JPS6130650A - High-strength spring steel - Google Patents

High-strength spring steel

Info

Publication number
JPS6130650A
JPS6130650A JP14916384A JP14916384A JPS6130650A JP S6130650 A JPS6130650 A JP S6130650A JP 14916384 A JP14916384 A JP 14916384A JP 14916384 A JP14916384 A JP 14916384A JP S6130650 A JPS6130650 A JP S6130650A
Authority
JP
Japan
Prior art keywords
weight
steel
spring steel
ferrite
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14916384A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Tomohito Iikubo
知人 飯久保
Yukio Ito
伊藤 幸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP14916384A priority Critical patent/JPS6130650A/en
Publication of JPS6130650A publication Critical patent/JPS6130650A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a non-tempred spring steel having high strength by controlling adequately the components of a blank material for the steel and rolling conditions to form the specific ferrite.martensite structure. CONSTITUTION:The steel contg. essentially 0.25-0.60wt% C, 0.50-4.0wt% Si and others such as hardening improving elements (Mn, Cr, B) is used as the blank material. The contents of the impurities in the blank material are controlled to <=0.010wt% S and <=0.0015wt% O. The blank material is rolled in the two-phase region of ferrite + austenite at the controlled rolling temp. so that the structure consisting of 20-50% area ratio of ferrite and the balance martensite is obtd. after the rolling. The spring steel which has high strength and has excellent cold coilability, sag resistance and fatigue-resistant characteristic.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、ばね素材として利用される高強度ばね鋼に
関し、とくに素材となる鋼の成分および線材圧延の最終
工程での圧延条件を適切にコントロールすることにより
、フェライト十オーステナイトの2相域での圧延を行い
、かつ圧延後の冷却速度を制御して最終的にフェライト
+マルテンサイト組織となるようにして高強度が得られ
るようにし、さらにより高強度を狙う場合には圧延後引
抜等の加工による加工硬化を利用して強度をより一層高
めることにより、従来の焼入れ焼戻し処理をしたものと
同等の高い強度を非調質で得られる2相組織を有する非
調質高強度ばね鋼に関するものである。 (従来技術) 従来、自動車用懸架ばねおよび産業用ばねは、熱開成形
と冷間成形の2通りで製造されている。 これらのうち、熱開成形によるばねの製造では、ばね素
材を熱間で巻いたあと焼入れ・焼戻しを行うことにより
所望の強度に調質するもの〒あり、冷開成形によるばね
の製造は、あらかじめばね素材に焼入れ・焼戻しの熱処
理を施したあと、冷開成形してばねを製造するものであ
る。ところで、最近では、自動車や産業機械等の製造に
おいて、加工工程の省略、エネルギー消費量の削減等に
よるコストの低減が強く要求されている。 (発明の目的) そこで、本発明者等はこれらの要求に対処するため、ば
ねの製造において加工工程の省略が実現されるようにす
ることを目的として、素材の成分組成および製造条件に
ついて種々検討した結果、組織的にはフェライト+マル
テンサイトの2相組織とすることにより従来から用いら
れているばね鋼の焼入れ・焼戻し材に匹敵する強度特性
の得られることを見出した。 (発明の構成) すなわち、この発明による非調質高強度ばね鋼は、主成
分として、C:0.25〜0.60重量%、Sf:0.
50〜4.0重量%、ソノ他焼入れ性向上元素等を含む
鋼を素材とし、かつ圧延温度を制御してフェライト十オ
ーステナイトの2相城での圧延を行い、圧延後ではフェ
ライトの面積割合が20〜50%残部がマルテンサイト
組織であることを特徴としている。 また、圧延後のフェライト面積割合が50%を超えてい
るとしても、冷間圧延後に冷間加工を行って加工硬化さ
せることにより強度を高め、これによって高強度のばね
鋼が非調質で得られることを確かめた。すなわち、この
発明の第2発明による非調質高強度ばね鋼は、主成分と
して、C:0.25〜0.60重量%、Si:0.50
〜4.0重量%、その他焼入れ性向上元素等を含む鋼を
素材とし、圧延温度を制御してフェライト十オーステナ
イトの2相域での圧延を行い、成分系と圧延条件を制御
して、圧延後ではフェライトの面積割合が20%以上残
部がマルテンサイト組織であり、圧延後の冷間加工によ
り加工硬化させたことを特徴としている。 この発明による非調質高強度ばね鋼において、成分的に
は、フェライト形成元素としてSfをコントロールし、
またマルテンサイト形成元素としてMnをコントロール
すると共に、ばねとして必要な強度を与えるためにはC
が重要であり、焼入れ性向上のためにはCrが重要であ
ることを見出した。すなわち、Fe−C系状態図におい
そ、Cの低い領域では、2相温度域が広いが、Cが高く
なって共析点に近づくにつれて2相温度域は狭くなり、
2相域圧延が困難となる。そこで、このような場合にS
iを添加することによりAC3線を高温側へ移動させて
2相温度域を広げるようにすれば、2相域での圧延を可
能にすることができ、この発明ではこのような観点から
も成分組成を定めた。 この発明の一実施態様においては、素材となる鋼として
、重量%でC:0.25〜0.60%、Si:0.5〜
4.0%、Mn:1.0〜5.0%、Cr:0.1〜2
.0%、および必要に応じてB: 0.0005〜0.
