phase compensation circuits, and their combination circuits. The electromagnet 4 is a coil wound around an iron core, and generates a magnetic force for levitation in accordance with the current input from the control circuit 3.

【0005】制御回路3が比例要素(P要素)だけで構
成された最も簡単な位置フィードバック系を考えると、
電磁石4の入力1と出力である磁力Fとの伝達関数は、
コイル,鉄心等の抵抗やインダクタンスにより以下の1
次遅れ系になる。
Considering the simplest position feedback system in which the control circuit 3 is composed of only proportional elements (P elements),
The transfer function between the input 1 and the output magnetic force F of the electromagnet 4 is
The following 1 depending on the resistance and inductance of the coil, iron core, etc.
It becomes the next delay system.

【0006】 F/I=Km/(1+Tm・S) …………(1) ここで、Kmは電磁石4のゲイン、Tmは電磁石4の時
定数、Sはラプラス演算子である。よって、位置フィー
ドバック系の計測変位Dから浮上物への力Fに至る伝達
関数は以下のようになる。
F / I = Km / (1 + Tm · S) (1) where Km is the gain of the electromagnet 4, Tm is the time constant of the electromagnet 4, and S is the Laplace operator. Therefore, the transfer function from the measured displacement D of the position feedback system to the force F on the floating object is as follows.

【0007】 F/D=Kf・Kp・Km/(1+Tm・S) …………(2) ただし I=Kf・Kp・Dである。F / D = Kf · Kp · Km / (1 + Tm · S) (2) However, I = Kf · Kp · D.

【0008】ここで、Kfは位置フィードバックゲイン
2の比例ゲイン、Kpは制御回路3の比例ゲインをそれ
ぞれ示す。位置フィードバック系(力F)/(変位D)
の周波数特性を見るため、ラプラス演算子SをS=j2
πfとおき、(2)式に代入する。ここで、fは周波数
でj=√−1である。(力F)/(変位D)は複素数と
なり、次のようにおく。
Here, Kf is the proportional gain of the position feedback gain 2, and Kp is the proportional gain of the control circuit 3. Position feedback system (force F) / (displacement D)
In order to see the frequency characteristic of, the Laplace operator S is changed to S = j2
It is set to πf and is substituted into the equation (2). Here, f is a frequency and j = √−1. (Force F) / (Displacement D) is a complex number, and is set as follows.

【0009】 F/D=Kr(f)+j・Ki(f) …………(3) (3)式における(力F)/(変位D)の実部は周波数
fに依存した剛性を意味し、虚部は周波数fに依存した
減衰を意味する。(2)式のような1次遅れは虚部が常
に負となり、浮上物に対し減衰とは反対の不安定化力に
なる。
F / D = Kr (f) + j · Ki (f) (3) The real part of (force F) / (displacement D) in equation (3) means the rigidity depending on the frequency f. However, the imaginary part means attenuation depending on the frequency f. In the first-order lag as shown in equation (2), the imaginary part is always negative, and the floating object has a destabilizing force opposite to the damping.

【0010】図7は(力F)/(変位D)、すなわち
(3)式の虚部の値と周波数fとの関係を示す図であ
る。点線Aが(2)式に対応するものであり、上述の状
態を示している。浮上物と位置フィードバック系からな
る固有振動数fcが持つ減衰、特に浮上物の材料減衰よ
り、図に示す周波数f=fcの所の値が大きいと、その
固有振動数は発散的に振動し、運転できなくなる。
FIG. 7 is a diagram showing the relationship between (force F) / (displacement D), that is, the value of the imaginary part of the equation (3) and the frequency f. The dotted line A corresponds to the equation (2) and shows the above-mentioned state. When the value at the frequency f = fc shown in the figure is larger than the damping of the natural frequency fc composed of the floating object and the position feedback system, especially the material damping of the floating material, the natural frequency vibrates divergently, I can't drive.

【0011】そこで位置フィードバック系の(力F)/
(変位D)に減衰効果をもたすために、制御回路3に比
例要素(P要素)と並列に微分要素(D要素)または位
相補償要素を設ける。静的な位置保持ということから、
これらの要素は位相を時間方向に対し進ませるものであ
る。ここでは代表として微分要素に例をとる。微分要素
(D要素)を制御回路3に回路として実現すると、以下
のように1次遅れが加わった形となる。
Therefore, (force F) / of the position feedback system
In order to have a damping effect on (displacement D), a differential element (D element) or a phase compensation element is provided in parallel with the proportional element (P element) in the control circuit 3. Because of the static position retention,
These elements advance the phase in the time direction. Here, the differential element is taken as an example. When the differential element (D element) is realized as a circuit in the control circuit 3, a first-order delay is added as follows.

