JPS649381B2 - - Google Patents

Info

Publication number
JPS649381B2
JPS649381B2 JP5200084A JP5200084A JPS649381B2 JP S649381 B2 JPS649381 B2 JP S649381B2 JP 5200084 A JP5200084 A JP 5200084A JP 5200084 A JP5200084 A JP 5200084A JP S649381 B2 JPS649381 B2 JP S649381B2
Authority
JP
Japan
Prior art keywords
less
steel
hot
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5200084A
Other languages
Japanese (ja)
Other versions
JPS60197824A (en
Inventor
Kazutoshi Kunishige
Masao Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5200084A priority Critical patent/JPS60197824A/en
Publication of JPS60197824A publication Critical patent/JPS60197824A/en
Publication of JPS649381B2 publication Critical patent/JPS649381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、耐食性に優れるとともに、良好な
靭性並びに延性をも兼備した2相ステンレス鋼熱
延鋼帯を、熱延のままで得る方法に関するもので
ある。 〈産業上の利用分野〉 近年、化学工業、船舶或いは電力関係等の分野
を中心として、海水熱交換器や海水構造物等に使
用するための、海水に対して安定した耐食性を有
する金属材料の需要が益々増大する傾向をみせて
きた。そして、このような事情を背景に、腐食性
の厳しい塩化物環境にて極めて優れた耐食性を示
す2相ステンレス鋼が広く使用されるようになつ
ている。 〈従来技術〉 ところで、従来、常温付近においてフエライト
相とオーステナイト相の2相を呈する2相ステン
レス鋼板は、熱間圧延後600℃以上の温度で巻取
られて製造された所定成分の鋼帯を用い、これを
熱処理するか、或いは冷間圧延とそれに続く熱処
理とを施して製造されるのが普通であつた。なぜ
なら、熱間圧延のままでは、所望の耐食性、靭性
及び延性を実現できなかつたからである。 〈発明の目的〉 本発明者等は、上述の如き2相ステンレス鋼板
製造工程における熱処理を省略し、熱間圧延のみ
にて高耐食性、高靭性及び高延性等の優れた性能
を有する2相ステンレス鋼板を得るべく、鋼組成
や熱間圧延条件等について様々な観点からの検討
を加えた結果、以下に示される如き知見を得たの
である。 〈知見事項〉 C,P及びS等を制限するなどして特定の化学
成分組成に調整した鋼を使用し、これを熱間圧延
した後、直ちに従来では考えられないような著し
く低い温度域にまで急冷を行い、該低温域で巻取
りを実施すると、熱延後の冷却過程或いは巻取り
後の徐冷途中で現われがちなCr炭化物やσ相の
析出が抑制され、熱延のままでも、耐食性に優
れ、かつ高靭性・高延性をも具備した2相ステン
レス鋼熱延鋼帯が得られること。 〈発明の構成〉 この発明は、上記知見に基づいてなされたもの
であり、 C:0.05%以下(以下、成分割合を表わす%は
重量%とする), Si:2.0%以下,Mn:2.0%以下, P:0.03%以下,S:0.015%以下, Cr:16.0〜30.0%,Ni:3.0〜9.0%, Mo:0.2〜5.0%,N:0.45%以下 を含有するとともに、必要により更に、 so.A:0.05%以下,Cu:2.0%以下, Ca:0.0100%以下, 希土類元素:0.10%以下, Zr:0.10%以下, のうちの1種以上をも含み、 残部:Fe及びその他の不可避不純物 から成る成分組成の鋼を熱間圧延した後、直ちに
5℃/sec以上の冷却速度にて急冷を行い、550℃
以下の温度にて巻取ることにより、耐食性、靭性
及び延性ともに優れた2相ステンレス鋼熱延鋼帯
をコスト安く製造する点 に特徴を有するものである。 次いで、この発明の方法において、鋼の組成成
分量、及び熱延・巻取り条件を前記の如くに数値
限定した理由を説明する。 A 組成成分 (a) C Cは、鋼中にて炭化物となつて析出し、鋼材の
靭性及び延性を劣化するばかりか、耐食性をも劣
化することから、可能な限り少ない方が好ましい
不純物元素である。そして、その含有量が0.05%
を越えると、熱間圧延後に急冷を施し、かつ低温
巻取りを施したとしても前記炭化物の析出を十分
に抑えることができず、靭性、延性及び耐食性に
所望の特性が得られなくなることから、C含有量
は0.05%以下と定めた。 (b) Si Si成分は、鋼の脱酸作用を有するとともに耐食
性をも向上する好ましい元素であるが、その含有
量が2.0%を越えると溶接性及び加工性を阻害す
ることとなるので、Si含有量は2.0%以下と定め
た。なお、Si成分は、極く微量であつても上記特
性を発揮するものであるが、より顕著な効果を確
保するためには少なくとも0.10%以上を含有せし
めるのが好ましい。 (c) Mn Mn成分も鋼の脱酸作用を有する有用な元素で
あり、しかも鋼の熱間加工性の改善作用をも備え
た好ましい成分であるが、その含有量が2.0%を
越えた場合には鋼材の耐食性を劣化するので、
Mn含有量は2.0%以下と定めた。Mn成分も、微
量の添加で所望の効果を得られるものであるが、
好ましくは0.50%以上の含有量を確保するのが良
い。 (d) P Pは、鋼の溶接性並びに熱間加工性を阻害する
ので、可能な限り少ない方が好ましい不純物元素