05%を含み、残部Feおよび不純物からなるものを使
用することが′でき、疲労強度のより一層の向上をはか
るために、上記不純物中において、S:0.010重量
%以下、[O] :0.0015重量%以下に規制した
ものを使用することができる。 次に、上記実施態様において使用しうるばね鋼素材の成
分範囲(重量%)の限定理由について説明すると次のと
おりである。 C(炭素): Cは鋼の強度を高めるのに有効な元素であるが、0.2
5%未満ではばねとしての必要な強度を得ることができ
にくくなり、0.60%を超えると線材圧延時にフェラ
イト十オーステナイトの2相城での圧延が困難になり、
圧延後にフェライト+マルテンサイト組織を得ることが
できがたくなるので、0.25〜0.60%の範囲とす
るのがよい。 Si(けい素): Siはフェライト中に固溶することにより鋼の強度を向
上し、ばねの酎へたり性を向上させるのに有効な元素で
ある。それと同時に、フェライト形成元素として有効な
元素であり、フェライトの延性を向上させるのに必要で
ある。そして、この両方を満足させるには、0.5%以
上含有させることが望ましい。一方、Siを多量に含有
すると製鋼作業が困難となり、かつ5f02等の非金属
介在物が増加し、鋼の清浄度を害する要因となるので4
.0%以下にすることが望ましい。 Mn(マンガン): Mnは鋼の脱酸に有効であると共に鋼の焼入性を向上さ
せるのに有効な元素である。さらに、マルテンサイト形
成元素として重要な元素であり、フェライト中に固溶し
て当該フェライト中のC固溶量を減少させてマルテンサ
イト中のC含有量を高めて高強度を与える役割を果たす
、そして、これらを同時に満足させるには、1.0%以
上含有させることが望ましい。しかし、Mnを多量に含
有させると焼入れ性が過大になって靭性を劣化すると共
に加工性の劣化をきたすことから5.0%以下とするこ
とが望ましい。 Cr(クロム): Crは高炭素鋼の脱炭および黒鉛化を防止するのに有効
な元素であるが、0.1%未満ではこれらの効果を十分
に期待することがむつかしく、2.0%を超えると靭性
が劣化するおそれがあるので0.1〜2.0%の範囲と
するのがよい。 B(はう素): Bは鋼の焼入性を著しく向上させるのに有効な元素であ
るので、このような効果を得るために0.0005%以
上含有させるのもよい。しかし、多量に添加しても効果
の向上は小さく、かえって靭性や製造性を害するおそれ
があるので0.05%以下とするのがよい。 S(いおう): SはMnS介在物を形成し、これが孔食の起点となり、
ばね折損に至らしめることがあるので。 MnSの形成を極力防止し、耐食性を付与する観点から
、o、oto%以下とすることがより望ましい。 [O] (酸素): [O]は酸化物系介在物を生成し、これが疲労破壊の起
点となりやすいので、使用目的等に応じてその含有量を
規制するのが良い。この場合、0.0015%以下であ
れば疲労破壊の起点となりにくいので、0.0015%
以下とすることがより望ましい。 (実施例1) 表1に示す13種の供試鋼を50kg高周波誘導炉で溶
製し、50kg鋼塊とした後、直径20mmに鍛伸した
。次に、得られた各鍛伸材を長さ60IIII11に切
断した後、第1図に示す熱処理を行なって硬さ測定およ
びミクロ組織観察用試料とした。また、第2図に示す熱
処理を行った後試験片を切り出してFormaster
を用いて各組の加熱変態点を測定した。この結果を同じ
く表1に示す。 木実験は、2相域圧延によって形成される組織を2回焼
入れ処理により模擬的に調べたものである。すなわち、
1次焼入れにより均一なマルテンサイト組織を形成し、
2次焼入れの温度範囲を750℃〜850℃の実用圧延
温度に設定して、硬さの変化を検討した。 第3図および第4図に硬さに及ぼす焼入れ温度の影響を
示す。表1においてフェライトの面積率が50%を超え
ている供試鋼1t、l、2.3では、ばね用線材として
要求される引張強さの最低ライン160 kgf/mm
2に相当する硬さレベルHv〜475を熱処理のみで得
ることはむつかしい。 したがって、実際にはCの低い領域では冷間加工を組み
合わせることを考慮してCは0.25%以上にするのが
良いことが明らかである。 一方、フェライトの面積率が20%未満となっているN
o、12.13では表1に示す2相温度域(Ac3−A
c1)が極端に狭くなっており、実際上の2相域圧延は
困難となる。したがって、Cは0.60%以下にするの
がよいことが明らかで一方、供試鋼陽、4,5.6はC
量を0.3%に固定してMn量を変化させて焼入れ性を
変えたものであるが、第4図より明らかなように、No
、 6 (Mn : 0 、47%)ではMnが低いた
め十分なマルテンサイト組織が得られず、2次焼入れ硬
さは低い結果となっている。これに対しテNo、 5 
(Mn : 1 、2%)  、No、 4 (Mn 
:3.4%)では十分なマルテンサイト組織が得られて
いるので問題ないことが明らかである。 他方、供試鋼No、7(St:0.25%)。 陽、8(Si:0.51%)、No、4(Si:2.1
%)、No、9 (Si:3.0%)は2次焼入れ硬さ
に及ぼすSi量の影響を調べたものであるが、第4図よ
り明らかなように、Si量が0.5%以上のもの〒は、
焼入れ温度の高い温度範囲ではほぼ一定の硬さを示して
おり、Stは0.5%以上必要であることが確かめられ
た。 (実施例2) 表2に示すNo、14〜No、24の化学成分を有する
鋼を電気炉溶解したのち、造塊9分塊圧延。 線材圧延、冷間引抜の工程によりばね用鋼線を製造した
。この表2において、一般に通常の熱処理ばね鋼(SU
P)ではS、[O]量を規制しないため、特に言及する
ものを除いては記載していないが、およそS量は0.0
150〜0.020重量%、[O]量は0.002〜0
.003重量%のレベルである。 なお、線材圧延では圧延温度を変えることにより、また
冷間引抜では減面率を変えることによりそれぞれ機械的
特性の調整を行なった。表2に各供試鋼の引張強さ、伸
び、絞りの値を併わせて示す。 表2において、供試鋼崩、14〜No、17は、圧延条
件の効果を検討したもので、No、14゜15では圧延
温度が2相域を外れているために最終製品でフェライト
中マルテンサイトの2相組織を得ることができず、絞り
が大きく低下していて冷間コリングは不可である。 また、供試鋼m、ia〜Il&)、 21は線引率の影
響をみたものであるが、20%が加工限界であり、それ
以上は線引できなかった。また、20%の線引をしたも
のは、線引はできたが、伸び、絞りが大きく減少し、冷
間コイリングはできなかった。 次に、表2の中で陥、16,17,18,19゜20.
25.26.27の8種の供試鋼を選択して表3に示す
仕様の冷間成形コイルばねを製造し、締付応力110K
