JPH0830252B2 - Stainless steel wire for spring - Google Patents

Stainless steel wire for spring

Info

Publication number
JPH0830252B2
JPH0830252B2 JP2314926A JP31492690A JPH0830252B2 JP H0830252 B2 JPH0830252 B2 JP H0830252B2 JP 2314926 A JP2314926 A JP 2314926A JP 31492690 A JP31492690 A JP 31492690A JP H0830252 B2 JPH0830252 B2 JP H0830252B2
Authority
JP
Japan
Prior art keywords
spring
outer diameter
steel wire
coil spring
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2314926A
Other languages
Japanese (ja)
Other versions
JPH04183819A (en
Inventor
幸男 山岡
勝 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP2314926A priority Critical patent/JPH0830252B2/en
Publication of JPH04183819A publication Critical patent/JPH04183819A/en
Publication of JPH0830252B2 publication Critical patent/JPH0830252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ばね用ステンレス鋼線に関し、詳細には、
コイルばね成形後の低温焼鈍時の外径の変化率を所望値
に制御可能なばね用ステンレス鋼線に関する。
TECHNICAL FIELD The present invention relates to a stainless steel wire for springs, and more specifically,
The present invention relates to a stainless steel wire for spring, which can control the rate of change of the outer diameter during low temperature annealing after coil spring molding to a desired value.

(従来の技術) ピアノ線、硬鋼線、オイルテンパー線、ステンレス鋼
線などの所謂ばね用鋼線は、コイルばねに成形された
後、残留歪みの除去や弾性限度の向上等の目的で低温焼
鈍処理される。該焼鈍温度はピアノ線では300〜350℃、
硬鋼線では200〜250℃、オイルテンパー線やステンレス
鋼線では300〜400℃である。
(Prior Art) So-called spring steel wire such as piano wire, hard steel wire, oil tempered wire, stainless steel wire, etc. is formed into a coil spring, and then, at low temperature for the purpose of removing residual strain and improving elastic limit. It is annealed. The annealing temperature is 300 to 350 ° C. for a piano wire,
Hard steel wire has a temperature of 200-250 ℃, and oil tempered wire and stainless steel wire have a temperature of 300-400 ℃.

上記低温焼鈍を行うと、ピアノ線、硬鋼線、オイルテ
ンパー線は外径が小さくなり、高さが増大する一方、ス
テンレス鋼線はこの逆になるという現象が現れることは
従来からよく知られており、例えば日本ばね協会編「ば
ね」(丸善株式会社発行)の第314頁にも明示されてい
る。
It is well known in the past that when the above-mentioned low temperature annealing is performed, the outer diameter of the piano wire, the hard steel wire, and the oil temper wire becomes smaller and the height thereof increases, while the phenomenon that the stainless steel wire becomes the opposite occurs. For example, it is clearly shown on page 314 of “Spring” edited by Japan Spring Association (published by Maruzen Co., Ltd.).

(発明が解決しようとする課題) コイルばねは低温焼鈍によって外径が収縮又は膨張す
るところから、作業者はかかる変化を見込んで成形す
る。即ち、ピアノ線、硬鋼線、オイルテンパー線では仕
様通りの仕上寸法より外径が大き目のばねに成形し、ス
テンレス鋼線では小さ目のばねに成形し、低温焼鈍によ
り寸法変化が起こって丁度仕様寸法のばねになるように
工夫を凝らしている。
(Problem to be Solved by the Invention) Since the outer diameter of a coil spring is contracted or expanded by low temperature annealing, an operator forms the coil in consideration of such a change. That is, for piano wire, hard steel wire, and oil tempered wire, a spring with an outer diameter larger than the finished size as specified in the specification is formed, and for stainless steel wire, a spring with a smaller diameter is formed. I have devised it so that it will be a spring of dimensions.

しかしながら、その変化量は微妙な差を有するもので
あるから、一般には長年の経験に依存せざるを得ず、実
作業においては、コイルばねを予め予備成形して低温焼
鈍を行って、コイル外径の変化量を把握し、仕様に入る
ことを確認した後、本生産に入っているのが現実であ
る。特に引張ばねの場合、外径変化が起こればフック角
も変化するので、該フック角が不良のとき最近のような
ばね自動装入組立システムにおいては、重大な障害を惹
起することになる。
However, since the amount of change has a subtle difference, in general, it is unavoidable to rely on many years of experience.In actual work, the coil spring is preformed in advance and low temperature annealing is performed to The reality is that the actual production is started after grasping the amount of change in diameter and confirming that the specifications have been met. Particularly in the case of a tension spring, the hook angle also changes when the outer diameter changes, so that when the hook angle is poor, it causes a serious obstacle in the recent spring automatic charging and assembling system.