である。特に、その含有量が0.03%を越えると上
記悪影響が顕著になるので、P含有量を0.03%以
下と定めた。 (e) S Sは、鋼の耐食性、延性及び靭性を劣化するの
で可及的に少ない方が好ましい不純物元素であ
る。特にその含有量が0.015%を越えると上記悪
影響が顕著となるので、S含有量を0.015%以下
と定めた。 (f) Cr Cr成分は、鋼の耐食性を向上させる極めて重
要な元素であり、耐海水鋼として満足し得る耐食
性を付与するためには16.0%以上の添加が必須な
のである。一方、その含有量が30.0%を越える
と、鋼の加工性及び溶接性が劣化するとともに、
2相組織を得るため、必然的に高価なNi含有量
を増加させる必要を生ずることから、Cr含有量
は16.0〜30.0%と定めた。 (g) Ni Ni成分は、鋼に高靭性を付与し、耐食性を高
めるための必須成分であり、その含有量が3.0%
未満では所望の靭性及び耐食性を確保することが
できない。一方、その含有量が9.0%を越えると、
前記効果が飽和してしまつて経済的な不利を招く
ことから、Ni含有量は3.0〜9.0%と定めた。 (h) Mo Mo成分には、鋼の耐海水性を大きく向上させ
る作用があるが、その含有量が0.2%未満では前
記作用に所望の効果が得られず、他方、5.0%を
越えて含有させても、より以上の向上効果が得ら
れないことから、Mo含有量は0.2〜5.0%と定め
た。 (i) N N成分には、不純物に近い0.0100%と言う微量
の添加によつても鋼の耐食性を高める顕著な効果
があるが、工業上、例えば加圧雰囲気中であつて
も0.45%を越えてNを固溶させることが困難であ
ることから、N含有量を0.45%以下と定めた。 (j) so.A,Cu,Ca,希土類元素,Zr これらの成分は、鋼の靭性、熱間加工性或いは
耐食性をより一層向上させるため、必要に応じて
1種類以上添加含有せしめられるものであるが、
以下、個々の元素についてその添加量を制限した
理由を説明する。 so.A so.A成分は、鋼の脱酸と、一層の靭性向
上のために添加されるものであるが、その含有量
が0.05%を越えるとこれらの効果が飽和すること
から、so.A含有量は0.05%以下と定めた。 Cu Cu成分は、鋼の耐食性を一層向上させるため
に添加されるものであるが、その含有量が2.0%
を越えるとこの効果が飽和することから、Cu含
有量は2.0%以下と定めた。 Ca,希土類元素,及びZr これらの成分は、鋼の熱間加工性を向上させる
ために1種以上添加されるものであるが、Ca含
有量が0.0100%を、希土類元素含有量が0.10%
を、そしてZr含有量が0.10%をそれぞれ越えると
靭性の劣化を招くようになることから、Ca含有
量は0.0100%、希土類元素含有量は0.10%以下,
Zr含有量は0.10%以下とそれぞれ定めた。 B 熱延・巻取り条件 (a) 冷却速度 熱間圧延終了後の冷却速度が5℃/secよりも
遅くなると、冷却途中で炭化物やσ相が析出する
こととなり、鋼の靭性、延性及び耐食性の大幅な
劣化を来たすようになる。従つて、熱間圧延終了
後の冷却速度を5℃/sec以上と定めた。 (b) 巻取り温度 巻取り温度が550℃よりも高いと、熱間圧延終
了後の冷却速度が5℃/sec以上であつたとして
も、巻取り後の徐冷中に炭化物やσ相が析出する
こととなつて、やはり鋼の靭性、延性及び耐食性
を大幅に劣化するようになることから、巻取り温
度を550℃以上と定めた。 なお、熱間圧延を830℃以上の高温仕上げとす
ると、フエライトの温間加工組織が軽減されて鋼
の延性及び靭性が一段と向上し、また、巻取り温
度を500〜200℃に調整すれば、炭化物やσ相の析
出がほぼ完全に抑制される上、フエライトの温間
加工組織が巻取り後の徐冷中に焼戻される機会を
も確保できるので、より一層優れた特性及び延性
を実現することが可能となる。従つて、熱間圧延
を830℃以上の高温で終了して急冷し、500〜200
℃で巻取ることが推奨される。 第1図は、本発明方法の対象鋼であるところ
の、0.011%C−0.75%Si−1.65%Mn−0.014%P
−0.0005%S−22.1%Cr−5.1%Ni−0.3%Mo−
0.142%N鋼の強度、延性、靭性及び耐食性に及
ぼす熱延仕上げ温度と巻取り温度との影響を示す
グラフであり(〇印は900℃仕上げ、●印は800℃
仕上げのものを示す)、熱延加熱温度はいずれも
1200℃とし、仕上板厚を5.5mmとしたものである。
なお、熱延後巻取り間の冷却速度は全て5〜45
℃/secの範囲に入つており、また腐食減量は、
海水浸漬実地試験(6ケ月)を行つて測定したも
のである。 第1図からも、巻取り温度を550℃以下にする
ことが、鋼の耐食性並びに機械的性質向上に極め
て重要な要因であることは明白である。 次に、この発明を実施例により比較例と対比し
ながら具体的に説明する。 〈実施例〉 まず、通常の方法によつて第1表に示される如
き成分組成の鋼A〜Kを溶製した。 次いで、これらの各鋼を第2表に示される条件
で熱間圧延し、巻取りを行つて厚さ:5.5mmの熱
延鋼帯を製造した。 このようにして得られた各熱延鋼帯から試験片
を切り出し、その機械的性質並びに耐食性を調べ
たところ、同じく第2表に示される如き結果が得
られた。 第2表に示される結果からも明らかなように、