gf/l1m217)下で72hrの締付は試験を実施
した。その結果を表4に示す。 表   3 表   4 表4に示すように、残留せん断ひずみγの判断基準を5
〜6X10−4とすると、本発明鋼はいずれもこれを満
足し、現行の5UP7熱処理材に匹敵するレベルにある
ことがわかる。 さらに今度は、表2の中でNo、16.17゜18.1
9,20,22,23,24,25゜26.27の11
種の供試鋼について、前記衣3に示したと同じ仕様の冷
間成形コイルばねを製造し、実体コイルばね疲労試験を
応力60±50Kgf/mm2の下で実施した。その結
果を表5に示表   5 表5に示すように、この発明による2相組織ばね鋼の寿
命は、現行の5UP7熱処理ばね(No。 25.26.27)の寿命に比べてやや低下するものも
一部あるものの、いずれも判断基準である20万回を満
足しており、耐久性においても問題ないことが明らかで
あった。 そして、特に(0)とSの低減は疲労強度にかなり効果
的である。すなわち、供試鋼尚、22 (S:0.01
51%、(0):0.0022%)、崩、23 (S:
0.0153%、(0):0.0009%)、11&)
、24(S:0.0049%、(0):0.0010%
)はSと
(Industrial Application Field) The present invention relates to high-strength spring steel used as a spring material, and in particular, the present invention relates to high-strength spring steel used as a spring material. Rolling is performed in the two-phase region of austenite, and the cooling rate after rolling is controlled so that the final structure becomes a ferrite + martensitic structure to obtain high strength, and when aiming for even higher strength. is a non-thermal treatment with a two-phase structure that can obtain high strength equivalent to that of conventional quenching and tempering by using work hardening after rolling and drawing, etc. It concerns high-strength spring steel. (Prior Art) Automotive suspension springs and industrial springs have conventionally been manufactured in two ways: hot open molding and cold molding. Among these, when manufacturing springs by hot-open forming, the spring material is hot-rolled and then quenched and tempered to achieve the desired strength. After the spring material is heat treated by quenching and tempering, the spring is manufactured by cold-open molding. Incidentally, recently, in the manufacture of automobiles, industrial machinery, etc., there is a strong demand for cost reduction by omitting processing steps, reducing energy consumption, etc. (Purpose of the Invention) Therefore, in order to meet these demands, the present inventors conducted various studies on the composition of materials and manufacturing conditions with the aim of eliminating processing steps in manufacturing springs. As a result, it was found that by creating a two-phase structure of ferrite and martensite, strength properties comparable to conventionally used hardened and tempered spring steels could be obtained. (Structure of the Invention) That is, the non-tempered high-strength spring steel according to the present invention contains as main components C: 0.25 to 0.60% by weight, Sf: 0.
The raw material is steel containing 50 to 4.0% by weight of iron and other hardenability improving elements, and the rolling temperature is controlled to roll in a two-phase ferrite-decaustenite phase, and after rolling, the area ratio of ferrite is The remaining 20 to 50% is characterized by a martensitic structure. In addition, even if the ferrite area ratio after rolling exceeds 50%, the strength can be increased by cold working and work hardening after cold rolling, and as a result, high strength spring steel can be obtained without heat treatment. I made sure that it was possible. That is, the non-tempered high-strength spring steel according to the second aspect of the present invention has as main components C: 0.25 to 0.60% by weight and Si: 0.50%.