このようなことから、低温焼鈍処理時における変化量
の制御を任意に行えるばね用線ができるとすると工業上
の価値は大きいと考えられ、かかるばね用線の実現が斯
界において渇望されているのは言を俟たないところであ
る。
Therefore, it is considered to be industrially valuable if a spring wire capable of arbitrarily controlling the amount of change during low-temperature annealing can be produced, and the realization of such a spring wire is eagerly desired in the art. Is the place where I do not make a mistake.

本発明は、かかる事情に着目してなされたものであっ
て、その目的はコイルばね成形後の低温焼鈍処理時に外
径寸法変化率を小さい値に制御可能なばね用ステンレス
鋼線を提供し、もって生産性はもとより品質の向上に資
さしめようとするものである。
The present invention has been made by paying attention to such circumstances, and an object thereof is to provide a spring stainless steel wire capable of controlling the outer diameter dimensional change rate to a small value during low temperature annealing treatment after coil spring molding, Therefore, it aims to contribute not only to productivity but also to quality improvement.

(課題を解決するための手段) 上記目的を達成するために、本発明に係るばね用ステ
ンレス鋼線は次のような構成としている。
(Means for Solving the Problem) In order to achieve the above object, the spring stainless steel wire according to the present invention has the following configuration.

即ち本発明は、面心立方格子相(オーステナイト相)
と体心立方格子相フェライト相及びマルテンサイト相)
を主要部とする多相混合組織から成るばね用ステンレス
鋼線であって、このばね用ステンレス鋼線によって得ら
れるコイルばねのばね指数D/d(但し、D:コイルばねの
外径、d:ばね用鋼線の外径)をパラメータとして、前記
体心立方格子相の体積率Vfと、次式Db(%)=100×(D
1−D2)/D1〔但し、D1:コイルばね成形後の外径(m
m)、D2:低温焼鈍後の外径(mm)〕で表される低温焼
鈍前後でのコイルばねの外径変化率Db(%)との間に所
定の関係が存することを示す予め求められてなる線図に
基づき、コイルばねの外径変化率Dbが±0.5%以内に収
まるように、体心立方格子相の体積率Vfが30〜70%に設
定されてなることを特徴とするコイルばねの低温焼鈍時
の外径変化率が小さいばね用ステンレス鋼線である。
That is, the present invention is a face-centered cubic lattice phase (austenite phase)
And body-centered cubic lattice phase ferrite phase and martensite phase)
Is a stainless steel wire for a spring consisting of a multi-phase mixed structure whose main part is, and the spring index D / d of the coil spring obtained by the stainless steel wire for the spring (where D: outer diameter of the coil spring, d: With the outer diameter of the steel wire for springs as a parameter, the volume ratio Vf of the body-centered cubic lattice phase and the following equation Db (%) = 100 × (D
1- D 2 ) / D 1 [However, D 1 : outer diameter after coil spring molding (m
m), D 2 : Outer diameter after low temperature annealing (mm)] Predetermined to show that there is a predetermined relationship with the outer diameter change rate Db (%) of the coil spring before and after low temperature annealing The volume ratio Vf of the body-centered cubic lattice phase is set to 30 to 70% so that the outer diameter change rate Db of the coil spring is within ± 0.5% based on the diagram. A stainless steel wire for springs that has a small rate of change in outer diameter during low temperature annealing of coil springs.

(作用) 本発明は特に、低温焼鈍によるコイルばねの外径の変
化はばね線材の結晶構造、金属組織と深い関わりがあ
り、体心立方格子構造(相)からなるもの(フェライト
系、マルテンサイト系等)は外径が収縮し、面心立方格
子構造(相)からなるもの(オーステナイト系)は外径
が膨張するという点を新規に着目し、これにより寸法変
化を自由に制御できるばね用鋼線を開発したものであ
る。
(Operation) In the present invention, in particular, the change in the outer diameter of the coil spring due to low temperature annealing is closely related to the crystal structure and the metal structure of the spring wire, and has a body-centered cubic lattice structure (phase) (ferrite, martensite). (For systems, etc.), the outer diameter contracts, and for those with a face-centered cubic lattice structure (phase) (austenite type), the outer diameter expands. This is a developed steel wire.