The present invention relates to a method for obtaining a hot-rolled duplex stainless steel strip that is excellent in corrosion resistance and also has good toughness and ductility as it is hot-rolled. <Industrial Application Fields> In recent years, metal materials with stable corrosion resistance against seawater have been developed for use in seawater heat exchangers, seawater structures, etc., mainly in fields such as the chemical industry, ships, and electric power. Demand has been showing a tendency to increase. Against this background, duplex stainless steel, which exhibits extremely excellent corrosion resistance in a highly corrosive chloride environment, has come into wide use. <Prior Art> Conventionally, two-phase stainless steel sheets exhibiting two phases, a ferrite phase and an austenite phase, at room temperature have been produced by hot rolling and then coiling at a temperature of 600°C or higher. It was customary to manufacture the steel by applying heat treatment or cold rolling followed by heat treatment. This is because the desired corrosion resistance, toughness, and ductility could not be achieved with hot rolling. <Purpose of the Invention> The present inventors have omitted the heat treatment in the duplex stainless steel plate manufacturing process as described above, and produced duplex stainless steel that has excellent performance such as high corrosion resistance, high toughness, and high ductility by only hot rolling. In order to obtain a steel plate, we investigated the steel composition, hot rolling conditions, etc. from various viewpoints, and as a result, we obtained the knowledge shown below. <Knowledge> Steel that has been adjusted to a specific chemical composition by restricting C, P, S, etc. is used, and after hot rolling, it is immediately heated to an extremely low temperature range that is unthinkable in the past. If the steel is rapidly cooled to a temperature of 100% and then coiled in this low temperature range, the precipitation of Cr carbides and σ phase, which tend to appear during the cooling process after hot rolling or during slow cooling after coiling, is suppressed. A hot rolled duplex stainless steel strip having excellent corrosion resistance, high toughness and high ductility can be obtained. <Structure of the Invention> This invention was made based on the above findings, and includes: C: 0.05% or less (hereinafter, % representing the component ratio is expressed as weight %), Si: 2.0% or less, Mn: 2.0%. Below, P: 0.03% or less, S: 0.015% or less, Cr: 16.0-30.0%, Ni: 3.0-9.0%, Mo: 0.2-5.0%, N: 0.45% or less, and if necessary, so .. A: 0.05% or less, Cu: 2.0% or less, Ca: 0.0100% or less, rare earth elements: 0.10% or less, Zr: 0.10% or less, and the remainder: Fe and other unavoidable impurities. After hot-rolling steel with the following chemical composition, immediately quench it at a cooling rate of 5℃/sec or higher to 550℃.