~4.0% by weight, and other hardenability improving elements, etc., are used as the raw material, and the rolling temperature is controlled to perform rolling in the two-phase region of ferrite decaustenite, and the composition system and rolling conditions are controlled. Later, the area ratio of ferrite is 20% or more, the remainder is a martensitic structure, and is characterized by being work hardened by cold working after rolling. In the non-tempered high strength spring steel according to the present invention, in terms of composition, Sf is controlled as a ferrite forming element,
In addition to controlling Mn as a martensite-forming element, C
It has been found that Cr is important for improving hardenability. That is, in the Fe-C system phase diagram, in the low C region, the two-phase temperature range is wide, but as C increases and approaches the eutectoid point, the two-phase temperature range becomes narrower.
Rolling in the two-phase region becomes difficult. Therefore, in such a case, S
By adding i, the AC3 wire is moved to the high temperature side and the two-phase temperature range is widened, thereby making rolling in the two-phase region possible. The composition was determined. In one embodiment of the present invention, the steel used as the material is C: 0.25 to 0.60% and Si: 0.5 to 0.60% by weight.
4.0%, Mn: 1.0-5.0%, Cr: 0.1-2
.. 0%, and optionally B: 0.0005-0.
In order to further improve the fatigue strength, S: 0.010% by weight or less, [O]: It is possible to use a substance whose content is regulated to 0.0015% by weight or less. Next, the reasons for limiting the composition range (wt%) of the spring steel material that can be used in the above embodiment are as follows. C (carbon): C is an effective element for increasing the strength of steel, but 0.2
If it is less than 5%, it will be difficult to obtain the strength necessary for a spring, and if it exceeds 0.60%, it will be difficult to roll the wire in a two-phase castle of ferrite decaustenite.
Since it becomes difficult to obtain a ferrite + martensitic structure after rolling, the content is preferably in the range of 0.25 to 0.60%. Si (silicon): Si is an element effective in improving the strength of steel and improving the stiffness of springs by forming a solid solution in ferrite. At the same time, it is an effective ferrite-forming element and is necessary to improve the ductility of ferrite. In order to satisfy both of these requirements, it is desirable to contain 0.5% or more. On the other hand, if a large amount of Si is contained, steelmaking operations become difficult, and non-metallic inclusions such as 5f02 increase, which impairs the cleanliness of the steel.