即ち、体心立方格子からなるもので外径が収縮し、面
心立方格子構造からなるもので逆に膨張するならば、異
なる両相が混合した2相又は多相混合組織材料であれ
ば、互いに打ち消し合う作用が働き、更に体心立方格子
相の体積率に依存して外径が膨張から収縮まで大幅に変
化するに違いにないという原理に基づいているのであ
る。
That is, if the material has a body-centered cubic lattice and the outer diameter contracts, and if it has a face-centered cubic lattice structure and expands conversely, it is a two-phase or multi-phase mixed texture material in which different phases are mixed, It is based on the principle that they act to cancel each other and that the outer diameter must change significantly from expansion to contraction depending on the volume fraction of the body-centered cubic lattice phase.

第1図はこのことを立証した線図であって、ばね指数
D/d(但し、dはばね用鋼線の外径、Dはコイルばねの
外径)と体心立方格子相の体積率によって、コイルばね
の低温焼鈍前後の外径変化率がどのように変化するかを
示したものである。この場合、ばね材の組織はオーステ
ナイト相(面心立方格子相)と体心立方格子相(フェラ
イト相又はマルテンサイト相)とを含む多相混合組織か
らなる。外径変化率(Db)は下記式によった。
Fig. 1 is a diagram demonstrating this, in which the spring index
D / d (where d is the outer diameter of the spring steel wire, D is the outer diameter of the coil spring) and the volume ratio of the body-centered cubic lattice phase, how the outer diameter change rate of the coil spring before and after low temperature annealing It shows how it changes. In this case, the structure of the spring material is a multiphase mixed structure including an austenite phase (face centered cubic lattice phase) and a body centered cubic lattice phase (ferrite phase or martensite phase). The outer diameter change rate (Db) was calculated by the following formula.

Db(%)=100×(D1−D2)/D1 … 但し式において、D1はコイルバネ成形後の外径(m
m)、D2は低温焼鈍後の外径(mm)である。
Db (%) = 100 × (D 1 −D 2 ) / D 1 … In the formula, D 1 is the outer diameter after coil spring molding (m
m) and D 2 are outer diameters (mm) after low temperature annealing.

図から明らかなように、体心立方格子相の体積率(以
降、Vf率という)が30〜70%の範囲ではDbは0.25%以下
と小さく、オーステナイト相と体心立方格子相がほぼ等
量ずつ混合した状態に近いVf率:40〜60%の辺りではDb
はほぼ0%である。Vf率が30%以下又は70%以上では、
ばね指数D/dによってDbは規則的に変化していることが
判る。
As is clear from the figure, Db is as small as 0.25% or less when the volume ratio of the body-centered cubic lattice phase (hereinafter referred to as Vf ratio) is 30 to 70%, and the austenite phase and the body-centered cubic lattice phase are almost equal. Vf ratio close to mixed state: Db around 40-60%
Is almost 0%. When the Vf rate is 30% or less or 70% or more,
It can be seen that Db changes regularly according to the spring index D / d.

この傾向は実用的な低温焼鈍温度と時間、即ち150〜5
00℃、1〜120分の間では不変である。従って、ばね指
数D/dをパラメータとしてDbはVf率により定まる。
This tendency is due to the practical low temperature annealing temperature and time, that is, 150 to 5
It does not change between 00 ° C and 1 to 120 minutes. Therefore, Db is determined by the Vf rate using the spring index D / d as a parameter.

本発明に係るばね用ステンレス鋼線は、Vf率が求めら
れ、かつ該Vf率とこのばね用ステンレス鋼線から形成す
るコイルばねの低温焼鈍前後での外径変化率Dbとの関係
が求められている。故に、該Dbをコイルばね成形前に知
り得、該Dbを見込んで定量的に成形し得、その結果所要
寸法のコイルばねが得られる。
The spring stainless steel wire according to the present invention, Vf rate is required, and the relationship between the Vf rate and the outer diameter change rate Db before and after low temperature annealing of the coil spring formed from this spring stainless steel wire is required. ing. Therefore, the Db can be known before forming the coil spring, and the Db can be quantitatively formed in consideration of the Db, and as a result, a coil spring having a required size can be obtained.