This method is characterized in that a hot-rolled duplex stainless steel strip having excellent corrosion resistance, toughness, and ductility can be manufactured at low cost by winding at the following temperature. Next, in the method of the present invention, the reason for numerically limiting the amount of the steel composition and the hot rolling/coiling conditions as described above will be explained. A Compositional component (a) C C is an impurity element that is preferably as small as possible because it precipitates as carbide in steel and deteriorates not only the toughness and ductility of the steel material, but also the corrosion resistance. be. And its content is 0.05%
If it exceeds, even if quenching is performed after hot rolling and low-temperature winding is performed, the precipitation of the carbides cannot be sufficiently suppressed, and the desired properties in terms of toughness, ductility and corrosion resistance cannot be obtained. The C content was set at 0.05% or less. (b) Si Si is a desirable element that has a deoxidizing effect on steel and also improves corrosion resistance, but if its content exceeds 2.0%, it will impede weldability and workability. The content was set at 2.0% or less. Although the Si component exhibits the above characteristics even in a very small amount, it is preferably contained in an amount of at least 0.10% or more in order to ensure a more significant effect. (c) Mn The Mn component is also a useful element that has a deoxidizing effect on steel, and is also a desirable component that also has the effect of improving the hot workability of steel, but if its content exceeds 2.0% Because it deteriorates the corrosion resistance of steel,
The Mn content was set at 2.0% or less. The desired effect can be obtained by adding a small amount of Mn component, but
It is preferable to ensure a content of 0.50% or more. (d) P Since P impairs the weldability and hot workability of steel, it is an impurity element that is preferably as small as possible. In particular, if the P content exceeds 0.03%, the above-mentioned adverse effects become significant, so the P content was set at 0.03% or less. (e) S S is an impurity element that is preferably as small as possible since it deteriorates the corrosion resistance, ductility, and toughness of steel. In particular, if the S content exceeds 0.015%, the above-mentioned adverse effects become significant, so the S content was set at 0.015% or less. (f) Cr The Cr component is an extremely important element that improves the corrosion resistance of steel, and it is essential to add 16.0% or more in order to impart satisfactory corrosion resistance to seawater-resistant steel. On the other hand, if the content exceeds 30.0%, the workability and weldability of the steel will deteriorate, and
In order to obtain a two-phase structure, it is necessary to increase the expensive Ni content, so the Cr content was determined to be 16.0 to 30.0%. (g) Ni Ni component is an essential component for imparting high toughness to steel and increasing corrosion resistance, and its content is 3.0%.
If it is less than that, desired toughness and corrosion resistance cannot be ensured. On the other hand, if its content exceeds 9.0%,
The Ni content was determined to be 3.0 to 9.0% because the above effect would become saturated and cause an economic disadvantage. (h) Mo The Mo component has the effect of greatly improving the seawater resistance of steel, but if the content is less than 0.2%, the desired effect cannot be obtained; on the other hand, if the content exceeds 5.0%, the desired effect cannot be obtained. Since no further improvement effect could be obtained even if Mo was added, the Mo content was set at 0.2 to 5.0%. (i) N The N component has a remarkable effect of increasing the corrosion resistance of steel even when added in a small amount of 0.0100%, which is close to an impurity. Since it is difficult to dissolve N as a solid solution in excess of this amount, the N content was set at 0.45% or less. (j) so. A, Cu, Ca, rare earth elements, Zr One or more of these components may be added as necessary to further improve the toughness, hot workability, or corrosion resistance of the steel.