.. It is desirable to keep it below 0%. Mn (manganese): Mn is an element effective in deoxidizing steel and improving the hardenability of steel. Furthermore, it is an important element as a martensite-forming element, and plays the role of solid solution in ferrite, reducing the amount of C solid solution in the ferrite, increasing the C content in martensite, and providing high strength. In order to satisfy these requirements at the same time, it is desirable to contain 1.0% or more. However, if a large amount of Mn is contained, the hardenability becomes excessive, resulting in deterioration of toughness and workability, so it is desirable to limit the content to 5.0% or less. Cr (Chromium): Cr is an effective element for preventing decarburization and graphitization of high carbon steel, but it is difficult to fully expect these effects at less than 0.1%; If it exceeds this, the toughness may deteriorate, so it is preferably in the range of 0.1 to 2.0%. B (boron): Since B is an effective element for significantly improving the hardenability of steel, it may be contained in an amount of 0.0005% or more to obtain such an effect. However, even if it is added in a large amount, the effect will not be improved much, and the toughness and manufacturability may be adversely affected, so it is preferable to limit the amount to 0.05% or less. S: S forms MnS inclusions, which become the starting point for pitting corrosion.
This may cause the spring to break. From the viewpoint of preventing the formation of MnS as much as possible and imparting corrosion resistance, it is more desirable that the content be 0.00% or less. [O] (Oxygen): [O] forms oxide-based inclusions, which tend to become the starting point of fatigue failure, so it is best to regulate its content depending on the purpose of use, etc. In this case, if it is less than 0.0015%, it is unlikely to become a starting point for fatigue fracture, so 0.0015%
It is more desirable to do the following. (Example 1) Thirteen types of test steel shown in Table 1 were melted in a 50 kg high-frequency induction furnace to form a 50 kg steel ingot, which was then forged to a diameter of 20 mm. Next, each obtained forged and drawn material was cut into lengths of 60III11, and then heat treated as shown in FIG. 1 to prepare samples for hardness measurement and microstructure observation. In addition, after performing the heat treatment shown in Fig. 2, the test piece was cut out and
The heating transformation point of each set was measured using The results are also shown in Table 1. The wood experiment was a simulated investigation of the structure formed by two-phase region rolling by twice quenching. That is,
A uniform martensitic structure is formed through primary quenching,
The temperature range for secondary quenching was set at a practical rolling temperature of 750°C to 850°C, and changes in hardness were examined. Figures 3 and 4 show the influence of quenching temperature on hardness. In Table 1, for the sample steels 1t, 1, and 2.3 in which the area ratio of ferrite exceeds 50%, the minimum tensile strength required for spring wire rods is 160 kgf/mm.
It is difficult to obtain a hardness level Hv~475 corresponding to Hv2 by heat treatment alone. Therefore, it is clear that in practice, in a region where C is low, it is better to set C to 0.25% or more, taking into consideration the combination of cold working. On the other hand, N where the area ratio of ferrite is less than 20%
o, 12.13, the two-phase temperature range shown in Table 1 (Ac3-A
c1) is extremely narrow, making actual two-phase region rolling difficult. Therefore, it is clear that it is better to keep C at 0.60% or less.
The amount of Mn was fixed at 0.3% and the hardenability was changed by varying the amount of Mn, but as is clear from Figure 4, No.
, 6 (Mn: 0, 47%), due to the low Mn content, a sufficient martensitic structure could not be obtained, resulting in a low secondary quenching hardness. On the other hand, Te No. 5
(Mn: 1, 2%), No. 4 (Mn
:3.4%), it is clear that there is no problem because a sufficient martensitic structure is obtained. On the other hand, test steel No. 7 (St: 0.25%). Positive, 8 (Si: 0.51%), No, 4 (Si: 2.1
%), No. 9 (Si: 3.0%) is a result of investigating the influence of the amount of Si on the secondary quenching hardness, but as is clear from Figure 4, the amount of Si is 0.5%. The above are
The hardness was almost constant in the high quenching temperature range, and it was confirmed that 0.5% or more of St was required. (Example 2) Steels having chemical components No. 14 to No. 24 shown in Table 2 were melted in an electric furnace and then rolled into ingots for nine minutes. A steel wire for springs was manufactured by a process of wire rolling and cold drawing. In Table 2, ordinary heat-treated spring steel (SU
P) does not regulate the amount of S and [O], so it is not listed unless specifically mentioned, but the amount of S is approximately 0.0
150-0.020% by weight, [O] amount is 0.002-0
.. 0.003% by weight. The mechanical properties were adjusted by changing the rolling temperature in wire rod rolling and by changing the area reduction rate in cold drawing. Table 2 also shows the tensile strength, elongation, and area of area of each sample steel. In Table 2, the effect of rolling conditions was investigated for test steel crumbs No. 14 to No. 17, and for No. 14° and 15, the rolling temperature was outside the two-phase range, so the final product contained marten in ferrite. It is not possible to obtain a two-phase structure at the site, and the aperture is greatly reduced, making cold colling impossible. In addition, sample steel m, ia~Il&), 21 was examined to see the influence of the drawing rate, and 20% was the processing limit, beyond which drawing could not be performed. In addition, in the case of 20% wire drawing, although it was possible to draw the wire, elongation and reduction of area were greatly reduced, and cold coiling was not possible. Next, in Table 2, 16, 17, 18, 19°20.