【0012】 (微分要素)=Kd・S/(1+Td・S) ………(4) ここで、Kdは微分要素のゲイン、Tdは時定数であ
る。微分要素だけの位置フィードバック系の(力F)/
(変位D)は以下の式となる。
(Differential element) = Kd · S / (1 + Td · S) (4) Here, Kd is a gain of the differential element, and Td is a time constant. (Force F) / of position feedback system with only differential element
(Displacement D) is given by the following equation.

【0013】 F/D=Kf・Kd・Km・S /{(1+Td・S)・(1+Tm・S)} ………(5) (5)式の分子はSの1次で分母はSの2次になるた
め、(5)式の虚部は一点鎖線Bのようになる。すなわ
ち、周波数の低い領域では浮上物に対し減衰効果をも
ち、高い領域では不安定化作用を持つ。浮上物の位置を
保持するためには、制御回路3には比例要素と微分要素
との併存が必要となる。このような制御回路3の位置フ
ィードバック系の(力F)/(変位D)は F/d=Kf・{Kp+Kd・S/(1+Td・S)} ・Km/(1+Tm・S) ………(6) となり、実線Cの様になり、上述した一点鎖線Bとほぼ
と同じ特性をもつ。浮上物と位置フィードバック系から
なる固有振動数fcを、減衰効果を有する周波数の低い
領域に置くと安定性が確保でき、振動を発生することな
く運転できる。
F / D = Kf · Kd · Km · S / {(1 + Td · S) · (1 + Tm · S)} (5) The numerator of the equation (5) is the first order of S and the denominator of S is Since it is quadratic, the imaginary part of the equation (5) is as shown by the alternate long and short dash line B. That is, it has a damping effect on the floating object in the low frequency region, and has a destabilizing effect in the high frequency region. In order to maintain the position of the floating object, the control circuit 3 needs to have both a proportional element and a differential element. The (force F) / (displacement D) of the position feedback system of the control circuit 3 is F / d = Kf · {Kp + Kd · S / (1 + Td · S)} · Km / (1 + Tm · S) .... ( 6), and becomes like a solid line C, and has almost the same characteristics as the one-dot chain line B described above. If the natural frequency fc composed of the floating object and the position feedback system is placed in a low frequency region having a damping effect, stability can be ensured and operation can be performed without generating vibration.

【0014】このような特性を有する磁気軸受を、図8
に示す寸法諸元が異なる複数段のブレードを持つ回転体
5の軸受として使用し、回転体5を浮上させる場合を考
えると、次のような現象を呈する。
A magnetic bearing having such characteristics is shown in FIG.
Considering the case where the rotor 5 is used as a bearing of the rotor 5 having a plurality of stages of blades having different dimensional specifications and the rotor 5 is levitated, the following phenomenon is exhibited.

【0015】回転体5は(a)〜(c)に示すようなス
ラスト方向に複数個のブレード固有振動数を持つため、
必ず(力F)/(変位D)の不安定化作用を有する周波
数領域に固有振動数がある。従って、この固有振動数を
持つブレードの材料減衰よりも、磁気軸受6の位置フィ
ードバック系の不安定化作用が大きくなると不安定とな
り、その固有振動数が一度加振または共振されると振動
が発散的に大きくなり、浮上させることができなくな
る。
Since the rotor 5 has a plurality of blade natural frequencies in the thrust direction as shown in (a) to (c),
There is always a natural frequency in the frequency region having a destabilizing action of (force F) / (displacement D). Therefore, if the destabilizing action of the position feedback system of the magnetic bearing 6 becomes larger than the material damping of the blade having this natural frequency, it becomes unstable, and the vibration diverges once the natural frequency is excited or resonated. It becomes large and cannot be levitated.

【0016】[0016]

【発明が解決しようとする課題】上述したように、従来
のものでは浮上物の位置を保持するために、浮上物の位
置をスラスト位置センサ1で計測し、その信号をフィー
ドバックし、電磁力4から力を発生させることにしてい
るが、この力は浮上物を振動させる不安定化力となる。
そして制御回路3においてPID,位相補償等の処理を
行なっても、高周波数領域では依然として大きな不安定
化力を有している。
As described above, in order to maintain the position of the floating object in the conventional device, the position of the floating object is measured by the thrust position sensor 1, the signal is fed back, and the electromagnetic force 4 is applied. It is supposed that the force is generated from this, but this force becomes the destabilizing force that vibrates the floating object.
Even if the control circuit 3 performs processing such as PID and phase compensation, it still has a large destabilizing force in the high frequency region.

【0017】従って寸法諸元が異なる複数段のブレード
を持つ回転体のような複数個の固有振動数を有する浮上
物では、不安定化力となる周波数領域に固有振動数が必
ず存在しているため、その固有振動数が一度加振または
共振されると、磁気軸受6により発散的な振動を発生す
ることになるという問題点があった。
Therefore, in a levitating object having a plurality of natural frequencies such as a rotating body having a plurality of stages of blades having different dimensional specifications, the natural frequency always exists in the frequency region which is the destabilizing force. Therefore, there is a problem that once the natural frequency is excited or resonated, divergent vibration is generated by the magnetic bearing 6.

【0018】[0018]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention employs the following means to solve the above-mentioned problems.

【0019】すなわち、対象軸の浮上位置を検出する位
置センサと、同位置センサの出力を受けるゲイン回路
と、同ゲイン回路の出力を受け上記対象軸受の浮上用の
電磁石へ励磁信号を送る制御回路とを有する磁気軸受制
御装置において、上記ゲイン回路および制御回路間に遅
相フィルタを設けた。
That is, a position sensor for detecting the levitation position of the target shaft, a gain circuit for receiving the output of the position sensor, and a control circuit for receiving the output of the gain circuit and sending an excitation signal to the levitation electromagnet of the target bearing. In the magnetic bearing control device having the above, a lag filter is provided between the gain circuit and the control circuit.

【0020】[0020]

【作用】上記発明において、位置センサ出力にゲインが
かけられた後遅相フィルタで、PDI,またはPI制御
回路等のみでは不安定化となる周波数帯域のうち、ある
帯域のみ遅相フィルタにより位相が遅れていき、この帯
域にある信号が元の状態から180°程度遅延される。
そして制御回路に送られ、PDIまたはPI処理され出
力される。
In the above invention, in the post-lag filter in which the gain is applied to the output of the position sensor, only a certain band of the frequency band which becomes unstable only by the PDI or PI control circuit or the like has the phase delayed by the delay filter. The signal in this band is delayed by about 180 ° from the original state.
Then, it is sent to the control circuit, subjected to PDI or PI processing, and output.

【0021】従って、不安定部で極性が反転させられ
る。すなわち不安定化力する周波数帯域で安定化する。
Therefore, the polarity is reversed at the unstable portion. That is, it is stabilized in the frequency band in which the destabilizing force is exerted.

【0022】このようにして、従来不安定化していた帯
域でも対象軸の浮上位置を安定に維持できる。
In this way, the levitation position of the target shaft can be stably maintained even in the previously destabilized band.

【0023】[0023]

【実施例】【Example】

(1) 上記本発明の第1実施例を図1〜図4により説
明する。
(1) The first embodiment of the present invention will be described with reference to FIGS.

【0024】なお、従来例で説明した部分は、同一の番
号をつけ説明を省略し、この発明に関する部分を主体に
説明する。
The parts described in the conventional example are designated by the same reference numerals, and the description thereof will be omitted. The parts relating to the present invention will be mainly described.

【0025】図1にて、スラスト軸位置センサ1の出力
は、ゲイト回路(位置フィードバックゲイン)2,遅相
フィルタ7,PID制御回路3を順次経て電磁石4へ送
られる。
In FIG. 1, the output of the thrust shaft position sensor 1 is sent to an electromagnet 4 through a gate circuit (position feedback gain) 2, a lag filter 7, and a PID control circuit 3 in this order.

【0026】遅相フィルタ7は図2に示すように増幅素
子8とR,Cを組合せた1次ローパスフィルタである。
The lag filter 7 is a first-order low-pass filter in which an amplifying element 8 and R and C are combined as shown in FIG.

【0027】図3は遅相フィルタ7のゲイン−位相特性
を示す図である。図に示すように、フィルタ7のゲイン
は全周波数領域で一定であり、位相のみが0°から−2
π(360°)へと周波数に対し徐々に遅れているもの
である。位相が−π(−180°)となる周波数f0
中心周波数であり、中心周波数と位相変化量は抵抗Rと
コンデンサCを調整することにより変化する。この中心
周波数f0 を軸受6により不安定化される固有振動数近
辺に設定する。
FIG. 3 is a diagram showing a gain-phase characteristic of the delay filter 7. As shown in the figure, the gain of the filter 7 is constant in the entire frequency range, and only the phase is 0 ° to −2.
It gradually lags the frequency to π (360 °). The frequency f 0 at which the phase becomes −π (−180 °) is the center frequency, and the center frequency and the amount of phase change are changed by adjusting the resistor R and the capacitor C. The center frequency f 0 is set near the natural frequency which is destabilized by the bearing 6.