The reason why the amount of each element added is limited will be explained below. so. A so. Component A is added to deoxidize the steel and further improve its toughness, but if its content exceeds 0.05%, these effects will be saturated, so so. The A content was set at 0.05% or less. Cu Cu component is added to further improve the corrosion resistance of steel, but its content is 2.0%.
Since this effect becomes saturated when the Cu content exceeds 2.0%, the Cu content was set at 2.0% or less. Ca, rare earth elements, and Zr One or more of these components are added to improve the hot workability of steel, and the Ca content is 0.0100% and the rare earth element content is 0.10%.
And if the Zr content exceeds 0.10%, the toughness will deteriorate, so the Ca content is 0.0100%, the rare earth element content is 0.10% or less,
The Zr content was set at 0.10% or less. B Hot rolling/coiling conditions (a) Cooling rate If the cooling rate after hot rolling is slower than 5°C/sec, carbides and σ phase will precipitate during cooling, which will affect the toughness, ductility, and corrosion resistance of the steel. This results in a significant deterioration of the Therefore, the cooling rate after hot rolling was determined to be 5° C./sec or more. (b) Coiling temperature If the coiling temperature is higher than 550℃, carbides and σ phase will precipitate during slow cooling after coiling, even if the cooling rate after hot rolling is 5℃/sec or more. In particular, since the toughness, ductility, and corrosion resistance of the steel would be significantly degraded, the coiling temperature was set at 550°C or higher. In addition, if the hot rolling is done at a high temperature of 830℃ or higher, the warm working structure of ferrite will be reduced, and the ductility and toughness of the steel will further improve, and if the coiling temperature is adjusted to 500 to 200℃, Precipitation of carbides and σ phase is almost completely suppressed, and the warm-worked structure of ferrite is also given the opportunity to be tempered during slow cooling after winding, making it possible to achieve even better properties and ductility. It becomes possible. Therefore, hot rolling is finished at a high temperature of 830°C or higher and then rapidly cooled to a temperature of 500 to 200°C.
Winding at ℃ is recommended. Figure 1 shows 0.011%C-0.75%Si-1.65%Mn-0.014%P, which is the target steel for the method of the present invention.
−0.0005%S−22.1%Cr−5.1%Ni−0.3%Mo−
This is a graph showing the influence of hot rolling finishing temperature and coiling temperature on the strength, ductility, toughness, and corrosion resistance of 0.142%N steel (〇 marks finish at 900°C, ● marks finish at 800°C.
The finished product is shown), and the hot rolling heating temperature is
The temperature was 1200℃ and the finished plate thickness was 5.5mm.
In addition, the cooling rate between coiling after hot rolling is 5 to 45 in all cases.
The corrosion loss is within the range of °C/sec.