25.26.27 Eight types of test steels were selected to manufacture cold-formed coil springs with the specifications shown in Table 3, and the tightening stress was 110K.
The tightening test was carried out for 72 hours under (gf/l1m217). The results are shown in Table 4. Table 3 Table 4 As shown in Table 4, the criteria for determining residual shear strain γ are 5.
~6X10-4, it can be seen that all of the steels of the present invention satisfy this requirement and are at a level comparable to the current 5UP7 heat-treated material. Furthermore, in Table 2, No. 16.17°18.1
9, 20, 22, 23, 24, 25° 26.27 no 11
A cold-formed coil spring with the same specifications as shown in Item 3 above was manufactured using the different sample steels, and a physical coil spring fatigue test was conducted under a stress of 60±50 Kgf/mm2. The results are shown in Table 5. As shown in Table 5, the life of the dual-phase spring steel according to the present invention is slightly shorter than that of the current 5UP7 heat-treated spring (No. 25.26.27). Although there were some cases, all of them satisfied the criterion of 200,000 cycles, and it was clear that there were no problems in terms of durability. In particular, reducing (0) and S is quite effective for reducing fatigue strength. That is, the sample steel S: 22 (S: 0.01
51%, (0):0.0022%), collapse, 23 (S:
0.0153%, (0):0.0009%), 11&)
, 24 (S: 0.0049%, (0): 0.0010%
) is S and

〔0〕の低減効果をみたものであるが、Sと〔
0〕の両者を規制したものでは、いづれも50万回を満
足しており、疲労特性が著しく向上していることが認め
られた。 (発明の効果) 以上説明してきたように、この発明の第1発明による非
調質高強度ばね鋼は、主成分として、C:0.25〜0
.60重量%、Si:0.50〜4.0重量%、その他
焼入れ性向上元素等を含む鋼を素材とし、かつ圧延温度
を制御してフェライト十オーステナイトの2相域での圧
延を行い、圧延後ではフェライトの面積割合が20〜5
0%残部がマルテンサイト組織となっているものであり
、第2発明による非調質高強度ばね鋼は、主成分として
、C:0.25〜0660重量%、Si:0.50〜4
.0重量%、その他焼入れ性向上元素等を含む鋼を素材
とし、かつ圧延温度を制御してフェライト十オーステナ
イトの2相域での圧延を行い、圧延後ではフェライトの
面積割合が20%以上、残部がマルテンサイト組織であ
り、圧延後の冷間加工により加工効果させたものである
から、非調質であっても高強度でかつ冷間コイリング性
、耐へたり性、耐疲労特性に優れたばね鋼であり、従来
のように焼入れ焼戻しを施さなくとも上記特性の著しく
優れたばねを得ることができ、加工工程の省略、エネル
ギー消費量の削減等によるコストの低減要求に十分対処
しうるものであるという著大なる効果を奏するものであ
る。
This shows the reduction effect of [0], but S and [
0], both of them satisfied 500,000 cycles, and it was recognized that the fatigue properties were significantly improved. (Effects of the Invention) As explained above, the non-thermal high strength spring steel according to the first aspect of the present invention has C: 0.25 to 0 as a main component.
.. The material is steel containing 60% by weight, Si: 0.50 to 4.0% by weight, and other hardenability improving elements, and rolling is performed in a two-phase region of ferrite decaustenite by controlling the rolling temperature. Later, the area ratio of ferrite is 20-5
The non-tempered high-strength spring steel according to the second invention has C: 0.25-0660% by weight and Si: 0.50-4% as main components.
.. The material is steel containing 0% by weight and other hardenability improving elements, and rolling is performed in a two-phase region of ferrite and ten austenite by controlling the rolling temperature, and after rolling, the area ratio of ferrite is 20% or more, and the remainder is has a martensitic structure, which has been processed by cold working after rolling, so it is a spring that has high strength even without heat treatment, and has excellent cold coiling properties, fatigue resistance, and fatigue resistance. Since it is made of steel, it is possible to obtain a spring with the above-mentioned characteristics without quenching and tempering as in the past, and it can fully meet the demand for cost reduction by omitting processing steps and reducing energy consumption. This has a significant effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表1に示す素材から硬さ測定およびミクロ組織
観察用試料を得る場合に採用した熱処理条件を示す説明
図、第2図は同じく表1に示す鋼素材から加熱変態点測
定用試料を得る場合に採用した熱処理条件を示す説明図
、第3図および第4図は表1に示す鋼素材における2次
焼入れ温度と硬さとの関係を調べた結果を示すグラフで
ある。
Figure 1 is an explanatory diagram showing the heat treatment conditions adopted when obtaining samples for hardness measurement and microstructure observation from the materials shown in Table 1, and Figure 2 is a sample for heating transformation point measurement from the steel materials also shown in Table 1. 3 and 4 are graphs showing the results of investigating the relationship between secondary quenching temperature and hardness for the steel materials shown in Table 1.

Claims (8)

【特許請求の範囲】[Claims] (1)主成分として、C:0.25〜0.60重量%、
Si:0.50〜4.0重量%、その他焼入れ性向上元
素等を含む鋼を素材とし、かつ圧延温度を制御してフェ
ライト+オーステナイトの2相域での圧延を行い、圧延
後ではフェライトの面積割合が20〜50%残部がマル
テンサイト組織であることを特徴とする非調質高強度ば
ね鋼。
(1) As a main component, C: 0.25 to 0.60% by weight,
The material is steel containing Si: 0.50 to 4.0% by weight and other hardenability improving elements, and the rolling temperature is controlled to roll in the two-phase region of ferrite + austenite. A non-tempered high-strength spring steel characterized by an area ratio of 20 to 50% and the remainder being a martensitic structure.
(2)素材となる鋼が、重量%で、C:0.25〜0.
60%、Si:0.5〜4.0%、Mn:1.0〜5.
0%、Cr:0.1〜2.0%を含み、残部Feおよび
不純物からなることを特徴とする特許請求の範囲第(1
)項記載の非調質高強度ばね鋼。
(2) The steel used as the material has C: 0.25 to 0.0 by weight%.
60%, Si: 0.5-4.0%, Mn: 1.0-5.
0%, Cr: 0.1 to 2.0%, and the balance consists of Fe and impurities.
) Non-heat-treated high-strength spring steel.
(3)素材となる鋼が、重量%で、C:0.25〜0.
60%、Si:0.5〜4.0%、Mn:1.0〜5.
0%、Cr:0.1〜2.0%、B:0.0005〜0
.05%を含み、残部Feおよび不純物からなることを
特徴とする特許請求の範囲第(1)項記載の非調質高強
度ばね鋼。
(3) The steel used as the material has C: 0.25 to 0.0 by weight%.
60%, Si: 0.5-4.0%, Mn: 1.0-5.
0%, Cr: 0.1-2.0%, B: 0.0005-0
.. The non-thermal high strength spring steel according to claim (1), characterized in that the non-tempered high strength spring steel contains 0.05% and the balance consists of Fe and impurities.
(4)不純物中において、S:0.010重量%以下、
[O]:0.0015重量%以下に規制したことを特徴
とする特許請求の範囲第(2)項または第(3)項記載
の非調質高強度ばね鋼。
(4) In impurities, S: 0.010% by weight or less,
[O]: The non-tempered high-strength spring steel according to claim (2) or (3), characterized in that it is regulated to 0.0015% by weight or less.
(5)主成分として、C:0.25〜0.60重量%、
Si:0.50〜4.0重量%、その他焼入れ性向上元
素等を含む鋼を素材とし、かつ圧延温度を制御してフェ
ライト+オーステナイトの2相域での圧延を行い、圧延
後ではフェライトの面積割合が20%以上残部がマルテ
ンサイト組織であり、圧延後の冷間加工により加工硬化
させたことを特徴とする非調質高強度ばね鋼。
(5) As a main component, C: 0.25 to 0.60% by weight,
The material is steel containing Si: 0.50 to 4.0% by weight and other hardenability improving elements, and the rolling temperature is controlled to roll in the two-phase region of ferrite + austenite. A non-tempered high-strength spring steel characterized by having an area ratio of 20% or more and the remainder being a martensitic structure, which is work-hardened by cold working after rolling.