このとき、上記関係を求めるに際し、ばね指数D/dを
パラメータに有し且つ低温焼鈍前後でのコイルばねの外
径変化率Dbと体心立方格子相の体積率Vfとの間に所定の
関係が存することを示す線図(例えば第1図に示した線
図)を用いて求めると、Vf率やD/dの値に応じたDb値を
コイルばね成形前に確実に正しく知り得る。
At this time, in determining the above relationship, the spring index D / d is a parameter and a predetermined relationship between the outer diameter change rate Db of the coil spring before and after low temperature annealing and the volume ratio Vf of the body-centered cubic lattice phase. If a value is obtained using a diagram indicating that there is a difference (for example, the diagram shown in FIG. 1), the Db value corresponding to the Vf ratio and the value of D / d can be surely known correctly before the coil spring is formed.

又、本発明に係るばね用ステンレス鋼線は、その体心
立方格子相の体積率Vfが、上記の如き線図を用いて選定
した値である。即ち、コイルばねの所定寸法に基づいて
所要Dbを定め、該Dbに対応するVfを選定し、該Vfを有す
るばね用鋼線である。かかる鋼線によれば、所定寸法の
コイルばねを確実に成形し得ることになる。
Further, in the stainless steel wire for spring according to the present invention, the volume ratio Vf of the body-centered cubic lattice phase is a value selected by using the above diagram. That is, it is a steel wire for spring having a required Db determined based on a predetermined dimension of the coil spring, a Vf corresponding to the Db being selected, and having the Vf. With such a steel wire, it is possible to reliably form a coil spring having a predetermined size.

このように、Vfを選定し、或いは求め、ある形状のコ
イルばねを成形すれば、ばね指数D/dより直ちにDbが求
まることになる。換言するならば、ある形状のコイルば
ねを指定されれば、任意のDb値が自由に発現するコイル
ばねを製作することが可能となり、勿論、Db=0%のば
ねも容易に実現できる。
Thus, if Vf is selected or obtained and a coil spring having a certain shape is formed, Db can be immediately obtained from the spring index D / d. In other words, if a coil spring of a certain shape is designated, it is possible to manufacture a coil spring in which an arbitrary Db value is freely expressed, and, of course, a spring with Db = 0% can be easily realized.

その結果、長年に渡って成された作業者の勘に頼るこ
となく、未熟練者でも直ちに、且つ容易にDbを制御して
ばね成形のばらつきをなくし、加工制度を向上させるこ
とが可能となるのである。
As a result, it is possible for even an unskilled person to immediately and easily control Db to eliminate the variation in spring forming without relying on the intuition of the worker, which has been made over many years, and to improve the machining system. Of.

(実施例) Vf率が0〜100%のばね用鋼線(Φ2mm)8種類:
(a)〜(g)を製作した。これらの組成(各相の体積
率及び化学成分等)を以下に示す。
(Example) Eight types of steel wire for spring (Φ2mm) with Vf ratio of 0 to 100%:
(A)-(g) were produced. The compositions (volume ratio and chemical composition of each phase) are shown below.