This was measured by conducting a seawater immersion field test (6 months). It is clear from FIG. 1 that keeping the coiling temperature below 550°C is an extremely important factor in improving the corrosion resistance and mechanical properties of steel. Next, the present invention will be specifically explained using examples and comparing with comparative examples. <Example> First, steels A to K having the compositions shown in Table 1 were produced by a conventional method. Next, each of these steels was hot rolled under the conditions shown in Table 2 and coiled to produce a hot rolled steel strip having a thickness of 5.5 mm. Test pieces were cut out from each of the hot rolled steel strips thus obtained, and their mechanical properties and corrosion resistance were examined, and the same results as shown in Table 2 were obtained. As is clear from the results shown in Table 2,

【表】【table】

【表】【table】

【表】 本発明における条件を満足する方法で得られた
熱延鋼帯は全て、熱間圧延のままで優れた機械的
性質並びに耐食性を示すのに対して、熱間圧延終
了から巻取り開始までの間の冷却速度や巻取り温
度が本発明の条件から外れている試験番号1及び
2の方法によつて得られた熱延鋼帯は、熱間圧延
のままでは延性、靭性及び耐食性に著しく劣つて
いることがわかる。 もちろん、この発明の方法によつて得られる熱
延鋼帯は、熱延のままで使用して十分に満足し得
る効果を得ることができるものであるが、靭性や
延性が優れていて、コイルからの巻戻し時や成形
時に割れや破断を生ずると言う問題もないので、
更に熱処理又は冷間圧延を施して使用する場合で
も、取扱いが極めて容易であつて高品質の製品を
歩留り良く製造し得るのである。 更に、2相ステンレスクラツドの熱延コイルの
製造法にもこの方法が有効であることは無論のこ
とである。 〈総括的な効果〉 上述のように、この発明によれば、熱間圧延の
ままで、耐食性、靭性及び延性がともに優れた2
相ステンレス鋼帯板材を、コスト安く、安定して
製造することができ、海水を用いる熱交換器をは
じめ、化学製造機器、或いは食塩製造機器等の素
材に使用して優れた性能を発揮し得るなど、産業
上有用な効果がもたらされるのである。
[Table] All hot-rolled steel strips obtained by the method that satisfies the conditions of the present invention exhibit excellent mechanical properties and corrosion resistance as hot-rolled, whereas coiling starts after the end of hot rolling. The hot-rolled steel strips obtained by the methods of Test Nos. 1 and 2, in which the cooling rate and coiling temperature are outside the conditions of the present invention, have poor ductility, toughness, and corrosion resistance as they are hot-rolled. It can be seen that it is significantly inferior. Of course, the hot-rolled steel strip obtained by the method of the present invention can be used as hot-rolled to obtain fully satisfactory effects, but it has excellent toughness and ductility, and can be used as a coil. There is no problem of cracking or breaking during unwinding or molding.
Furthermore, even when used after heat treatment or cold rolling, handling is extremely easy and high quality products can be manufactured with good yield. Furthermore, it goes without saying that this method is also effective for manufacturing hot-rolled coils of two-phase stainless steel cladding. <Overall Effects> As described above, according to the present invention, two sheets of steel with excellent corrosion resistance, toughness, and ductility can be obtained even after hot rolling.
Compatible stainless steel strips can be produced stably at low cost, and can exhibit excellent performance when used as materials for heat exchangers that use seawater, chemical manufacturing equipment, salt manufacturing equipment, etc. Industrially useful effects such as these are brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、2相ステンレス鋼の強度、延性、靭
性及び耐食性に及ばす熱延仕上げ温度と巻取り温
度との影響を示すグラフである。
FIG. 1 is a graph showing the influence of hot rolling finishing temperature and coiling temperature on the strength, ductility, toughness and corrosion resistance of duplex stainless steel.

Claims (1)

【特許請求の範囲】 1 重量割合にて、 C:0.05%以下、Si:2.0%以下、 Mn:2.0%以下、P:0.03%以下、 S:0.015%以下、Cr:16.0〜30.0%、 Ni:3.0〜9.0%、Mo:0.2〜5.0%、 N:0.45%以下、 を含有し、残りがFe及びその他の不可避不純物
から成る成分組成の鋼を、熱間圧延した後、直ち
に5℃/sec以上の冷却速度にて急冷を行い、550
℃以下の温度にて巻取ることを特徴とする、高靭
性2相ステンレス鋼熱延鋼帯の製造方法。 2 重量割合にて、 C:0.05%以下、Si:2.0%以下、 Mn:2.0%以下、P:0.03%以下、 S:0.015%以下、Cr:16.0〜30.0%、 Ni:3.0〜9.0%、Mo:0.2〜5.0%、 N:0.45%以下、 を含有し、更に、 so.A:0.05%以下、 を含有し、残りがFe及びその他の不可避不純物
から成る成分組成の鋼を、熱間圧延した後、直ち
に5℃/sec以上の冷却速度にて急冷を行い、550
℃以下の温度にて巻取ることを特徴とする、高靭
性2相ステンレス鋼熱延鋼帯の製造方法。 3 重量割合にて、 C:0.05%以下、Si:2.0%以下、 Mn:2.0%以下、P:0.03%以下、 S:0.015%以下、Cr:16.0〜30.0%、 Ni:3.0〜9.0%、Mo:0.2〜5.0%、 N:0.45%以下、 を含有し、更に、 Cu:2.0%以下、 を含有し、残りがFe及びその他の不可避不純物
から成る成分組成の鋼を、熱間圧延した後、直ち
に5℃/sec以上の冷却速度にて急冷を行い、550
℃以下の温度にて巻取ることを特徴とする、高靭
性2相ステンレス鋼熱延鋼帯の製造方法。 4 重量割合にて、 C:0.05%以下、Si:2.0%以下、 Mn:2.0%以下、P:0.03%以下、 S:0.015%以下、Cr:16.0〜30.0%、 Ni:3.0〜9.0%、Mo:0.2〜5.0%、 N:0.45%以下、 を含有し、更に、 Ca:0.0100%以下、 希土類元素:0.10%以下、Zr:0.10%以下、 のうちの1種以上を含有し、残りがFe及びその
他の不可避不純物から成る成分組成の鋼を、熱間
圧延した後、直ちに5℃/sec以上の冷却速度に
て急冷を行い、550℃以下の温度にて巻取ること
を特徴とする、高靭性2相ステンレス鋼熱延鋼帯
の製造方法。 5 重量割合にて、 C:0.05%以下、Si:2.0%以下、 Mn:2.0%以下、P:0.03%以下、 S:0.015%以下、Cr:16.0〜30.0%、 Ni:3.0〜9.0%、Mo:0.2〜5.0%、 N:0.45%以下、 を含有し、更に、 Cu:2.0%以下と、 Ca:0.0100%以下、 希土類元素:0.10%以下、Zr:0.10%以下、 のうちの1種以上を含有し、残りがFe及びその
他の不可避不純物から成る成分組成の鋼を、熱間
圧延した後、直ちに5℃/sec以上の冷却速度に
て急冷を行い、550℃以下の温度にて巻取ること
を特徴とする、高靭性2相ステンレス鋼熱延鋼帯
の製造方法。
[Claims] 1 In terms of weight percentage, C: 0.05% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.015% or less, Cr: 16.0 to 30.0%, Ni : 3.0 to 9.0%, Mo: 0.2 to 5.0%, N: 0.45% or less, and the remainder is Fe and other unavoidable impurities. Immediately after hot rolling, the steel is heated at 5°C/sec. Perform rapid cooling at a cooling rate of 550
A method for producing a high-toughness duplex stainless steel hot-rolled steel strip, the method comprising coiling at a temperature of 0.degree. C. or less. 2 In terms of weight percentage, C: 0.05% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.015% or less, Cr: 16.0 to 30.0%, Ni: 3.0 to 9.0%, Contains Mo: 0.2 to 5.0%, N: 0.45% or less, and further contains so. A: A steel containing 0.05% or less, with the remainder consisting of Fe and other unavoidable impurities, is hot-rolled and immediately quenched at a cooling rate of 5°C/sec or higher to produce a 550%
A method for producing a high-toughness duplex stainless steel hot-rolled steel strip, the method comprising coiling at a temperature of 0.degree. C. or less. 3 In terms of weight percentage, C: 0.05% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.015% or less, Cr: 16.0-30.0%, Ni: 3.0-9.0%, After hot rolling a steel containing Mo: 0.2 to 5.0%, N: 0.45% or less, Cu: 2.0% or less, and the remainder consisting of Fe and other unavoidable impurities. , immediately perform rapid cooling at a cooling rate of 5℃/sec or higher to 550℃.
A method for producing a high-toughness duplex stainless steel hot-rolled steel strip, the method comprising coiling at a temperature of 0.degree. C. or less. 4 In terms of weight percentage, C: 0.05% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.015% or less, Cr: 16.0-30.0%, Ni: 3.0-9.0%, Contains Mo: 0.2 to 5.0%, N: 0.45% or less, and further contains one or more of the following: Ca: 0.0100% or less, rare earth elements: 0.10% or less, Zr: 0.10% or less, and the rest is After hot rolling a steel having a composition consisting of Fe and other unavoidable impurities, it is immediately quenched at a cooling rate of 5°C/sec or more, and coiled at a temperature of 550°C or less. A method for producing a high toughness duplex stainless steel hot rolled steel strip. 5 In terms of weight percentage, C: 0.05% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.015% or less, Cr: 16.0 to 30.0%, Ni: 3.0 to 9.0%, Contains Mo: 0.2 to 5.0%, N: 0.45% or less, Cu: 2.0% or less, Ca: 0.0100% or less, rare earth elements: 0.10% or less, Zr: 0.10% or less, and one of the following. After hot rolling a steel containing the above, with the remainder consisting of Fe and other unavoidable impurities, it is immediately quenched at a cooling rate of 5°C/sec or more, and then rolled at a temperature of 550°C or less. A method for producing a high-toughness duplex stainless steel hot-rolled steel strip, the method comprising:
JP5200084A 1984-03-16 1984-03-16 Production of hot rolled two-phase stainless steel strip having high toughness Granted JPS60197824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200084A JPS60197824A (en) 1984-03-16 1984-03-16 Production of hot rolled two-phase stainless steel strip having high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200084A JPS60197824A (en) 1984-03-16 1984-03-16 Production of hot rolled two-phase stainless steel strip having high toughness

Publications (2)

Publication Number Publication Date
JPS60197824A JPS60197824A (en) 1985-10-07
JPS649381B2 true JPS649381B2 (en) 1989-02-17

Family

ID=12902564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200084A Granted JPS60197824A (en) 1984-03-16 1984-03-16 Production of hot rolled two-phase stainless steel strip having high toughness

Country Status (1)

Country Link
JP (1) JPS60197824A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151509A (en) * 1985-12-25 1987-07-06 Sumitomo Metal Ind Ltd Production of high strength resistance welded pipe having excellent low-temperature toughness
JPS62247023A (en) * 1986-04-19 1987-10-28 Nippon Steel Corp Production of thick stainless steel plate
JPH0717946B2 (en) * 1990-07-11 1995-03-01 新日本製鐵株式会社 Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
KR100515041B1 (en) * 2000-06-23 2005-09-15 주식회사 포스코 Method for continuous annealing the hot-rolled duplex stainless steel coil
KR100466420B1 (en) * 2000-12-22 2005-01-13 주식회사 포스코 Method For Manufacturing Austenite Stainless Steel Sheet With High Strength Using Strip Caster
WO2012102330A1 (en) * 2011-01-27 2012-08-02 新日鐵住金ステンレス株式会社 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
JP5406230B2 (en) * 2011-01-27 2014-02-05 新日鐵住金ステンレス株式会社 Alloy element-saving duplex stainless steel hot rolled steel material and method for producing the same
JP5406233B2 (en) * 2011-03-02 2014-02-05 新日鐵住金ステンレス株式会社 Clad steel plate made of duplex stainless steel and method for producing the same
CN104033666A (en) * 2014-06-30 2014-09-10 张家港华程机车精密制管有限公司 Heat-resisting special-shaped steel pipe
JP6513495B2 (en) * 2015-06-09 2019-05-15 株式会社神戸製鋼所 Duplex stainless steel and duplex stainless steel pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560956A (en) * 1978-10-31 1980-05-08 Ricoh Co Ltd Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS60197824A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
KR0167778B1 (en) Method of producing high strength stainless steel strip having duplex structure and excellent spring characteristics
JPH0814004B2 (en) Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
US20030084971A1 (en) Duplex stainless steels
JPS649381B2 (en)
JPH0124206B2 (en)
JPS5942068B2 (en) High manganese non-magnetic steel for cryogenic temperatures
JPS60228616A (en) Manufacture of hot rolled steel strip of ferrite stainless steel
JPH03120337A (en) Martensitic stainless steel and its manufacture
JPH0472013A (en) Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP3302118B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
US4594114A (en) Process for producing strip of corrosion resistant alloy steel
JPS62192539A (en) Manufacture of high gamma value hot rolled steel plate
JP3285179B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP2637013B2 (en) Manufacturing method of thin cast slab of ferritic stainless steel
JPH09256065A (en) Production of ferritic stainless steel thin sheet excellent in surface property
JPH04191320A (en) Manufacture of low carbon martensitic stainless steel oil well pipe
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
JPH0353025A (en) Manufacture of high heat-resistant and high-corrosion resistant ferritic stainless steel sheet
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
JPS61272322A (en) Manufacture of sea water resistant stainless steel sheet
JPS60100630A (en) Production of high-strength light-gage steel sheet having good ductility and bending workability
JPH02111846A (en) Martensitic stainless steel excellent in press formability
JPH09194938A (en) Production of formed part of ferritic stainless steel, excellent in magnetic property
JPS58136717A (en) Manufacture of high tensile hot rolled steel strip containing vanadium