(6)素材となる鋼が、重量%で、C:0.25〜0.
60%、Si:0.5〜4.0%、Mn:1.0〜5.
0%、Cr:0.1〜2.0%を含み、残部Feおよび
不純物からなることを特徴とする特許請求の範囲第(5
)項記載の非調質高強度ばね鋼。
(6) The steel used as the material has C: 0.25 to 0.0 by weight%.
60%, Si: 0.5-4.0%, Mn: 1.0-5.
0%, Cr: 0.1 to 2.0%, and the balance consists of Fe and impurities.
) Non-heat-treated high-strength spring steel.
(7)素材となる鋼が、重量%で、C:0.25〜0.
60%、Si:0.5〜4.0%、Mn:1.0〜5.
0%、Cr:0.1〜2.0%、B:0.0005〜0
.05%を含み、残部Feおよび不純物からなることを
特徴とする特許請求の範囲第(5)項記載の非調質高強
度ばね鋼。
(7) The steel used as the material has C: 0.25 to 0.0 by weight%.
60%, Si: 0.5-4.0%, Mn: 1.0-5.
0%, Cr: 0.1-2.0%, B: 0.0005-0
.. The non-tempered high-strength spring steel according to claim (5), characterized in that the non-tempered high-strength spring steel contains 0.5% Fe and the balance consists of Fe and impurities.
(8)不純物中において、S:0.010重量%以下、
[O]:0.0015重量%以下に規制したことを特徴
とする特許請求の範囲第(6)項または第(7)項記載
の非調質高強度ばね鋼。
(8) In impurities, S: 0.010% by weight or less,
[O]: The non-thermal high strength spring steel according to claim (6) or (7), characterized in that it is regulated to 0.0015% by weight or less.
JP14916384A 1984-07-18 1984-07-18 High-strength spring steel Pending JPS6130650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14916384A JPS6130650A (en) 1984-07-18 1984-07-18 High-strength spring steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14916384A JPS6130650A (en) 1984-07-18 1984-07-18 High-strength spring steel

Publications (1)

Publication Number Publication Date
JPS6130650A true JPS6130650A (en) 1986-02-12

Family

ID=15469169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14916384A Pending JPS6130650A (en) 1984-07-18 1984-07-18 High-strength spring steel

Country Status (1)

Country Link
JP (1) JPS6130650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206453A (en) * 1987-02-20 1988-08-25 Kobe Steel Ltd Steel wire for non-heattreated high strength spring and manufacture thereof
JPH04183819A (en) * 1990-11-19 1992-06-30 Shinko Kosen Kogyo Kk Steel wire for spring
US5591028A (en) * 1993-12-28 1997-01-07 J. Morita Manufacturing Corporation Dental cutting tool holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206453A (en) * 1987-02-20 1988-08-25 Kobe Steel Ltd Steel wire for non-heattreated high strength spring and manufacture thereof
JPH04183819A (en) * 1990-11-19 1992-06-30 Shinko Kosen Kogyo Kk Steel wire for spring
US5591028A (en) * 1993-12-28 1997-01-07 J. Morita Manufacturing Corporation Dental cutting tool holder

Similar Documents

Publication Publication Date Title
US8382918B2 (en) Steel wire material for spring and its producing method
RU2201468C2 (en) Steel for manufacture of part by cold plastic deformation and method of manufacture of such part
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
KR20150002848A (en) Steel wire for high-strength spring having exceptional coiling performance and hydrogen embrittlement resistance, and method for manufacturing same
EP3115477A1 (en) Age hardening non-heat treated bainitic steel
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JP2004250768A (en) Steel for machine structural having excellent cold workability and low decarburizing property, and production method therefor
WO1998054372A1 (en) Non-tempered steel for mechanical structure
JP2006097109A (en) High-carbon hot-rolled steel sheet and manufacturing method therefor
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP6747623B1 (en) ERW steel pipe
JPH0830246B2 (en) High strength spring steel
JPS6130650A (en) High-strength spring steel
JP2002180201A (en) Steel for hard-drawn wire having excellent fatigue strength and ductility, and hard-drawn wire
US5658402A (en) High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
JPH0526850B2 (en)
JPH10287957A (en) High strength pc steel bar and its manufacture
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JPS6130653A (en) High strength spring steel
JPH0949065A (en) Wear resistant hot rolled steel sheet excellent in stretch-flanging property and its production
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
KR940007275B1 (en) Making mathod of steel wire rod
JPH08246051A (en) Production of medium carbon steel sheet excellent in workability
KR20010060754A (en) Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface