JPH0640953Y2 - Turbo molecular pump - Google Patents

Turbo molecular pump

Info

Publication number
JPH0640953Y2
JPH0640953Y2 JP12634888U JP12634888U JPH0640953Y2 JP H0640953 Y2 JPH0640953 Y2 JP H0640953Y2 JP 12634888 U JP12634888 U JP 12634888U JP 12634888 U JP12634888 U JP 12634888U JP H0640953 Y2 JPH0640953 Y2 JP H0640953Y2
Authority
JP
Japan
Prior art keywords
rotating body
magnetic
shaft
magnetic bearing
journal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12634888U
Other languages
Japanese (ja)
Other versions
JPH0250090U (en
Inventor
茂樹 森井
淳 中村
仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12634888U priority Critical patent/JPH0640953Y2/en
Publication of JPH0250090U publication Critical patent/JPH0250090U/ja
Application granted granted Critical
Publication of JPH0640953Y2 publication Critical patent/JPH0640953Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は,ターボ分子ポンプに関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a turbo molecular pump.

(従来の技術) 回転体を浮上保持する手段として電磁石を使用した磁気
軸受がある。この磁気軸受は,流体潤滑軸受よりもロス
が少なく,軸受のドライ化,雰囲気のクリーン化が可能
で,特に真空状態では,有用な軸受である。
(Prior Art) There is a magnetic bearing using an electromagnet as a means for floatingly holding a rotating body. This magnetic bearing has less loss than a fluid lubricated bearing, can dry the bearing, and can clean the atmosphere, and is a useful bearing especially in a vacuum state.

この磁気軸受の有力な応用対象機器にターボ分子ポンプ
がある。このターボ分子ポンプの従来例を第6図により
説明すると,(5)が回転体で,同回転体(5)が円板
(9)と同円板(9)の中心部に一端部を固定した軸体
(8)と同円板(9)の周縁部に固定して同軸体(8)
を取り囲み且つ外周面に複数の排ガス用翼体(10)を取
付けた外筒(7)とにより構成されている。また(14)
が上記軸体(8)と上記外筒(7)との間の空間部に嵌
挿した回転体(5)の支持円筒体,(12)が同支持円筒
体(14)の内周面に取付けた回転体駆動用モータ,(6
A)(6B)が上記支持円筒体(14)の内周面に取付けた
2組のジヤーナル磁気軸受,(11)が上記軸体(8)の
反円板側端部に固定したスラスト磁気軸受の磁性体デイ
スク,(13)が同磁性体デイスク(11)を挟んで上記支
持円筒体(14)の内周面に取付けた1組のスラスト磁気
軸受で,2組のジヤーナル磁気軸受(6A)(6B)と1組の
スラスト磁気軸受(13)とにより回転体(5)を浮上保
持している。
A turbo molecular pump is one of the most promising applications for this magnetic bearing. A conventional example of this turbo molecular pump will be described with reference to FIG. 6. (5) is a rotating body, and the rotating body (5) has one end fixed to the disk (9) and the center of the disk (9). The shaft body (8) and the circular plate (9) are fixed to the peripheral portion of the coaxial body (8).
And an outer cylinder (7) surrounding the outer peripheral surface and having a plurality of exhaust gas blades (10) attached to the outer peripheral surface thereof. Also (14)
Is a support cylinder of the rotating body (5) inserted in the space between the shaft body (8) and the outer cylinder (7), and (12) is the inner peripheral surface of the support cylinder (14). Attached motor for rotating body, (6
A) and (6B) are two sets of journal magnetic bearings mounted on the inner peripheral surface of the support cylinder (14), and (11) is a thrust magnetic bearing fixed to the end of the shaft (8) on the side opposite to the disc. The magnetic disk (13) is a set of thrust magnetic bearings mounted on the inner peripheral surface of the supporting cylinder (14) with the magnetic disk (11) sandwiched therebetween, and two sets of journal magnetic bearings (6A). The rotating body (5) is levitated and held by (6B) and a pair of thrust magnetic bearings (13).

この磁気軸受では,浮上体(回転体(5))の浮上位置
を次の浮上位置設定手段,即ち,浮上体の浮上位置を計
測し,その結果得られた計測信号に基づき磁気軸受の電
磁石に流す電流値を決めて,電磁石に発生する磁力の大
きさを制御する浮上位置設定手段により,設定してい
る。この浮上位置設定手段の一例を第7図に示した。
(1)が浮上体の浮上位置を計測する位置センサ(例え
ば渦電流変位計),(2)が同位置センサ(1)からの
計測信号の大きさを必要な大きさに比例倍するための位
置フイードバツクゲイン,(3)が同位置フイードバツ
クゲイン(2)からの信号に基づき磁気軸受の電磁石
(4)に流す電流値を決めて電磁石(4)へ出力する制
御器で,同電磁石(4)には,コイルが巻かれており,
制御器(3)からの電流に応じて浮上用磁力を発生する
ようになっている。上記制御器(3)には,PID(比例,
積分,微分)回路,位相補償回路,或いはこれらの回路
を組み合わせた回路等が使用されている。が,制御器
(3)が比例要素(P要素)だけで構成された最も簡単
な位置フイードバツク系の場合には,電磁石(4)への
入力Iと電磁石(4)からの出力である磁力Fとの伝達
関数は,コイル,鉄心等の抵抗やインダクタンスによ
り,以下の一次遅れ系になる。
In this magnetic bearing, the levitation position of the levitation body (rotating body (5)) is measured by the next levitation position setting means, that is, the levitation position of the levitation body is measured, and the electromagnet of the magnetic bearing is determined based on the measurement signal obtained as a result. The current value to be flown is determined and set by the levitation position setting means for controlling the magnitude of the magnetic force generated in the electromagnet. An example of this floating position setting means is shown in FIG.
(1) is a position sensor (for example, an eddy current displacement meter) that measures the floating position of the floating body, and (2) is for proportionally multiplying the magnitude of the measurement signal from the position sensor (1) to the required magnitude. The position feed back gain, (3) is a controller that determines the current value to flow to the electromagnet (4) of the magnetic bearing based on the signal from the same position feed back gain (2) and outputs it to the electromagnet (4). A coil is wound around the electromagnet (4),
The magnetic force for levitation is generated according to the current from the controller (3). The controller (3) has a PID (proportional,
Integrating, differentiating) circuits, phase compensation circuits, or circuits combining these circuits are used. However, in the case of the simplest position feedback system in which the controller (3) is composed of only proportional elements (P elements), the input I to the electromagnet (4) and the magnetic force F which is the output from the electromagnet (4) The transfer function between and becomes the following first-order lag system due to the resistance and inductance of the coil, iron core, etc.

F/I=KM/(I+TM・S)・ ここで,KMは電磁石(4)のゲイン,TMは電磁石(4)
の時定数,Sはラプラス演算子である。従って位置フイー
ドバツク系の計測変位Dから回転体(5)への磁力Fに
至る伝達関数は,次の通りになる。
F / I = K M / (I + T M・ S) ・ where K M is the gain of the electromagnet (4) and T M is the electromagnet (4)
, S is the Laplace operator. Therefore, the transfer function from the measured displacement D of the position feedback system to the magnetic force F to the rotating body (5) is as follows.

F/D=KF・KP・KM/(I+TM・S) ・・・・・ ここで,KFは位置フイードバツクゲイン2,KPは制御器
(3)の比例ゲインである。
F / D = K F・ K P・ K M / (I + T M・ S) ・ ・ ・ where K F is the position feedback back gain 2 and K P is the proportional gain of the controller (3) Is.

位置フイードバツク系の(磁力F/変位D)の周波数特性
見るため,ラプラス演算子S=j2πfとおき,上記式
に代入する。ここで,fは周波数(H2), である。(磁力F/変位D)は,複素数となり,次のよう
におく。
In order to see the frequency characteristics of (magnetic force F / displacement D) of the position feedback system, the Laplace operator S = j2πf is set and substituted in the above equation. Where f is the frequency (H 2 ), Is. (Magnetic force F / displacement D) is a complex number and is set as follows.

F/D=KM(f)+j・KI(f)・ 同式における(磁力F/変位D)の実部は周波数fに依
存した剛性を意味し,(磁力F/変位D)の虚部は周波数
fに依存した減衰を意味している。上記式のような1
次遅れは,虚部が常に負となり,浮上体に対して減衰と
は反対の不安定力になる。
F / D = K M (f) + j · K I (f) · The real part of (Magnetic force F / Displacement D) in the equation means the rigidity depending on frequency f, and (Magnetic force F / Displacement D) The imaginary part means attenuation depending on the frequency f. 1 as in the above formula
In the second-order lag, the imaginary part is always negative, and the levitation body becomes an unstable force opposite to the damping.

第8図は,(磁力F/変位D),即ち,上記式の虚部の
値と周波数fとの関係を示している。同第8図の点線A
が上記式に対応して,上述の状態を示している。浮上
体と位置フイードバツク系とからなる固有振動数fCがも
つ減衰,特に浮上体の減衰によりも第8図の周波数f=
fCの所の値が大きいと,浮上体が発散的に振動して,運
転できなくなる。
FIG. 8 shows (magnetic force F / displacement D), that is, the relationship between the value of the imaginary part of the above equation and the frequency f. Dotted line A in FIG. 8
Indicates the above-mentioned state corresponding to the above equation. Depending on the damping of the natural frequency f C consisting of the levitation body and the position feedback system, especially the damping of the levitation body, the frequency f =
If the value at f C is large, the levitation body oscillates divergently and operation becomes impossible.

そこで,位置フイードバツク系の(磁力F/変位D)に減
衰効果を持たすために,制御器(3)に比例要素(P要
素)と並列に微分要素(D要素)または位相補償要素を
設ける。ここではこれらを代表して微分要素を例にと
る。微分要素(D要素)を制御器(3)に回路として挿
入すると,次の1次遅れ系になる。
Therefore, in order to have a damping effect on the (magnetic force F / displacement D) of the position feedback system, a derivative element (D element) or phase compensation element is provided in parallel with the proportional element (P element) in the controller (3). Here, the differential element is taken as an example to represent these. When the differential element (D element) is inserted into the controller (3) as a circuit, the following first-order lag system is obtained.

微分要素=KD・S/(I+TD・S) ・ ここで,KDは微分要素のゲイン,TDは時定数である。微
分要素だけの位置フイードバツク系の(磁力F/変位D)
は,次のようになる。
Derivative element = K D S / (I + T D S) -where K D is the gain of the differential element and T D is the time constant. Position feedback system with only differential element (Magnetic force F / Displacement D)
Is as follows:

同式の分子はSの1次で,分母はSの2次になるた
め,同式の虚部は第8図の一点鎖線Bのようになる。
即ち,周波数の低い領域では,不安定作用をもつ。浮上
体の位置を保持するため,制御器(3)には,比例要素
と微分要素との併存が必要になる。このような制御器
(3)の位置フイードバツク系の(磁力F/変位D)は, になり,第8図の実線Cになって,上述と同じ特性をも
つ。浮上体と位置フイードバツク系とからなる固有振動
数fCを減衰効果を有する周波数の低い領域に置くと,安
定性を確保できて,振動を発生することなく運転でき
る。
Since the numerator of the equation is the first order of S and the denominator is the second order of S, the imaginary part of the equation is as shown by the chain line B in FIG.
That is, it has an unstable effect in the low frequency region. In order to maintain the position of the floating body, the controller (3) needs to have a proportional element and a derivative element. The position feedback system (Magnetic force F / Displacement D) of the controller (3) is And becomes a solid line C in FIG. 8 and has the same characteristics as described above. If the natural frequency f C consisting of the levitation body and the position feedback system is placed in the low frequency region that has the damping effect, stability can be secured and operation can be performed without generating vibration.

このような特性を有する磁気軸受を第6図に示す2重構
造の回転体(5)に適用して,同2重構造の回転体
(5)を浮上支持する場合には,次の現象を呈する。2
重構造の回転体(5)は,第9図(a)(b)(c)
(d)(e)〜に示すように無限個の固有振動数を有す
る。回転体(5)を構成する材料等の減衰は,回転数以
下の固有振動数に対しては不安定に働き,回転数以上の
固有振動数に対しては減衰を行うように働く。従って磁
気軸受の位置フイードバツク系の(磁力F/変位D)の減
衰効果を有する周波数領域に,回転数以下の固有振動数
をもってくる必要がある。しかし回転体(5)の固有振
動数は,第第9図(a)(b)(c)(d)(e)〜に
示すように無限にあるため,必ず(磁力F/変位D)の不
安定作用を有する周波数領域に固有振動数がある。従っ
て回転体(5)自体による固有振動数が有する減衰より
も,磁気軸受の位置フイードバツク系の不案内作用が大
きくなると,不安定になり,振動が発散的に大きくなっ
て,回転させることがてきなくなる。
When the magnetic bearing having such characteristics is applied to the rotating body (5) of the double structure shown in FIG. 6 and the rotating body (5) of the same double structure is levitated and supported, the following phenomenon occurs. Present. Two
The rotating body (5) having a heavy structure is shown in FIGS. 9 (a) (b) (c).
(D) As shown in (e) to, it has an infinite number of natural frequencies. The damping of the material constituting the rotating body (5) acts instable at natural frequencies below the rotational speed, and acts so as to attenuate at natural frequencies above the rotational speed. Therefore, it is necessary to bring the natural frequency lower than the rotational frequency to the frequency range having the damping effect of (magnetic force F / displacement D) of the position feedback system of the magnetic bearing. However, the natural frequency of the rotating body (5) is infinite as shown in FIGS. 9 (a), (b), (c), (d), and (e). There is a natural frequency in the frequency domain having an unstable effect. Therefore, if the non-guidance action of the position feed back system of the magnetic bearing becomes larger than the damping of the natural frequency by the rotating body (5) itself, it becomes unstable, and the vibration becomes divergently large and it may be rotated. Disappear.

特に回転体(5)の最高回転数よりも高い第3次固有振
動数を有する減衰能は小さく,磁気軸受の位置フイード
バツク系の不安定作用により発散的に振動し易い。その
対策として,第3次固有振動数まで磁気軸受により減衰
作用領域を伸ばしても,それ以下の周波数領域では,よ
り大きい不安定化作用を行って,第4次固有振動数が次
に発散的な振動を起こすことになる。
In particular, the damping ability having a third natural frequency higher than the maximum rotation speed of the rotating body (5) is small, and it tends to divergely vibrate due to the instability of the position feed back system of the magnetic bearing. As a countermeasure, even if the damping action region is extended to the third natural frequency by the magnetic bearing, the destabilizing action is larger in the frequency region lower than that, and the fourth natural frequency becomes divergent. Vibration will occur.

(考案が解決しようとする課題) 上述したように従来の磁気軸受では,浮上物の位置を計
測し,そのとき得られた計測信号をフイードバツクし,
電磁石(4)からの磁力を浮上物に作用させて,浮上物
の位置を保持するようにしているが,電磁石(4)から
の磁力は,浮上物を振動させる不安定化力になる。そし
て制御器(3)でPID,位相補償等の処理を行っても,低
周波数領域では,依然として大きな不安定化力になる。
特に2重構造の回転体(5)のような無限個の固有振動
数を有する浮上物では,不安定力化力になる領域に固有
振動数が必ずあり,浮上物が磁気軸受により発散的に振
動することになる。その対策として,2重構造の回転体
(5)にとって最も減衰の少ない軸体(8)の曲げ1次
固有振動数(3次)まで磁気軸受による減衰領域を伸ば
すことが行われている。しかし曲げ2次固有振動数(4
次)に対しては,より一層不安定化力が増大して,曲げ
2次振動数が発散的な振動に変わるという問題があっ
た。
(Problems to be solved by the invention) As described above, in the conventional magnetic bearing, the position of the floating object is measured, and the measurement signal obtained at that time is fed back,
The magnetic force from the electromagnet (4) acts on the levitated object to hold the position of the levitated object, but the magnetic force from the electromagnet (4) becomes a destabilizing force that vibrates the levitated object. Even if the controller (3) performs processing such as PID and phase compensation, it still has a large destabilizing force in the low frequency region.
In particular, in a levitating body having an infinite number of natural frequencies such as a rotating body (5) with a double structure, there is always a natural frequency in the region that becomes the unstable force, and the levitating body is divergent by the magnetic bearing. It will vibrate. As a countermeasure against this, the damping region by the magnetic bearing is extended to the bending primary natural frequency (third order) of the shaft body (8), which has the least damping for the rotating body (5) having the double structure. However, the bending second natural frequency (4
With respect to (2), there was a problem that the destabilizing force increased further and the bending secondary frequency changed to divergent vibration.

本考案は前記の問題点に鑑み提案するものであり,その
目的とする処は,位相補償範囲外の回転体曲げ2次固有
振動数についても位相反転を生じさせて,その周波数領
域を安定化力(減衰力)に変換でき,発散的な振動を防
止できて,回転体を安定的に浮上支持できるターボ分子
ポンプを提供しようとする点にある。
The present invention is proposed in view of the above problems, and the purpose thereof is to stabilize the frequency region by causing phase reversal also for the secondary natural frequency of the bending of the rotating body outside the phase compensation range. The point is to provide a turbo molecular pump that can be converted into force (damping force), can prevent divergent vibrations, and can stably support the levitation of a rotating body.

(課題を解決するための手段) 上記の目的を達成するために,本考案は,円板と同円板
の中心部に一端部を固定した軸体と同円板の周縁部に固
定して同軸体を取り囲み且つ外周面に複数の排ガス用翼
体を取付けた外筒とよりなる回転体と,上記軸体と上記
外筒との間の空間部に嵌挿した回転体の支持円筒体と,
同支持円筒体の内周面に取付けた回転体駆動用モータ
と,上記支持円筒体と上記軸体との間に介装した2組の
ジヤーナル磁気軸受及び1組のスラスト磁気軸受とを有
するターボ分子ポンプにおいて,前記各ジヤーナル磁気
軸受を軸方向に間隔を置いて前記支持円筒体と前記軸体
との間に介装し,前記スラスト磁気軸受を前記支持円筒
体と前記軸体の反円板側端部との間に介装し,同スラス
ト磁気軸受の磁性体デイスクの中心部を反円板側に延長
し,同延長部の半径方向位置を計測する位置センサを前
記各ジヤーナル磁気軸受のうち,反円板側のジヤーナル
磁気軸受の制御系に接続している。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a disc and a shaft body, one end of which is fixed to the center of the disc, and a shaft which is fixed to the periphery of the disc. A rotating body composed of an outer cylinder surrounding the coaxial body and having a plurality of exhaust gas blades mounted on the outer peripheral surface thereof; and a supporting body for the rotating body fitted in a space between the shaft body and the outer cylinder. ,
A turbo having a rotary body drive motor mounted on the inner peripheral surface of the support cylinder, two sets of journal magnetic bearings and one set of thrust magnetic bearings interposed between the support cylinder and the shaft. In the molecular pump, the journal magnetic bearings are axially spaced from each other and are interposed between the support cylinder and the shaft, and the thrust magnetic bearing is an anti-disc of the support cylinder and the shaft. A position sensor installed between the side magnetic head and the central part of the magnetic disk of the thrust magnetic bearing is extended to the side opposite to the disc side, and a position sensor for measuring the radial position of the extension is provided for each of the journal magnetic bearings. Of these, it is connected to the control system of the journal magnetic bearing on the anti-disc side.

(作用) 本考案のターボ分子ポンプは前記のように構成されてお
り,支持円筒体と軸体との間に介装した2組のジヤーナ
ル磁気軸受と1組のスラスト磁気軸受とにより,回転体
の1次固有振動数,2次固有振動数,及び曲げ1次固有振
動数を含む周波数に対して位相補償(安定化作用)が行
われるが,回転体のフリーフリー2次固有振動数の振動
モードを考慮して,スラスト磁気軸受の磁性体デイスク
の中心部を反円板側に延長し,同延長部の周りに同延長
部の半径方向位置を計測する位置センサを配置して,同
位置センサを反円板側のジヤーナル磁気軸受の制御系に
接続しており,位相補償範囲外の回転体曲げ2次固有振
動数についても位相反転が生じて,その周波数領域が安
定化力(減衰力)に変換され,発散的な振動が防止され
て,回転体が安定的に浮上支持される。
(Operation) The turbo-molecular pump of the present invention is configured as described above, and includes two sets of journal magnetic bearings and one set of thrust magnetic bearings interposed between the supporting cylindrical body and the shaft body, thereby providing a rotating body. Phase compensation (stabilization) is performed for frequencies including the 1st natural frequency, 2nd natural frequency, and bending 1st natural frequency, but the free-free 2nd natural frequency of the rotor Considering the mode, the center part of the magnetic disk of the thrust magnetic bearing is extended to the side opposite to the disc, and a position sensor that measures the radial position of the extension is arranged around the same extension. The sensor is connected to the control system of the journal magnetic bearing on the anti-disc side, and phase inversion occurs even for the secondary natural frequency of the bending of the rotating body outside the phase compensation range, and its frequency range stabilizes (damping force). ), Divergent vibration is prevented, and rotation It is floatingly supported stably.

(実施例) 次に本考案のターボ分子ポンプを第1図乃至第4図に示
す一実施例により説明すると,第1図の(5)が回転体
で,同回転体(5)が円板(9)と同円板(9)の中心
部に一端部を固定した軸体(8)と同円板(9)の周縁
部に固定して同軸体(8)を取り囲み且つ外周面に複数
の排ガス用翼体(10)を取付けた外筒(7)とにより構
成されている。また(14)が上記軸体(8)と上記外筒
(7)との間の空間部に嵌挿した回転体(5)の支持円
筒体,(12)が同支持円筒体(14)の内周面に取付けた
回転体駆動用モータ,(6A)(6B)が上記支持円筒体
(14)の内周面に取付けた2組のジヤーナル磁気軸受,
(11)が上記軸体(8)の反円板側端部に固定したスラ
スト磁気軸受の磁性体デイスクで,同磁性体デイスク
(11)の中心部が軸方向に延長されている。また(13)
が同磁性体デイスク(11)を挟んで上記支持円筒体(1
4)の内周面に取付けた1組のスラスト磁気軸受で,2組
のジヤーナル磁気軸受(6A)(6B)と1組のスラスト磁
気軸受(13)とにより回転体(5)を浮上保持してい
る。
(Embodiment) Next, a turbo molecular pump of the present invention will be described with reference to an embodiment shown in FIGS. 1 to 4. (5) in FIG. 1 is a rotating body, and the rotating body (5) is a disk. A shaft body (8) whose one end is fixed to the center part of the same circular plate (9) as the (9) and a peripheral part of the same circular plate (9) are fixed to surround the coaxial body (8) and a plurality of them are provided on the outer peripheral surface. And an outer cylinder (7) to which the exhaust gas vane (10) is attached. Further, (14) is a support cylinder of the rotating body (5) fitted in the space between the shaft body (8) and the outer cylinder (7), and (12) is a support cylinder of the support cylinder (14). A rotating body drive motor mounted on the inner peripheral surface, two sets of journal magnetic bearings (6A) and (6B) mounted on the inner peripheral surface of the supporting cylindrical body (14),
Reference numeral (11) is a magnetic disk of a thrust magnetic bearing fixed to the end of the shaft (8) on the side opposite to the disk, and the center of the magnetic disk (11) is extended in the axial direction. See also (13)
And the supporting cylindrical body (1
A set of thrust magnetic bearings mounted on the inner peripheral surface of 4) holds the rotor (5) in a floating state by two sets of journal magnetic bearings (6A) (6B) and one set of thrust magnetic bearings (13). ing.

第2図は,上記回転体(5)と2組のジヤーナル磁気軸
受(6A)(6B)との配置関係を,回転体(5)の軸受部
をフリーにしたときの2次固有振動数(以下,フリーフ
リー2次固有振動数と呼ぶ)の振動モードFOに対応して
示している。同第2図に示すように2組のジヤーナル磁
気軸受(6A)(6B)は,回転体(5)の重心Gの左右
(第1図では上下)に分けて配置されている。このう
ち,左側(反円板側)のジヤーナル磁気軸受(6A)は,
位置センサ(1L)と位置フイードバツクゲイン(2L)と
制御器(3L)と電磁石(4L)とを有し,右側(円板側)
のジヤーナル磁気軸受(6B)は,位置センサ(1R)と位
置フイードバツクゲイン(2R)と制御器(3R)と電磁石
(4R)とを有している。そしてジヤーナル磁気軸受(6
A)の位置センサ(1L)と電磁石(4L)とは,回転体
(5)のフリーフリー2次固有振動数の振動モードFO
ノード点Pを挟んで上下に振り分け配置されている。上
記振動モードFOは,回転体(5)が2重構造であり,軸
体(8)が片持梁に似ており,フリーフリー2次固有振
動数では,軸体(8)の先端部(軸体(8)の反円板側
端部)の近くに設けた磁性体デイスク(11)位置でノー
ド点Pを1つもつ振動モードである。一方,磁性体デイ
スク(11)は,重量が大きく且つ軸体(8)の反円板側
に設けられているので,曲げ2次に対して動き難い所,
つまりノード点になる。また位置センサ(1L)は,電磁
石(4L)とで磁性体デイスク(11)を挟むように(振動
モードFOのノード点Pを挟むように)配置されて,同磁
性体デイスク(11)の半径方向位置を計測するようにな
っている。
Fig. 2 shows the positional relationship between the rotating body (5) and the two sets of journal magnetic bearings (6A) and (6B), and the secondary natural frequency when the bearing portion of the rotating body (5) is free ( Hereinafter, it is shown corresponding to the vibration mode F O of the free-free secondary natural frequency). As shown in FIG. 2, two sets of journal magnetic bearings (6A) and (6B) are separately arranged on the left and right sides (upper and lower sides in FIG. 1) of the center of gravity G of the rotating body (5). Of these, the left side (anti-disc side) of the journal magnetic bearing (6A) is
Position sensor (1L), position feed back gain (2L), controller (3L), electromagnet (4L), right side (disc side)
The journal magnetic bearing (6B) has a position sensor (1R), a position feed back gain (2R), a controller (3R) and an electromagnet (4R). And journal magnetic bearings (6
The position sensor (1L) and the electromagnet (4L) in (A) are arranged vertically above and below the node point P of the vibration mode F O of the free-free secondary natural frequency of the rotating body (5). In the vibration mode F O , the rotating body (5) has a double structure, the shaft body (8) resembles a cantilever, and at the free-free secondary natural frequency, the tip of the shaft body (8) is This is a vibration mode having one node point P at the position of the magnetic disk (11) provided near (the end of the shaft (8) on the side opposite to the disc). On the other hand, since the magnetic disk (11) is heavy and is provided on the side of the shaft (8) opposite to the disk, it is difficult to move in the secondary bending.
That is, it becomes a node point. Further, the position sensor (1L) is arranged so as to sandwich the magnetic disk (11) with the electromagnet (4L) (so as to sandwich the node point P of the vibration mode F O ), and the position of the magnetic disk (11) is reduced. It is designed to measure the radial position.

第3図は,回転体(5)の第1次,第2次,第3次,第
4次の固有振動数の振動モードF1,F2,F3,F4とジヤーナ
ル磁気軸受(6A)(6B)との関係を示している。同第3
図に示すように磁気軸受(6)の剛性に比べて回転体
(5)の剛性が高いので,第4次固有振動数の振動モー
ドの形は,第2図に示したフリーフリー第2次固有振動
数の振動モードの形と同じ形をしている。第3図から判
るようにジヤーナル磁気軸受(6A)の位置センサ(1L)
と電磁石(4L)及びジヤーナル磁気軸受(6B)の位置セ
ンサ(1R)と電磁石(4R)とは,第1次,第2次,第3
次固有振動数について同じ方向に揺れる振動モード内に
位置している。ところが第4次固有振動数については,
第4次固有振動数の振動モードF4がフリーフリー第2次
固有振動数の振動モードFOと同じ波形をしているので,
ジヤーナル磁気軸受(6A)の位置センサ(1L)と電磁石
(4L)とが逆方向に揺れる振動モード内に位置し,ジヤ
ーナル磁気軸受(6B)の位置センサ(1R)と電磁石(4
R)とが共に揺れない振動モード内に位置している。な
お制御器(3L)(3R)は,第8図の実線Cのように低周
波領域で減衰を与える機能を有している。かくして回転
体(5)の第1次,第2次,第3次固有振動数は,減衰
を与える周波数領域に置かれ,回転体(5)の第4次固
有振動数は,不安定化力を与える周波数領域に置かれ
る。
FIG. 3 shows vibration modes F1, F2, F3, F4 of the first, second, third, and fourth natural frequencies of the rotating body (5) and the journal magnetic bearings (6A) (6B). Shows the relationship with. Same third
As shown in the figure, since the rigidity of the rotating body (5) is higher than that of the magnetic bearing (6), the shape of the vibration mode of the fourth natural frequency is the free-free second order shown in FIG. It has the same shape as the vibration mode of the natural frequency. As can be seen from Fig. 3, the position sensor (1L) of the journal magnetic bearing (6A)
The position sensor (1R) of the electromagnet (4L) and the journal magnetic bearing (6B) and the electromagnet (4R) are the primary, secondary, and tertiary
It is located in a vibration mode that sways in the same direction with respect to the next natural frequency. However, regarding the fourth natural frequency,
Since the vibration mode F4 of the fourth natural frequency has the same waveform as the vibration mode F O of the free free second natural frequency,
The position sensor (1L) of the journal magnetic bearing (6A) and the electromagnet (4L) are located in a vibration mode in which they swing in opposite directions, and the position sensor (1R) and electromagnet (4) of the journal magnetic bearing (6B) are located.
R) and are in a vibration mode that does not shake together. The controllers (3L) and (3R) have the function of providing attenuation in the low frequency region as shown by the solid line C in FIG. Thus, the first-order, second-order, and third-order natural frequencies of the rotating body (5) are placed in the damping frequency range, and the fourth-order natural frequency of the rotating body (5) is the destabilizing force. Is placed in the frequency domain that gives

ところでジヤーナル磁気軸受(6A)の(磁力F/変位D)
を前記式により表すと,回転体(5)の第1次,第2
次,第3次固有振動数については,磁気軸受特性が変わ
らなくて,式のままであるが,回転体(5)の第4次
固有振動数については,式とは逆転し, F/D=-KR(fc4)-j・KI(fc4) になって,不安定化力が減衰力に変わる。なおfc4は第
4次固有振動数である。従って回転体(5)に対する特
性は,第4図の実線DCに示すように第1次,第2次,第
3次,第4次固有振動数に対して減衰をもつものにな
る。またジヤーナル磁気軸受(6B)については,第4次
固有振動数に対し振動モードが全く振れない所に配置さ
れるので,第4次固有振動数に不安定化力も何も与えな
い。
By the way, of the journal magnetic bearing (6A) (magnetic force F / displacement D)
Is expressed by the above equation, the first and second order of the rotating body (5)
Regarding the second and third natural frequencies, the magnetic bearing characteristics do not change and remain as the formulas, but the fourth natural frequency of the rotating body (5) is reversed from the formula and F / D = -K R (fc 4 ) -j · K I (fc 4 ), and the destabilizing force changes to a damping force. Note that fc 4 is the 4th natural frequency. Therefore, the characteristic for the rotating body (5) has damping for the first, second, third and fourth natural frequencies as shown by the solid line D C in FIG. Further, the journal magnetic bearing (6B) is placed in a place where the vibration mode does not oscillate at all with respect to the fourth natural frequency, and therefore does not give any destabilizing force to the fourth natural frequency.

かくして本実施例によれば,第1次,第2次,第3次固
有振動数のみに減衰を与える制御器(3L)(3R)を使用
しているにもかかわらず,第4次固有振動数において最
も不安定化力として働く領域を減衰力(安定化力)を得
られる領域に変更できる。従って回転体(5)の中高周
波ハンデイング問題が減少する上に,曲げ2次危険速度
(第4次固有振動数に対応した曲げ2次危険速度)まで
運転可能になる。なお第5次固有振動数以上の固有振動
数については,不安定化力が小さい周波数領域になるの
で,殆ど問題がない。
Thus, according to the present embodiment, although the controllers (3L) (3R) that give damping only to the first, second, and third natural frequencies are used, the fourth natural vibration is used. The region that acts as the most destabilizing force in the number can be changed to the region where the damping force (stabilizing force) can be obtained. Therefore, in addition to the problem of the medium and high frequency handing of the rotating body (5) being reduced, it is possible to operate up to the bending secondary critical velocity (the bending secondary critical velocity corresponding to the fourth natural frequency). For the natural frequencies above the fifth natural frequency, there is almost no problem because the destabilizing force is in the frequency region where it is small.

第5図は,スラスト磁気軸受(13)の磁性体デイスク
(11)の重量を軽減するため,磁性体デイスク(11)を
環状体と円筒体とにより構成した本考案のターボ分子ポ
ンプの他の実施例で,この実施例でも前記と同様の作用
が達成される。
FIG. 5 shows another turbo molecular pump of the present invention in which the magnetic disk (11) is composed of an annular body and a cylindrical body in order to reduce the weight of the magnetic disk (11) of the thrust magnetic bearing (13). In this embodiment, the same operation as described above can be achieved in this embodiment.

(考案の効果) 本考案のターボ分子ポンプは前記のように支持円筒体と
軸体との間に介装した2組のジヤーナル磁気軸受と1組
のスラスト磁気軸受とにより,回転体の1次固有振動
数,2次固有振動数,及び曲げ1次固有振動数を含む周波
数に対して位相補償(安定化作用)が行われるが,回転
体のフリーフリー2次固有振動数の振動モードを考慮し
て,スラスト磁気軸受の磁性体デイスクの中心部を反円
板側に延長し,同延長部の周りに同延長部の半径方向位
置を計測する位置センサを配置して,同位置センサを反
円板側のジヤーナル磁気軸受の制御系に接続しており,
位相補償範囲外の回転体曲げ2次固有振動数についても
位相反転を生じさせて,その周波数領域を安定化力(減
衰力)に変換でき,発散的な振動を防止できて,回転体
を安定的に浮上支持できる効果がある。
(Effects of the Invention) As described above, the turbo molecular pump of the present invention uses the two sets of journal magnetic bearings and one set of thrust magnetic bearings interposed between the support cylinder and the shaft to make the primary of the rotating body. Phase compensation (stabilization) is performed for frequencies including natural frequency, secondary natural frequency, and bending primary natural frequency, but considers free-free secondary natural frequency vibration modes of the rotating body. Then, the center of the magnetic disk of the thrust magnetic bearing is extended to the side opposite to the disc, and a position sensor for measuring the radial position of the extension is arranged around the extension and the same position sensor is removed. It is connected to the control system of the journal magnetic bearing on the disk side.
Phase inversion also occurs for the secondary natural frequency of bending of a rotating body outside the phase compensation range, and its frequency range can be converted into a stabilizing force (damping force), divergent vibrations can be prevented, and a rotating body can be stabilized. There is an effect that it can support levitating.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係わるターボ分子ポンプの一実施例を
示す縦断側面図,第2図は回転体のフリーフリー2次固
有振動数の振動モードに対する磁気軸受の配置を示す説
明図,第3図は第1,2,3,4次固有振動数の振動モードに
対する磁気軸受の配置を示す説明図,第4図は回転体に
対する磁気軸受の減衰特性を示す説明図,第5図は他の
実施例を示す縦断側面図,第6図は従来のターボ分子ポ
ンプを示す縦断側面図,第7図は磁気軸受の制御系を示
すブロック図,第8図は磁気軸受の減衰特性を示す説明
図,第9図(a)〜(e)は回転体の固有振動数の種類
を示す説明図である。 (1L)(1R)……位置センサ,(2L)(2R)……位置フ
イードバツクゲイン,(3L)(3R)……制御器,(4L)
(4R)……電磁石,(5)……回転体,(6L)(6R)…
…ジヤーナル磁気軸受,(7)……外筒,(8)……軸
体,(9)……円板,(10)……排ガス用翼体,(11)
……磁性体デイスク,(12)……回転体駆動用モータ,
(13)……スラスト磁気軸受,(14)……支持円筒体。
FIG. 1 is a longitudinal side view showing an embodiment of a turbo molecular pump according to the present invention, and FIG. 2 is an explanatory view showing the arrangement of magnetic bearings for the vibration modes of the free-free secondary natural frequency of a rotating body. Fig. 4 is an explanatory diagram showing the arrangement of magnetic bearings for the vibration modes of the 1st, 2nd, 3rd, and 4th natural frequencies, Fig. 4 is an explanatory diagram showing the damping characteristics of the magnetic bearings with respect to the rotor, and Fig. 5 FIG. 6 is a vertical sectional side view showing a conventional turbo molecular pump, FIG. 7 is a block diagram showing a control system of a magnetic bearing, and FIG. 8 is an explanatory diagram showing damping characteristics of the magnetic bearing. , (A) to (e) of FIG. 9 are explanatory views showing types of natural frequencies of the rotating body. (1L) (1R) …… Position sensor, (2L) (2R) …… Position feed back gain, (3L) (3R) …… Controller, (4L)
(4R) ... electromagnet, (5) ... rotating body, (6L) (6R) ...
… Jeanal magnetic bearing, (7) …… Outer cylinder, (8) …… Shaft, (9) …… Disk, (10) …… Exhaust gas blade, (11)
…… Magnetic disk, (12) …… Rotor driving motor,
(13) …… Thrust magnetic bearing, (14) …… Supporting cylinder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】円板と同円板の中心部に一端部を固定した
軸体と同円板の周縁部に固定して同軸体を取り囲み且つ
外周面に複数の排ガス用翼体を取付けた外筒とよりなる
回転体と,上記軸体と上記外筒との間の空間部に嵌挿し
た回転体の支持円筒体と,同支持円筒体の内周面に取付
けた回転体駆動用モータと,上記支持円筒体と上記軸体
との間に介装した2組のジヤーナル磁気軸受及び1組の
スラスト磁気軸受とを有するターボ分子ポンプにおい
て,前記各ジヤーナル磁気軸受を軸方向に間隔を置いて
前記支持円筒体と前記軸体との間に介装し,前記スラス
ト磁気軸受を前記支持円筒体と前記軸体の反円板側端部
との間に介装し,同スラスト磁気軸受の磁性体デイスク
の中心部を軸方向に延長し,同延長部の半径方向位置を
計測する位置センサを前記各ジヤーナル磁気軸受のう
ち,反円板側のジヤーナル磁気軸受の制御系に接続した
ことを特徴とするターボ分子ポンプ。
1. A disc and a shaft having one end fixed to the center of the disc, and a shaft fixed to the peripheral edge of the disc to surround the coaxial body and a plurality of exhaust gas blades mounted on the outer peripheral surface. A rotating body composed of an outer cylinder, a supporting cylinder of the rotating body fitted in a space between the shaft body and the outer cylinder, and a rotating body driving motor attached to an inner peripheral surface of the supporting cylinder. And a turbo molecular pump having two sets of journal magnetic bearings and one set of thrust magnetic bearings interposed between the support cylinder and the shaft, wherein the journal magnetic bearings are axially spaced from each other. The thrust magnetic bearing is interposed between the support cylinder and the shaft, and the thrust magnetic bearing is interposed between the support cylinder and the end of the shaft opposite to the disc side. A position sensor that extends the center of a magnetic disk in the axial direction and measures the radial position of the extension. Wherein among the journal magnetic bearing turbomolecular pump, characterized in that connected to the control system of the journal magnetic bearing counter-disc side.
JP12634888U 1988-09-29 1988-09-29 Turbo molecular pump Expired - Lifetime JPH0640953Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12634888U JPH0640953Y2 (en) 1988-09-29 1988-09-29 Turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12634888U JPH0640953Y2 (en) 1988-09-29 1988-09-29 Turbo molecular pump

Publications (2)

Publication Number Publication Date
JPH0250090U JPH0250090U (en) 1990-04-06
JPH0640953Y2 true JPH0640953Y2 (en) 1994-10-26

Family

ID=31377794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12634888U Expired - Lifetime JPH0640953Y2 (en) 1988-09-29 1988-09-29 Turbo molecular pump

Country Status (1)

Country Link
JP (1) JPH0640953Y2 (en)

Also Published As

Publication number Publication date
JPH0250090U (en) 1990-04-06

Similar Documents

Publication Publication Date Title
US4036565A (en) Pump construction
Cole et al. An active magnetic bearing for thin-walled rotors: vibrational dynamics and stabilizing control
JPS5993995A (en) Pump
JPS645161B2 (en)
EP0396849A1 (en) Magnetic bearing device
CN104503237A (en) Harmonic vibration control method for magnetic suspension rotor based on Fourier transform
Chen et al. Experimental validation of a current-controlled three-pole magnetic rotor-bearing system
JPH0640953Y2 (en) Turbo molecular pump
JPH0884454A (en) Damping apparatus for rotary machine
JP4427652B2 (en) Low frequency gain doubling control in magnetic support balance device
JPH06173948A (en) Magnetic damper device for magnetic bearing and magnetic bearing device
Xiang et al. Vibration characteristics and cross-feedback control of magnetically suspended blower based on complex-factor model
KR100575556B1 (en) Method for controlling vibration of a magnetically suspended spindle
JPH0623570B2 (en) Magnetic bearing device for double structure rotating body
Lee Mechatronics in rotating machinery
JPH06261498A (en) Vibration suppressor for rotating machine
JPS62258221A (en) Magnetic bearing control system
Wang et al. Suppression of Gyroscopic Torque Disturbance in High Speed Magnetically Levitated Rigid Rotor Systems Based on Extended State Observer
JP2004003572A (en) Magnetic bearing and bearing device provided with it
Zhou et al. Modelling and Validation of Rotor-Active Magnetic Bearing System Considering Interface Contact
Kalista A proposal of the methodology for dynamic force coefficients identification of labyrinth seal with use of active magnetic bearings
WO2022224381A1 (en) Bearingless motor
JP2575862B2 (en) Magnetic bearing control device
Půst Weak and strong nonlinearities in magnetic bearings
Maruyama et al. Proposal of a new configuration for magnetically suspended gyro