(a)Vf率:0%(オーステナイト相:100%)…SUS304ス
テンレス鋼線当材、即ち、C:0.03wt%,Si:0.5wt%,Mn:
0.50wt%,Ni:9.96wt%,Cr:18.11wt%,残:Fe、 (b)Vf率:10%(フェライト相:10%,オーステナイト
相:90%)…C:0.04wt%,Si:0.51w値%,Mn:0.60wt%,Ni:
14.89wt%,Cr:26.10wt%,残:Fe、 (c)Vf率:20%(フェライト相:10%,マルテンサイト
相:10%,オーステナイト相:80%)…C:0.04wt%,Si:0.
61wt%,Mn:0.51wt%,Ni:7.1wt%,Cr:16.6wt%,残:Fe、 (d)Vf率:50%(フェライト相:50%,オーステナイト
相:50%)…C:0.03wt%,Si:0.50wt%,Mn:0.50wt%,Ni:
9.1wt%,Cr:27.10wt%,残:Fe、 (e)Vf率:70%(フェライト相:70%,オーステナイト
相:30%)…C:0.04wt%,Si:0.50wt%,Mn:0.49wt%,Ni:
5.0wt%,Cr:22.5wt%,残:Fe、 (f)Vf率:85%(フェライト相:70%,マルテンサイト
相:15%,オーステナイト相:15%)…C:0.05wt%,Si:0.
49wt%,Mn:0.61wt%,Ni:4.12wt%,Cr:18.2wt%,残:F
e、 (g)Vf率:100%(マルテンサイト相:100%)…C:0.1w
t%,Si:0.48wt%,Mn:0.50wt%,Ni:4.0wt%,Cr:6.81wt
%,残:Fe、 (h)Vf率:96%(フェライト相:96%,セメンタイト:1
4%)…C:0.82wt%,Si:0.30wt%,Mn:0.51wt%,残:Fe。
(A) Vf ratio: 0% (austenite phase: 100%) ... SUS304 stainless steel wire material, that is, C: 0.03 wt%, Si: 0.5 wt%, Mn:
0.50wt%, Ni: 9.96wt%, Cr: 18.11wt%, balance: Fe, (b) Vf ratio: 10% (Ferrite phase: 10%, Austenite phase: 90%) ... C: 0.04wt%, Si: 0.51w value%, Mn: 0.60wt%, Ni:
14.89wt%, Cr: 26.10wt%, balance: Fe, (c) Vf ratio: 20% (Ferrite phase: 10%, Martensite phase: 10%, Austenite phase: 80%) ... C: 0.04wt%, Si : 0.
61 wt%, Mn: 0.51 wt%, Ni: 7.1 wt%, Cr: 16.6 wt%, balance: Fe, (d) Vf ratio: 50% (ferrite phase: 50%, austenite phase: 50%) ... C: 0.03 wt%, Si: 0.50wt%, Mn: 0.50wt%, Ni:
9.1wt%, Cr: 27.10wt%, balance: Fe, (e) Vf ratio: 70% (ferrite phase: 70%, austenite phase: 30%) ... C: 0.04wt%, Si: 0.50wt%, Mn: 0.49wt%, Ni:
5.0wt%, Cr: 22.5wt%, balance: Fe, (f) Vf ratio: 85% (Ferrite phase: 70%, Martensite phase: 15%, Austenite phase: 15%)… C: 0.05wt%, Si : 0.
49wt%, Mn: 0.61wt%, Ni: 4.12wt%, Cr: 18.2wt%, balance: F
e, (g) Vf ratio: 100% (Martensite phase: 100%) ... C: 0.1w
t%, Si: 0.48wt%, Mn: 0.50wt%, Ni: 4.0wt%, Cr: 6.81wt
%, Balance: Fe, (h) Vf ratio: 96% (ferrite phase: 96%, cementite: 1
4%) ... C: 0.82 wt%, Si: 0.30 wt%, Mn: 0.51 wt%, balance: Fe.

上記ばね用鋼線は下記の如くして製作した。即ち、Φ
6mmの線材について、(a)は1150℃に加熱後水冷、
(b)〜(g)は1080℃に加熱後水冷し、(h)は900
℃に加熱後鉛中へ焼入れしてパテンティング処理し、そ
の後いずれも酸洗し、コーティング処理し、次いでΦ2m
mまで伸線加工をしてばね用鋼線に仕上げた。
The spring steel wire was manufactured as follows. That is, Φ
For 6mm wire rod, (a) is heated to 1150 ℃ and then cooled with water,
(B) ~ (g) is heated to 1080 ℃ and cooled with water, (h) is 900
After heating to ℃, quenching into lead and patenting treatment, then pickling and coating treatment, then Φ2m
Steel wire for spring was finished by wire drawing to m.

上記各々のばね用鋼線(d=Φ2mm)について、ばね
指数D/dが2,8,15,30のコイルばねに成形した。尚、巻き
数はいづれも7巻とした。その後、(a)〜(f)は35
0℃で10分、(g)〜(h)は280℃で10分の低温焼鈍を
行い、焼鈍前後のばね外径の変化率Dbを求めた。その結
果を第1表に示す。
Each of the spring steel wires (d = Φ2 mm) was formed into a coil spring having a spring index D / d of 2,8,15,30. The number of turns was 7 in each case. Then, (a) to (f) are 35
Low temperature annealing was performed at 0 ° C. for 10 minutes and at (g) to (h) at 280 ° C. for 10 minutes, and the change rate Db of the spring outer diameter before and after annealing was obtained. The results are shown in Table 1.