【0028】次にこのように構成された本実施例装置の
作用を説明する。位置センサ1からの信号はゲイン回路
2を経由して遅相フィルタ7に入り、位相のみ遅らされ
て制御回路3に入力する。
Next, the operation of the apparatus of this embodiment thus constructed will be described. The signal from the position sensor 1 enters the lag filter 7 via the gain circuit 2, is delayed only in phase, and is input to the control circuit 3.

【0029】磁気軸受の(力F)/(変位D)は(3)
式で表わされ、かつ遅相フィルタ7は次式で表わされ
る。
The (force F) / (displacement D) of the magnetic bearing is (3)
The lag filter 7 is expressed by the following equation.

【0030】 V2/V1=exp〔−jθ(f)〕 ………(7) ここでV1は入力電圧,V2は出力電圧であり、exp
は指数関数,θは位相である。
V2 / V1 = exp [-jθ (f)] (7) where V1 is the input voltage, V2 is the output voltage, and exp
Is the exponential function and θ is the phase.

【0031】かくしてこの新しい磁気軸受の(力F)/
(変位D)は(8)式で表わされる。
Thus, (force F) / of this new magnetic bearing
(Displacement D) is expressed by the equation (8).

【0032】 F/D={KR (f)+j・KI (f)}・exp〔−jθ(f)〕 ={KR (f)cosθ(f)+KI (f)sinθ(f)} +j{KI (f)cosθ(f) −KR (f)sinθ(f)} ………(8) θ(f)が−π近辺となる周波数f0 近辺ではF/Dの
虚部は負であったのが遅相することにより正となる。
F / D = {K R (f) + j · K I (f)} · exp [−jθ (f)] = {K R (f) cos θ (f) + K I (f) sin θ (f) } + J {K I (f) cos θ (f) −K R (f) sin θ (f)} (8) The imaginary part of F / D near the frequency f 0 at which θ (f) is around −π. Was negative but becomes positive due to the delay.

【0033】かくして磁気軸受の減衰特性は図4の実線
Dで示すようになり、fc1〜fc2の周波数帯域の部分が
安定化力に変更されたものとなる。したがって、軸5の
固有振動数〔(a)〜(c)部〕を上記周波数帯域に含
むように設定すると、固有振動数は安定化され、固有振
動数が加振または共振されても発散的な振動の発生が防
止される。
Thus, the damping characteristic of the magnetic bearing is as shown by the solid line D in FIG. 4, and the portion of the frequency band f c1 to f c2 is changed to the stabilizing force. Therefore, when the natural frequency of the shaft 5 [(a) to (c) part] is set to be included in the above frequency band, the natural frequency is stabilized, and even if the natural frequency is excited or resonated, it is divergent. The generation of vibrations is prevented.

【0034】(2) 本発明の第2実施例を図5に示
す。本例は遅相フィルタ7として、図5に示すような増
幅素子8と、R,Cを組合せた2次ローパスフィルタを
用いたものである。作用効果は前記とほぼ同様である。
(2) A second embodiment of the present invention is shown in FIG. In this example, as the delay filter 7, an amplification element 8 as shown in FIG. 5 and a second-order low-pass filter in which R and C are combined are used. The action and effect are almost the same as above.

【0035】なお、以上はスラスト軸受6に用いたが、
ラジアル軸受6aに用いてもよい。
Although the above is used for the thrust bearing 6,
It may be used for the radial bearing 6a.

【0036】[0036]

【発明の効果】以上に説明したように、本発明によれ
ば、スラスト位置センサの信号の位相を遅相フィルタで
遅らせ、制御回路へ入力するようにしたので、指定され
た周波数帯域において、不安定化力を安定化力(減衰
力)に変更し得、発散的な振動発生を防止でき、対象軸
を安定に浮上保持させ得る磁気軸受制御装置を提供でき
る。
As described above, according to the present invention, the phase of the signal of the thrust position sensor is delayed by the lag filter and input to the control circuit. It is possible to provide a magnetic bearing control device that can change a stabilizing force to a stabilizing force (damping force), prevent divergent vibration from occurring, and stably float and hold a target shaft.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成ブロック線図であ
る。
FIG. 1 is a configuration block diagram of a first embodiment of the present invention.

【図2】同実施例の遅相フィルタの回路図である。FIG. 2 is a circuit diagram of a delay filter of the same embodiment.

【図3】同実施例の作用説明図である。FIG. 3 is an explanatory view of the operation of the embodiment.

【図4】同実施例の作用説明図である。FIG. 4 is an explanatory view of the operation of the embodiment.

【図5】本発明の第2実施例の遅相フィルタの回路図で
ある。
FIG. 5 is a circuit diagram of a delay filter according to a second embodiment of the present invention.

【図6】従来例の構成ブロック線図である。FIG. 6 is a configuration block diagram of a conventional example.

【図7】同従来例の作用説明図である。FIG. 7 is an operation explanatory view of the conventional example.

【図8】同従来例の軸受部の説明図である。FIG. 8 is an explanatory diagram of a bearing portion of the conventional example.

【符号の説明】[Explanation of symbols]

1 スラスト位置センサ 2 ゲイン回路 3 制御回路 4 電磁石 5 回転軸 6 スラスト磁気軸受 6a ラジアル磁気軸受 7 遅相フィルタ 8 増幅素子 C コンデンサ素子 R 抵抗素子 V1,V2 フィルタの入力電圧および出力電圧 1 Thrust position sensor 2 Gain circuit 3 Control circuit 4 Electromagnet 5 Rotating shaft 6 Thrust magnetic bearing 6a Radial magnetic bearing 7 Lag filter 8 Amplifying element C Capacitor element R Resistive element V1, V2 Filter input voltage and output voltage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対象軸の浮上位置を検出する位置センサ
と、同位置センサの出力を受けるゲイン回路と、同ゲイ
ン回路の出力を受け上記対象軸の浮上用の電磁石へ励磁
信号を送る制御回路とを有する磁気軸受制御装置におい
て、上記ゲイン回路および制御回路間に遅相フィルタを
設けたことを特徴とする磁気軸受制御装置。
1. A position sensor for detecting a levitation position of a target shaft, a gain circuit for receiving an output of the position sensor, and a control circuit for receiving an output of the gain circuit and sending an excitation signal to a levitation electromagnet of the target shaft. A magnetic bearing control device having: a magnetic bearing control device, wherein a lag filter is provided between the gain circuit and the control circuit.
JP7110638A 1995-05-09 1995-05-09 Magnetic bearing controller Pending JPH08303461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7110638A JPH08303461A (en) 1995-05-09 1995-05-09 Magnetic bearing controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7110638A JPH08303461A (en) 1995-05-09 1995-05-09 Magnetic bearing controller

Publications (1)

Publication Number Publication Date
JPH08303461A true JPH08303461A (en) 1996-11-19

Family

ID=14540804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7110638A Pending JPH08303461A (en) 1995-05-09 1995-05-09 Magnetic bearing controller

Country Status (1)

Country Link
JP (1) JPH08303461A (en)

Similar Documents

Publication Publication Date Title
Ahn et al. Encapsulated high frequency (235 kHz), high-Q (100 k) disk resonator gyroscope with electrostatic parametric pump
US4795927A (en) Control system for a magnetic type bearing
US4885491A (en) Unstable vibration prevention apparatus for magnetic bearing system
JP6351400B2 (en) Improved active magnetic bearing control system
EP1396649A2 (en) Magnetic bearing device with vibration restraining function, magnetic bearing device with vibration estimating function, and pump device with the magnetic bearing devices mounted thereto
JP2005502004A (en) Apparatus and method used for automatic compensation of synchronous disturbances
Okada et al. Cross-feedback stabilization of the digitally controlled magnetic bearing
Mizuno et al. Self-sensing magnetic bearing control system design using the geometric approach
JPH08303461A (en) Magnetic bearing controller
Chen et al. Magnetic bearing with rotating force control
JPS62258221A (en) Magnetic bearing control system
JP2007010342A (en) Low-frequency zone gain doubling control for magnetically-supported balance device
JPH01150016A (en) Magnetic bearing controller
JPH0680328B2 (en) Magnetic bearing control device
Bradfield et al. Performance of an electromagnetic bearing for the vibration control of a supercritical shaft
JP2957222B2 (en) Active bearing rotor support controller
JP3110204B2 (en) Magnetic bearing control device
JP2522168Y2 (en) Magnetic bearing control device
JPH0730790B2 (en) Magnetic bearing control device
JPS62258220A (en) Magnetic beraing control system
JPH0534336Y2 (en)
JP2575862B2 (en) Magnetic bearing control device
JPS62258222A (en) Magnet bearing control system
JPH0640953Y2 (en) Turbo molecular pump
Weise Present industrial applications of active magnetic bearings

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608