この表から判る如く、DbはVf率が決まり、ある形状の
はねに成形すれば、Dbは前記図に従って、一義的に決ま
っている。このことは、ばねの製造において外径変化
(収縮、膨張又は変化無し)を任意に管理できることを
実証するものであって、まさに工業的意義は大きい。
As can be seen from this table, the Vf ratio of Db is determined, and if a certain shape of the spring is formed, Db is uniquely determined according to the above-mentioned figure. This demonstrates that the outer diameter change (contraction, expansion or no change) can be arbitrarily controlled in the manufacture of the spring, and has great industrial significance.

尚、かかる関係は(h)の例でも判る如く、面心立方
格子相と体心立方格子相の量(%)が重要であり、両相
以外の介在相、例えばセメンタイトの如き炭化物には左
右されない。一方、引張り強さもばね用鋼線として充分
な値を示している。
As can be seen from the example of (h), the amount of face-centered cubic lattice phase and body-centered cubic lattice phase (%) is important for this relationship, and intervening phases other than both phases, such as cementite, for example, left and right Not done. On the other hand, the tensile strength also shows a sufficient value for a spring steel wire.

更に重要なことは、外径の変化率Dbをコントロールす
るのは体心立方格子相の体積率Vfであり、その成分の種
類(例えば、ステンレス鋼ではNi,Cr,Mo等)や含有量は
Dbに影響せず、任意の元素及び値で良いという点も特徴
的な点といえる。
More importantly, it is the volume fraction Vf of the body-centered cubic lattice phase that controls the rate of change Db of the outer diameter, and the types of its components (for example, Ni, Cr, Mo in stainless steel) and their contents are
It can be said that a characteristic point is that any element and value can be used without affecting Db.

(発明の効果) 本発明に係るばね用ステンレス鋼線は、以上述べた構
成を有し作用をなすものであって、コイルばねの低温焼
鈍前後の外径変化率を事前に決定することができるの
で、品質設計上での形状のばらつきが極めて少なくな
り、歩留りが向上する。
(Effect of the Invention) The stainless steel wire for springs according to the present invention has the above-described structure and functions, and the rate of change in outer diameter of the coil spring before and after low temperature annealing can be determined in advance. Therefore, the variation in shape in quality design is extremely reduced, and the yield is improved.

又、本番前の予備的な作業であるコイリング、焼鈍、
寸法測定の一連の作業を省略できるので、作業能率が向
上するし、経済性が高められる。
In addition, coiling, annealing, which is a preliminary work before production,
Since a series of dimensional measurement work can be omitted, work efficiency is improved and economic efficiency is improved.

更に、仕上り製品の設計が定量的で科学的に成される
ので、ばね製造時のばね寸法精度を高める優れた効果を
奏する。
Further, since the finished product is designed quantitatively and scientifically, it exerts an excellent effect of increasing the spring dimensional accuracy at the time of manufacturing the spring.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係るばね用ステンレス鋼線の
体心立方格子相の体積率とコイルばねの低温焼鈍前後の
外径変化率Dbとの関係をばね指数D/dをパラメータとし
て示す線図である。
FIG. 1 shows the relationship between the volume ratio of the body-centered cubic lattice phase and the outer diameter change rate Db of a coil spring before and after low temperature annealing of a spring stainless steel wire according to an embodiment of the present invention, with a spring index D / d as a parameter. It is a diagram showing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】面心立方格子相と体心立方格子相を主要部
とする多相混合組織から成るばね用ステンレス鋼線であ
って、このばね用ステンレス鋼線によって得られるコイ
ルばねのばね指数D/d(但し、D:コイルばねの外径、d:
ばね用鋼線の外径)をパラメータとして、前記体心立方
格子相の体積率Vfと、次式Db(%)=100×(D1−D2
/D1〔但し、D1:コイルばね成形後の外径(mm)、D2
低温焼鈍後の外径(mm)〕で表される低温焼鈍前後での
コイルばねの外径変化率Db(%)との間に所定の関係が
存することを示す予め求められてなる線図に基づき、コ
イルばねの外径変化率Dbが±0.5%以内に収まるよう
に、体心立方格子相の体積率Vfが30〜70%に設定されて
なることを特徴とするコイルばねの低温焼鈍時の外径変
化率が小さいばね用ステンレス鋼線。
1. A spring stainless steel wire having a multiphase mixed structure mainly composed of a face-centered cubic lattice phase and a body-centered cubic lattice phase, the spring index of a coil spring obtained by this spring stainless steel wire. D / d (however, D: outer diameter of coil spring, d:
The outer diameter) of the spring steel wire as a parameter, and the volume fraction Vf of the body-centered cubic lattice phase, the following formula Db (%) = 100 × ( D 1 -D 2)
/ D 1 [However, D 1 : outer diameter (mm) after coil spring molding, D 2 :
The outer diameter after low temperature annealing (mm)] is a pre-determined diagram showing that there is a predetermined relationship with the outer diameter change rate Db (%) of the coil spring before and after low temperature annealing. At the time of low temperature annealing of the coil spring, the volume ratio Vf of the body-centered cubic lattice phase is set to 30 to 70% so that the outer diameter change rate Db of the coil spring falls within ± 0.5%. Stainless steel wire for springs that has a small rate of change in outer diameter.
JP2314926A 1990-11-19 1990-11-19 Stainless steel wire for spring Expired - Fee Related JPH0830252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314926A JPH0830252B2 (en) 1990-11-19 1990-11-19 Stainless steel wire for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314926A JPH0830252B2 (en) 1990-11-19 1990-11-19 Stainless steel wire for spring

Publications (2)

Publication Number Publication Date
JPH04183819A JPH04183819A (en) 1992-06-30
JPH0830252B2 true JPH0830252B2 (en) 1996-03-27

Family

ID=18059314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314926A Expired - Fee Related JPH0830252B2 (en) 1990-11-19 1990-11-19 Stainless steel wire for spring

Country Status (1)

Country Link
JP (1) JPH0830252B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620325B1 (en) * 2004-12-16 2006-09-12 만호제강주식회사 Stainless steel wire having a excellent forming properties and the manufacturing method
JP2007224366A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd High strength stainless steel spring and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130650A (en) * 1984-07-18 1986-02-12 Daido Steel Co Ltd High-strength spring steel

Also Published As

Publication number Publication date
JPH04183819A (en) 1992-06-30

Similar Documents

Publication Publication Date Title
EP0436032B1 (en) Method of producing high-strength stainless steel strip having duplex structure and excellent spring characteristics
JPH0665742B2 (en) Shape memory TiNiV alloy manufacturing method
JPH09108762A (en) Method and device for producing straight bar from steel wire rod of hard workability
JPH0830252B2 (en) Stainless steel wire for spring
JP4207137B2 (en) High hardness and high corrosion resistance stainless steel
JPS649381B2 (en)
JPS62294130A (en) Production of stainless steel having high strength and non-magnetism
US5685921A (en) Method of preparing a magnetic article from a duplex ferromagnetic alloy
JP3172561B2 (en) Manufacturing method of composite structure stainless steel spring
JP2708279B2 (en) Manufacturing method of high strength spring
JP2677910B2 (en) Stainless steel for springs with excellent dimensional stability during low temperature annealing
JP2018059143A (en) Method for manufacturing high carbon steel strip with excellent workability
JP2002356741A (en) Wire rod for steel code and method for producing steel code
JP3453501B2 (en) Cold-rolled spring steel with low residual stress after spring-rolling
JPH07107176B2 (en) Method for manufacturing coil spring with excellent dimensional stability during low temperature annealing
JPH04308060A (en) Steel material for spring
JPH05295498A (en) Manufacture of ni-ti superelastic material
JP6574739B2 (en) Coercivity adjustment method for ferritic stainless steel bar
JPH06297029A (en) Method for drawing metallic wire
JP3396138B2 (en) High corrosion resistant stainless steel wire with magnetism and sieving filter
JPS6260851A (en) Manufacture of shape memory ni-ti alloy
JPS626727B2 (en)
JPH06136452A (en) Production of hard steel wire
JPS591631A (en) Manufacture of steel material
JPH09170018A (en) Production of washer with high strength and high toughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees