JP5406230B2 - Alloy element-saving duplex stainless steel hot rolled steel material and method for producing the same - Google Patents

Alloy element-saving duplex stainless steel hot rolled steel material and method for producing the same Download PDF

Info

Publication number
JP5406230B2
JP5406230B2 JP2011015091A JP2011015091A JP5406230B2 JP 5406230 B2 JP5406230 B2 JP 5406230B2 JP 2011015091 A JP2011015091 A JP 2011015091A JP 2011015091 A JP2011015091 A JP 2011015091A JP 5406230 B2 JP5406230 B2 JP 5406230B2
Authority
JP
Japan
Prior art keywords
less
hot
steel
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011015091A
Other languages
Japanese (ja)
Other versions
JP2012153953A (en
Inventor
信二 柘植
雄介 及川
洋一 山本
治彦 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011015091A priority Critical patent/JP5406230B2/en
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to KR1020137019635A priority patent/KR20130105721A/en
Priority to US13/978,743 priority patent/US9862168B2/en
Priority to EP20156705.4A priority patent/EP3685952B1/en
Priority to PCT/JP2012/051637 priority patent/WO2012102330A1/en
Priority to EP12738972.4A priority patent/EP2669397B1/en
Priority to EP20153720.6A priority patent/EP3693121B8/en
Priority to EP20208685.6A priority patent/EP3835447B1/en
Priority to CN201280004715.3A priority patent/CN103298965B/en
Publication of JP2012153953A publication Critical patent/JP2012153953A/en
Application granted granted Critical
Publication of JP5406230B2 publication Critical patent/JP5406230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、溶体化熱処理を省略した安価な合金元素節減型二相ステンレス熱延鋼材およびその製造方法に係わり、特に、海水淡水化機器、輸送船のタンク類、各種容器等として使用可能な高強度二相ステンレス熱延鋼材およびその製造方法に関する。   The present invention relates to an inexpensive alloy element-saving duplex stainless steel hot-rolled steel material in which solution heat treatment is omitted, and a method for producing the same, and in particular, a high-performance seawater desalination apparatus, tanks for transport vessels, various containers and the like. The present invention relates to a strength duplex stainless steel hot-rolled steel material and a method for producing the same.

二相ステンレス鋼は、Cr、Mo、Ni、Nを多量に含有し、金属間化合物、窒化物が析出しやすいため1000℃以上の溶体化熱処理を加えて析出物を固溶させ、熱間圧延鋼材として製造されていた。
ところが最近、Ni、Mo等を節減した合金元素節減型二相ステンレス鋼が開発され、金属間化合物の析出感受性が大きく低下した実用鋼が使用されるに至っている。
Duplex stainless steel contains a large amount of Cr, Mo, Ni, and N, and since intermetallic compounds and nitrides are likely to precipitate, a solution heat treatment at 1000 ° C. or higher is applied to solidify the precipitates, and hot rolling It was manufactured as a steel material.
Recently, however, alloy element-saving duplex stainless steels with reduced Ni, Mo, etc. have been developed, and practical steels with greatly reduced precipitation sensitivity of intermetallic compounds have come to be used.

これらの合金元素節減型二相ステンレス鋼の材質に対して、主に影響する析出物はクロム窒化物である。
クロム窒化物は、CrとNが結合した析出物であり、二相ステンレス鋼においては立方晶のCrNまたは六方晶のCrNが、フェライト粒内もしくはフェライト粒界に析出することが多い。これらのクロム窒化物が生成すると、衝撃特性を低下させるとともに、析出にともなって生成するクロム欠乏層により耐食性が低下する。
For these alloying element-saving duplex stainless steel materials, the chromium nitride is the predominant precipitate that affects the material.
Chromium nitride is a precipitate in which Cr and N are combined. In duplex stainless steel, cubic CrN or hexagonal Cr 2 N often precipitates in ferrite grains or ferrite grain boundaries. When these chromium nitrides are produced, the impact characteristics are deteriorated, and the corrosion resistance is lowered due to the chromium-deficient layer produced as a result of precipitation.

本発明者らは、クロム窒化物の析出と成分組成との関係を明らかにし、成分組成を制御してクロム窒化物の析出を抑制するという考え方にもとづいた材質設計により、耐食性や衝撃特性が良好な合金元素節減型二相ステンレス鋼種を発明し、開示している(特許文献1)。特に、Mn含有量を増加することでクロム窒化物の析出を抑制するという手法を、新しい合金元素節減型二相ステンレス鋼の成分設計に反映させている。そして、このような合金元素節減型二相ステンレス鋼は、コストが低く耐食性などの特性面でも優れていることから、既に各分野において使用されつつある。   The present inventors have clarified the relationship between chromium nitride precipitation and component composition, and have good corrosion resistance and impact characteristics by material design based on the idea of controlling the component composition to suppress chromium nitride precipitation. Invented and disclosed a new alloy element-saving duplex stainless steel type (Patent Document 1). In particular, the technique of suppressing the precipitation of chromium nitride by increasing the Mn content is reflected in the component design of a new alloy element-saving duplex stainless steel. Such alloy element-saving duplex stainless steel is already being used in various fields because of its low cost and excellent properties such as corrosion resistance.

合金元素節減型二相ステンレス鋼には、熱延鋼板としての用途も期待されている。熱延鋼板は、冷間圧延を施さないので一般に板厚が厚く、特に強度や靭性が求められる用途に使用されている。例えば、海水淡水化機器、輸送船のタンク類等が挙げられ、従来その多くはオーステナイト系ステンレス鋼が用いられてきた。
しかし、二相ステンレス鋼は、一般的にオーステナイト系ステンレス鋼よりも強度が高く、必要強度を維持しながら薄肉化できるというメリットがあり、また、高価な元素の使用量も少ないためコストも低い。これらの理由から、上記用途の一部で既に二相ステンレス熱延鋼材が用いられつつある。
The alloy element-saving duplex stainless steel is also expected to be used as a hot-rolled steel sheet. A hot-rolled steel sheet is generally not thick and therefore has a large thickness, and is particularly used for applications requiring strength and toughness. For example, seawater desalination equipment, tanks for transport ships, and the like, austenitic stainless steel has been used for many of them.
However, duplex stainless steel is generally stronger than austenitic stainless steel, and has the advantage that it can be thinned while maintaining the required strength, and the cost is low because the amount of expensive elements used is small. For these reasons, duplex stainless steel hot rolled steel is already being used in some of the above applications.

一方、二相ステンレス熱延鋼材を用いる際に問題となるのが、靭性の問題である。即ち、二相ステンレス鋼は、一般に脆性破壊を起こさないとされるオーステナイト相に加えフェライト相を有することから、衝撃靭性においてフェライト系ステンレス鋼と同様に延性−脆性遷移を示し、オーステナイト系ステンレス鋼に比べて靭性が乏しいのである。
この問題に対しては従来から多くの研究がなされており、本発明者らも特許文献2において二相ステンレス熱延鋼板の鋼組織と靭性の関係を明らかにし、化学組成と熱処理方法を制御することで靭性を改善できることを開示している。
On the other hand, the problem of toughness is a problem when using a duplex stainless steel hot rolled steel material. That is, the duplex stainless steel has a ferrite phase in addition to an austenite phase that is generally considered not to cause brittle fracture, and thus exhibits a ductile-brittle transition in impact toughness like a ferritic stainless steel. It has poor toughness.
Many studies have been made on this problem, and the inventors of the present invention have also clarified the relationship between the steel structure and toughness of the duplex stainless steel hot rolled steel sheet in Patent Document 2 and controlled the chemical composition and heat treatment method. It is disclosed that toughness can be improved.

ところで、特許文献2をはじめとする従来の二相ステンレス熱延鋼板の製造では、溶体化熱処理が欠かせないものとなっている。前記したように二相ステンレス鋼において問題となるクロム窒化物や靭性の問題を解消するのに必要なためである。特に、本発明が対象とする合金元素節減型二相ステンレス鋼は、熱間加工の温度域で窒化物が析出しやすい性質を持っており、熱間圧延を終了した状態でクロム窒化物が鋼材中に分散することで衝撃特性や耐食性が低下する。   By the way, in the manufacture of conventional duplex stainless steel hot-rolled steel sheets including Patent Document 2, solution heat treatment is indispensable. This is because it is necessary to solve the problem of chromium nitride and toughness, which are problems in the duplex stainless steel as described above. In particular, the alloy element-saving duplex stainless steel targeted by the present invention has the property that nitride is likely to precipitate in the temperature range of hot working, and chromium nitride is a steel material after hot rolling is completed. Dispersion in the interior will reduce impact properties and corrosion resistance.

溶体化熱処理を施すことによりクロム窒化物を消失させることが可能であるが、溶体化熱処理を施すと強度が下がってしまうため、上記熱延鋼板の用途から言えば好ましくない処理であるとも言える。また、更なるコスト低減への要求や、近年の使用エネルギー削減の要求からも、溶体化熱処理を省略して製造コストや製造に要するエネルギーを低減することが望まれている。   Although it is possible to eliminate chromium nitride by performing solution heat treatment, the strength decreases when solution heat treatment is performed. Therefore, it can be said that the treatment is not preferable in terms of the use of the hot-rolled steel sheet. Moreover, from the request | requirement for the further cost reduction, and the request | requirement of energy consumption reduction in recent years, it is desired to reduce the manufacturing cost and the energy required for manufacture by omitting the solution heat treatment.

WO2009−119895号公報WO2009-119895 特開2010−84220号公報JP 2010-84220 A

本発明者らは、上記の合金元素節減型二相ステンレス鋼の成分設計に加えて、熱間圧延ままでも強度、衝撃特性、耐食性を維持する熱間圧延鋼材の研究を重ねることにより、溶体化熱処理を省略した安価で使用エネルギーが少なく環境面でも優れた合金元素節減型二相ステンレス熱延鋼材を得ることを発明の課題とした。   In addition to the above-described component design of alloy element-saving duplex stainless steel, the present inventors have made a solution by repeatedly researching hot-rolled steel that maintains strength, impact properties, and corrosion resistance even when hot-rolled. It was an object of the invention to obtain an alloy element-saving duplex stainless steel hot-rolled steel material that is inexpensive, uses less energy, and is environmentally friendly, omitting heat treatment.

本発明者らは上記課題を解決するために、合金元素節減型二相ステンレス鋼について溶体化熱処理を省略した熱延鋼材の化学組成、熱間加工条件とクロム窒化物の析出量等を含む金属組織の状態、さらに鋼材の衝撃特性、耐食性の関係などについての知見を得ることが必要であると考え、以下の実験をおこなった。   In order to solve the above-mentioned problems, the inventors of the present invention have included a metal composition including a chemical composition of hot-rolled steel material in which solution heat treatment is omitted for alloy element-saving duplex stainless steel, hot working conditions, precipitation amount of chromium nitride, and the like. The following experiments were conducted on the assumption that it was necessary to obtain knowledge about the state of the structure, the impact characteristics of steel, and the relationship between corrosion resistance and the like.

熱間圧延中におけるクロム窒化物の析出に関する指標として、新たにクロム窒化物析出温度TNを設定し、このクロム窒化物析出温度TNが異なる鋼材を用いて、熱間圧延の加熱温度を1150〜1250℃、熱間圧延の最終仕上圧延パスの入側温度TFと、熱間圧延終了後の加速冷却開始温度TCをそれぞれ変更し、板厚6mmから35mmの熱間圧延鋼材を得た。そして、得られた熱延鋼材および溶体化熱処理を施した鋼材について強度、衝撃特性、耐食性を評価した。
以上の実験を通じて、溶体化熱処理を省略した安価な合金元素節減型二相ステンレス熱延鋼材について明示した本発明の完成に至った。
As an index for precipitation of chromium nitride during hot rolling, a new chromium nitride precipitation temperature TN is set, and steel materials having different chromium nitride precipitation temperatures TN are used, and the heating temperature of hot rolling is set to 1150 to 1250. The hot-rolled steel material having a thickness of 6 mm to 35 mm was obtained by changing the entry side temperature TF of the final finishing rolling pass of ° C. and hot rolling and the accelerated cooling start temperature TC after the hot rolling. And the strength, impact property, and corrosion resistance were evaluated about the obtained hot-rolled steel material and the steel material which performed solution heat treatment.
Through the above experiments, the present invention has been completed, which clearly shows an inexpensive alloy element-saving duplex stainless steel hot-rolled steel material in which solution heat treatment is omitted.

すなわち、本発明の要旨とするところは以下の通りである。
(1)質量%で、
C :0.03%以下、 Si:0.05〜1.0%、
Mn:0.5〜7.0%、 P :0.05%以下、
S :0.010%以下、 Ni:0.1〜5.0%、
Cr:18.0〜25.0%、 N :0.05〜0.30%、
Al:0.001〜0.05%、
を含有し、残部がFeおよび不可避的不純物よりなり、
熱間圧延中におけるクロム窒化物の析出に関する指標となるクロム窒化物析出温度TNが960℃以下であって、
1000℃で5分間の均熱処理後、常温まで水冷する溶体化熱処理を施した熱延鋼材よりも降伏強度が50MPa以上高い、熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。
(ここで、クロム窒化物析出温度TNは、溶体化熱処理された鋼材を800〜1000℃で20分間の均熱処理後、5秒以内に水冷に供し、冷却後の鋼材についてクロム窒化物の析出量を非金属介在物の電解抽出残渣分析法によって求め、Cr残渣量が0.01%以下となる均熱処理温度のうちの最低温度とする。)
That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.03% or less, Si: 0.05-1.0%,
Mn: 0.5 to 7.0%, P: 0.05% or less,
S: 0.010% or less, Ni: 0.1-5.0%,
Cr: 18.0 to 25.0%, N: 0.05 to 0.30%,
Al: 0.001 to 0.05%,
And the balance consists of Fe and inevitable impurities,
The chromium nitride precipitation temperature TN, which is an index related to precipitation of chromium nitride during hot rolling, is 960 ° C. or less,
Alloy element-saving duplex stainless steel with a yield strength of 50 MPa or more higher than that of hot-rolled steel that has undergone solution heat treatment that is water-cooled to room temperature after soaking at 1000 ° C. for 5 minutes, and that eliminates solution heat treatment as hot-rolled Hot rolled steel.
(Here, the chromium nitride precipitation temperature TN is obtained by subjecting the steel material that has undergone solution heat treatment to 800-1000 ° C. for 20 minutes and then subjecting the steel material to water cooling within 5 seconds. Is determined by an electrolytic extraction residue analysis method for non-metallic inclusions, and is defined as the lowest temperature among soaking temperatures at which the Cr residue amount is 0.01% or less.)

(2)質量%で、
C :0.03%以下、 Si:0.05〜1.0%、
Mn:0.5〜7.0%、 P :0.05%以下、
S :0.010%以下、 Ni:0.1〜5.0%、
Cr:18.0〜25.0%、 N :0.05〜0.30%、
Al:0.001〜0.05%、
を含有し、更に、
V :0.05〜0.5%、 Nb:0.01〜0.20%、
Ti:0.003〜0.05%
から選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物よりなり、
熱間圧延中におけるクロム窒化物の析出に関する第二の指標となるクロム窒化物析出温度TN2が960℃以下であって、
1000℃で5分間の均熱処理後、常温まで水冷する溶体化熱処理を施した熱延鋼材よりも降伏強度が50MPa以上高い、熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。
(ここで、クロム窒化物析出温度TN2は、溶体化熱処理された鋼材を800〜1000℃で20分間の均熱処理後、5秒以内に水冷に供し、冷却後の鋼材についてクロム窒化物の析出量を非金属介在物の電解抽出残渣分析法によって求め、Cr残渣量が0.03%以下となる均熱処理温度のうちの最低温度とする。)
(2) In mass%,
C: 0.03% or less, Si: 0.05-1.0%,
Mn: 0.5 to 7.0%, P: 0.05% or less,
S: 0.010% or less, Ni: 0.1-5.0%,
Cr: 18.0 to 25.0%, N: 0.05 to 0.30%,
Al: 0.001 to 0.05%,
Further,
V: 0.05 to 0.5%, Nb: 0.01 to 0.20%,
Ti: 0.003 to 0.05%
1 type or 2 types or more chosen from, The remainder consists of Fe and an unavoidable impurity,
A chromium nitride precipitation temperature TN2 serving as a second index for precipitation of chromium nitride during hot rolling is 960 ° C. or less,
Alloy element-saving duplex stainless steel with a yield strength of 50 MPa or more higher than that of hot-rolled steel that has undergone solution heat treatment that is water-cooled to room temperature after soaking at 1000 ° C. for 5 minutes, and that eliminates solution heat treatment as hot-rolled Hot rolled steel.
(Here, the chromium nitride precipitation temperature TN2 is obtained by subjecting the solution heat-treated steel to water cooling within 5 seconds after soaking at 800-1000 ° C. for 20 minutes, and the amount of chromium nitride deposited on the steel after cooling. Is determined by an electrolytic extraction residue analysis method for non-metallic inclusions, and is defined as the lowest temperature among soaking temperatures at which the Cr residue amount is 0.03% or less.)

(3)更に、
Mo:1.5%以下、 Cu:2.0%以下、
W :1.0%以下、 Co:2.0%以下
から選ばれる1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。
(4)更に、
B :0.0050%以下、 Ca:0.0050%以下、
Mg:0.0030%以下、 REM:0.10%以下
から選ばれる1種または2種以上を含有することを特徴とする前記(1)〜(3)のいずれか1項に記載の熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。
(3) Furthermore,
Mo: 1.5% or less, Cu: 2.0% or less,
It contains 1 type or 2 types or more chosen from W: 1.0% or less, Co: 2.0% or less, Solution forming as hot-rolling as described in said (1) or (2) characterized by the above-mentioned Alloy element saving duplex stainless steel hot rolled steel without heat treatment.
(4) Furthermore,
B: 0.0050% or less, Ca: 0.0050% or less,
The hot according to any one of (1) to (3) above, which contains one or more selected from Mg: 0.0030% or less, REM: 0.10% or less Alloy element-saving duplex stainless steel hot rolled steel that eliminates the solution heat treatment as it is rolled.

(5)上記(1)〜(4)のいずれか1項に記載の熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材の製造方法であって、
選択的成分であるV、Nb、Tiを含有しない鋼材については下記(1)式に従って、前記選択的成分を含有する鋼材については下記(2)式に従って、熱間圧延の最終仕上圧延パスの入側温度TFから600℃までの温度域を5分以下の時間で冷却することを特徴とする合金元素節減型二相ステンレス熱延鋼材の製造方法。
TF ≧ TN −30 ・・・ (1)
TF ≧ TN2−30 ・・・ (2)
(5) A method for producing an alloying element-saving duplex stainless steel hot rolled steel material in which the solution heat treatment as hot-rolling according to any one of (1) to (4) is omitted,
The steel material that does not contain the selective components V, Nb, and Ti is in accordance with the following formula (1), and the steel material that contains the selective component is in accordance with the following formula (2). A method for producing an alloying element-saving duplex stainless steel hot rolled steel, characterized in that the temperature range from the side temperature TF to 600 ° C is cooled in a time of 5 minutes or less.
TF ≧ TN−30 (1)
TF ≧ TN2-30 (2)

(6)選択的成分であるV、Nb、Tiを含有しない板厚20mm超の鋼材については下記(3)式に従って、前記選択的成分を含有する板厚20mm超の鋼材については下記(4)式に従って、熱間圧延終了後の加速冷却開始温度TCから加速冷却を開始することにより、熱間圧延の最終仕上圧延パスの入側温度TFから600℃までの温度域を5分以下の時間で冷却することを特徴とする前記(5)に記載の合金元素節減型二相ステンレス熱延鋼材の製造方法。
TN −200 ≦ TC ≦ TN +50 (但し、TF≧TC)・・・ (3)
TN2−200 ≦ TC ≦ TN2+50 (但し、TF≧TC)・・・ (4)
(6) According to the following formula (3) for a steel material with a thickness of more than 20 mm that does not contain V, Nb, Ti, which are selective components, the following (4) for a steel material with a thickness of more than 20 mm that contains the selective component In accordance with the equation, by starting the accelerated cooling from the accelerated cooling start temperature TC after the end of the hot rolling, the temperature range from the entry side temperature TF to 600 ° C. of the final finishing rolling pass of the hot rolling is within 5 minutes or less The method for producing an alloying element-saving duplex stainless steel hot-rolled steel as described in (5) above, wherein the cooling is performed.
TN −200 ≦ TC ≦ TN + 50 (however, TF ≧ TC) (3)
TN2-200 ≦ TC ≦ TN2 + 50 (however, TF ≧ TC) (4)

本発明に係る合金元素節減型二相ステンレス熱延鋼材は、海水淡水化機器、輸送船のタンク類、各種容器等として従来の鋼材より薄肉化して用いることができ、かつ安価で製造に使用するエネルギーが少ない鋼材であるなど産業面、環境面に寄与するところは極めて大である。   The alloy element-saving duplex stainless steel hot-rolled steel according to the present invention can be used by making it thinner than conventional steel as seawater desalination equipment, tanks for transport ships, various containers, etc. There is a tremendous contribution to the industrial and environmental aspects, such as steel with less energy.

以下に、先ず、本発明の請求項1記載の限定理由について説明する。単位%は、質量%である。請求項1に係る二相ステンレス熱延鋼材は、C,Si,Mn,P,S,Ni,Cr,N,Alを含有し、残部がFeおよび不可避的不純物よりなる。
Cは、ステンレス鋼の耐食性を確保するために0.03%以下の含有量に制限する。0.03%を越えて含有させると熱間圧延時にCr炭化物が生成して、耐食性、靱性が劣化する。
Below, the reason for limitation of Claim 1 of this invention is demonstrated first. The unit% is mass%. The duplex stainless steel hot-rolled steel material according to claim 1 contains C, Si, Mn, P, S, Ni, Cr, N, and Al, and the balance consists of Fe and inevitable impurities.
C limits the content to 0.03% or less in order to ensure the corrosion resistance of the stainless steel. If the content exceeds 0.03%, Cr carbide is generated during hot rolling, and the corrosion resistance and toughness deteriorate.

Siは、脱酸のため0.05%以上添加する。しかしながら、1.0%を超えて添加すると靱性が劣化する。そのため、上限を1.0%に限定する。好ましい範囲は0.2〜0.7%である。   Si is added at 0.05% or more for deoxidation. However, if it exceeds 1.0%, the toughness deteriorates. Therefore, the upper limit is limited to 1.0%. A preferable range is 0.2 to 0.7%.

Mnは、オーステナイト相を増加させ靭性を改善する効果を有する。また、クロム窒化物析出温度TNを低下させる効果を有するため、本発明鋼材では積極的に添加することが好ましい。母材および溶接部の靱性のため0.5%以上添加する。しかしながら、7.0%を超えて添加すると耐食性および靭性が劣化する。そのため、上限を7.0%に限定する。好ましい含有量は1.0〜6.0%であり、さらに好ましくは2.0〜5.0%である。   Mn has the effect of increasing the austenite phase and improving toughness. Moreover, since it has the effect of lowering the chromium nitride precipitation temperature TN, it is preferable to add it positively in the steel material of the present invention. Add 0.5% or more for toughness of base metal and weld. However, if added over 7.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit is limited to 7.0%. The preferred content is 1.0 to 6.0%, more preferably 2.0 to 5.0%.

Pは、原料から不可避に混入する元素であり、熱間加工性および靱性を劣化させるため0.05%以下に限定する。好ましくは0.03%以下である。
Sは、原料から不可避に混入する元素であり、熱間加工性、靱性および耐食性をも劣化させるため0.010%以下に限定する。好ましくは0.0020%以下である。
P is an element inevitably mixed from the raw material, and is limited to 0.05% or less in order to deteriorate hot workability and toughness. Preferably it is 0.03% or less.
S is an element inevitably mixed from the raw material, and is limited to 0.010% or less in order to deteriorate the hot workability, toughness, and corrosion resistance. Preferably it is 0.0020% or less.

Niは、オーステナイト組織を安定にし、各種酸に対する耐食性、さらに靭性を改善するため0.1%以上含有させる。Ni含有量を増加することにより窒化物析出温度を低下させることが可能になる。一方、高価な合金であり、合金元素節減型二相ステンレス鋼を対象とした本発明鋼ではコストの観点より5.0%以下の含有量に制限する。好ましい含有量は1.0〜4.0%であり、さらに好ましくは1.5〜3.0%である。   Ni is contained in an amount of 0.1% or more in order to stabilize the austenite structure and improve corrosion resistance to various acids and further toughness. By increasing the Ni content, the nitride precipitation temperature can be lowered. On the other hand, the steel according to the present invention, which is an expensive alloy and is intended for alloy element-saving duplex stainless steel, is limited to a content of 5.0% or less from the viewpoint of cost. The preferred content is 1.0 to 4.0%, more preferably 1.5 to 3.0%.

Crは、基本的な耐食性を確保するため18.0%以上含有させる。一方25.0%を超えて含有させるとフェライト相分率が増加し、靭性および溶接部の耐食性を阻害する。このため、Crの含有量を18.0%以上25.0%以下とした。好ましい含有量は19.0〜23.0%である。   Cr is contained at 18.0% or more in order to ensure basic corrosion resistance. On the other hand, if the content exceeds 25.0%, the ferrite phase fraction increases, and the toughness and the corrosion resistance of the weld zone are impaired. Therefore, the Cr content is set to 18.0% or more and 25.0% or less. A preferable content is 19.0 to 23.0%.

Nは、オーステナイト相に固溶して強度、耐食性を高める有効な元素である。このために0.05%以上含有させる。固溶限度はCr含有量に応じて高くなるが、本発明鋼においては0.30%を越えて含有させるとCr窒化物を析出して靭性および耐食性を阻害するようになるため含有量の上限を0.30%とした。好ましい含有量は0.10〜0.25%である。   N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase. For this reason, 0.05% or more is contained. The solid solution limit increases depending on the Cr content. However, in the steel of the present invention, if it exceeds 0.30%, Cr nitride precipitates and the toughness and corrosion resistance are impaired, so the upper limit of the content Was 0.30%. A preferable content is 0.10 to 0.25%.

Alは、鋼の脱酸のための重要な元素であり、鋼中の酸素を低減するためにSiとあわせて含有させる。Si含有量が0.3%を越える場合は添加しなくて良い場合もあるが、酸素量の低減は靭性確保のために必須であり、このために0.001%以上の含有が必要である。一方でAlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じてステンレス鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.05%を越えると靭性低下が著しくなるため、その含有量の上限を0.05%と定めた。好ましくは0.03%以下である。   Al is an important element for deoxidation of steel, and is contained together with Si in order to reduce oxygen in the steel. When the Si content exceeds 0.3%, it may not be necessary to add, but the reduction of the oxygen content is essential for securing toughness, and for this reason, the content must be 0.001% or more. . On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.05%, the toughness deteriorates remarkably, so the upper limit of the content is set to 0.05%. Preferably it is 0.03% or less.

Oは、不可避的不純物であり、その上限を特に定めなかったが、非金属介在物の代表である酸化物を構成する重要な元素であり、過剰な含有は靭性を阻害する。また、粗大なクラスター状酸化物が生成すると表面疵の原因となる。好ましくは0.010%以下である。   O is an unavoidable impurity, and the upper limit thereof is not particularly defined. However, O is an important element constituting an oxide that is representative of nonmetallic inclusions, and excessive inclusion inhibits toughness. In addition, the formation of coarse clustered oxides causes surface defects. Preferably it is 0.010% or less.

請求項1の中の残りの項目についての限定理由を説明する。
熱間圧延中におけるクロム窒化物の析出に関する指標となるクロム窒化物析出温度TNは、実験的に求められる特性値である。溶体化熱処理された鋼材を800〜1000℃で20分間の均熱処理後、5秒以内に水冷に供し、冷却後の鋼材についてクロム窒化物の析出量を実施例で詳述する非金属介在物の電解抽出残渣分析法によって求め、Cr残渣量が0.01%以下となる均熱処理温度のうちの最低温度と規定する。
TNが低いほどクロム窒化物の析出する温度域が低温側に限定されるため、クロム窒化物の析出速度や析出量が抑制され、熱間圧延ままの溶体化熱処理を省略した状態で衝撃特性と耐食性が維持される。
The reason for limitation for the remaining items in claim 1 will be described.
The chromium nitride precipitation temperature TN, which serves as an index for precipitation of chromium nitride during hot rolling, is a characteristic value that is experimentally determined. The solution heat-treated steel material is subjected to water-cooling within 5 seconds after soaking at 800 to 1000 ° C. for 20 minutes, and the amount of chromium nitride deposited on the steel material after cooling is described in detail in Examples. It is determined by the electrolytic extraction residue analysis method, and is defined as the lowest temperature among the soaking temperatures at which the Cr residue amount is 0.01% or less.
The lower the TN, the lower the temperature range in which chromium nitride precipitates, so that the precipitation rate and amount of chromium nitride are suppressed, and the impact properties are reduced with the solution heat treatment as hot rolled omitted. Corrosion resistance is maintained.

ここで、均熱処理温度を800〜1000℃に規定するのは、一般的な熱間圧延温度域だからである。本発明では、一般的に行われる熱間圧延中にクロム窒化物を析出させないようにするため、当該温度域でもって規定する。
また、クロム窒化物が十分に平衡する時間として均熱処理温度を20分間に規定する。20分未満では析出量の変化が激しい区域に該当して測定の再現性が得られにくくなり、20分超で規定すると測定に長時間を要する。したがって、クロム窒化物を十分に平衡させて再現性を確保する観点からいえば、均熱処理温度を20分超としても構わない。
均熱処理後においては、水冷に供するまでに長時間を要すると徐々に鋼材温度が低下してクロム窒化物が析出してしまい、そうすると測定したかった温度でのクロム窒化物量とは異なる値が得られてしまう。したがって、均熱処理後5秒以内に水冷に供することとする。
また、Cr残渣量が0.01%以下となる温度のうちの最低温度と規定したのは、実験によって残渣量0.01%以下が耐食性や靭性に悪影響を及ぼさない析出量であることを確認したことによる。
Here, the reason why the soaking temperature is defined as 800 to 1000 ° C. is that it is a general hot rolling temperature range. In the present invention, in order to prevent chromium nitride from being precipitated during hot rolling that is generally performed, the temperature range is specified.
Further, the soaking temperature is defined as 20 minutes as the time for the chromium nitride to equilibrate sufficiently. If it is less than 20 minutes, it corresponds to an area where the amount of precipitation changes drastically and it becomes difficult to obtain measurement reproducibility. Therefore, from the viewpoint of sufficiently balancing the chromium nitride and ensuring reproducibility, the soaking temperature may be set to more than 20 minutes.
After soaking, if it takes a long time for water cooling, the steel material temperature gradually decreases and chromium nitride precipitates, which results in a value different from the amount of chromium nitride at the desired temperature. It will be. Therefore, it shall be subjected to water cooling within 5 seconds after soaking.
In addition, the minimum temperature among the temperatures at which the Cr residue amount is 0.01% or less is defined as the amount of precipitation that does not adversely affect the corrosion resistance and toughness by experiments. It depends on.

熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材について、耐食性と靭性を確保するためには、TNを960℃以下に設計することが必要であることが実験的に求められた。したがって、TNが960℃以下になるような成分組成を設計することが必要である。TNが960℃を越えると熱間圧延中にクロム窒化物が析出してしまい、孔食電位差や衝撃特性が劣化する。好ましくは930℃以下である。
また、TNは、N含有量を低下させることにより低下するが、本発明鋼では耐食性を高めるためにNを0.05%以上含有させており、この場合にTNを800℃未満にすることは困難である。そのため、TNの下限を800℃とした。
It is experimental that it is necessary to design TN at 960 ° C. or lower in order to ensure corrosion resistance and toughness for alloy element-saving duplex stainless steel hot-rolled steel material in which solution heat treatment as hot rolling is omitted. Asked for. Therefore, it is necessary to design a component composition such that TN is 960 ° C. or lower. When TN exceeds 960 ° C., chromium nitride precipitates during hot rolling, and the pitting corrosion potential difference and impact characteristics deteriorate. Preferably it is 930 degrees C or less.
Moreover, although TN falls by reducing N content, in order to improve corrosion resistance in this invention steel, 0.05% or more of N is contained, In this case, TN shall be less than 800 degreeC. Have difficulty. Therefore, the lower limit of TN is set to 800 ° C.

なお、TNを低下させるにはN量の低減が有効であるが、N量の極端な低下はオーステナイト相比率の低下と溶接部耐食性の低下とをもたらす。このため、オーステナイト相の生成元素であるNi、Mn、Cuの含有量とN含有量を適切に設計することが必要である。   In order to reduce TN, it is effective to reduce the amount of N. However, an extreme reduction in the amount of N results in a decrease in the austenite phase ratio and a decrease in corrosion resistance of the weld. For this reason, it is necessary to appropriately design the content and N content of Ni, Mn, and Cu, which are elements that form the austenite phase.

本発明に係る熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材は、溶体化熱処理を施した熱延鋼材よりも降伏強度が50MPa以上高い。一般に溶体化熱処理を行うと強度が低下するところ、本発明では熱間圧延ままで歪みを残留させ、高い強度を得るためである。すなわち、溶体化熱処理を省略することで強度を低下させないようにしているためである。一般に圧延仕上温度を高温にし、溶体化熱処理温度に近づけると強度は低下する。本発明鋼では後述するように圧延仕上温度を低下し、強度の上昇が可能なようにクロム窒化物の析出温度を低下させ、容易に高強度が得られるようにしている。   The alloy element-saving duplex stainless steel hot-rolled steel material in which the solution heat treatment as hot rolled according to the present invention is omitted has a yield strength higher by 50 MPa or more than the hot-rolled steel material subjected to the solution heat treatment. In general, when solution heat treatment is performed, the strength decreases. In the present invention, strain remains in the hot-rolled state to obtain high strength. In other words, the solution heat treatment is omitted so that the strength is not lowered. Generally, the strength is lowered when the rolling finishing temperature is raised to approach the solution heat treatment temperature. In the steel of the present invention, as described later, the rolling finishing temperature is lowered, and the chromium nitride precipitation temperature is lowered so that the strength can be increased, so that high strength can be easily obtained.

次に請求項2の規定内容について説明する。請求項2に係る二相ステンレス熱延鋼材は、C,Si,Mn,P,S,Ni,Cr,N,Alを含有し、更に、V,Nb,Tiから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物よりなる。
本発明者らは、V、Nb、Tiから選ばれる1種または2種以上を含有する鋼の場合には、従来知見と異なる挙動を示すことを見出した。
即ち、クロム窒化物量が増加すると耐食性が悪化するのが一般的な従来知見であったが、V、Nb、Tiを微量に含有させた場合には、意外にもクロム窒化物の析出量がある程度増加しても耐食性が向上する傾向を有することが明らかとなった。この知見を請求項2に規定した。
Next, the contents defined in claim 2 will be described. The duplex stainless steel hot-rolled steel material according to claim 2 contains C, Si, Mn, P, S, Ni, Cr, N, Al, and one or more selected from V, Nb, Ti. The balance consists of Fe and inevitable impurities.
The present inventors have found that in the case of steel containing one or more selected from V, Nb, and Ti, the behavior is different from the conventional knowledge.
That is, it has been a general knowledge that the corrosion resistance deteriorates as the amount of chromium nitride increases. However, when a small amount of V, Nb, and Ti is contained, the amount of precipitation of chromium nitride is unexpectedly large. It has been clarified that the corrosion resistance has a tendency to improve even if it increases. This finding is defined in claim 2.

上記のように、V、Nb、Tiを微量に含有させる場合は、クロム窒化物の許容量が増加する。そのため、選択的成分であるV、Nb、Tiを含有する鋼材については、熱間圧延中におけるクロム窒化物の析出に関する第二の指標としてクロム窒化物析出温度TN2を新たに規定し、Cr残渣量が0.03%以下となる均熱処理温度のうちの最低温度とした。
なお、請求項1で説明したクロム窒化物析出温度TNは、選択的成分であるV、Nb、Tiを含有しない鋼材における熱間圧延中におけるクロム窒化物の析出に関する指標であることは言うまでもない。
As described above, when a small amount of V, Nb, and Ti is contained, the allowable amount of chromium nitride increases. Therefore, for steel materials containing the selective components V, Nb, and Ti, the chromium nitride precipitation temperature TN2 is newly defined as a second index regarding the precipitation of chromium nitride during hot rolling, and the amount of Cr residue Was the lowest temperature of the soaking temperature at which 0.03% or less.
Needless to say, the chromium nitride precipitation temperature TN described in claim 1 is an index relating to the precipitation of chromium nitride during hot rolling in a steel material that does not contain the selective components V, Nb, and Ti.

請求項2においては、このCr窒化物量が緩和されたTN2が960℃以下であれば、本発明の課題を解決することができる。好ましくは930℃以下である。また、TN2を実験的に求める手段、TN2を減少させるための方法は、TNと同様である。なお、TN2においては、Cr残渣量が0.03%以下となる温度のうちの最低温度と規定したのは、実験によって残渣量0.03%以下が耐食性や靭性に悪影響を及ぼさない析出量であることを確認したことによる。   According to the second aspect of the present invention, if the TN2 in which the amount of Cr nitride is relaxed is 960 ° C. or less, the problem of the present invention can be solved. Preferably it is 930 degrees C or less. The means for experimentally determining TN2 and the method for reducing TN2 are the same as those for TN. In TN2, the minimum temperature out of the temperatures at which the Cr residue amount is 0.03% or less is defined as the amount of precipitation in which the residue amount of 0.03% or less is not adversely affected by corrosion resistance and toughness. By confirming that there is.

クロム窒化物の析出温度TNは、第一にクロム濃度、窒素濃度の低減により減少するものであるが、オーステナイト安定化元素を添加することにより減少させることができる。請求項2ではクロムよりも強力な窒化物生成元素であるV、Nb、Tiを微量に含有させることでクロム窒化物の析出を制御し、熱間圧延鋼材の耐食性を向上させたものである。   The chromium nitride precipitation temperature TN is first decreased by decreasing the chromium concentration and the nitrogen concentration, but can be decreased by adding an austenite stabilizing element. In Claim 2, precipitation of chromium nitride is controlled by containing a very small amount of V, Nb and Ti, which are nitride-forming elements stronger than chromium, and the corrosion resistance of hot-rolled steel is improved.

すなわち、本発明者らの研究の中で、合金元素節減型二相ステンレス鋼中へのV、Nb、Tiの微量の含有によりクロムの一部に置換した窒化物を構成し、窒化物の析出温度をわずかに高める効果を有するが、意外にもクロム窒化物の析出量が増加しても耐食性が向上する傾向を有することが明らかとなった。請求項2は、このような付加的な微量元素添加効果も含めて発明として開示したものである。   That is, in the research by the present inventors, a nitride in which a part of chromium is substituted by a small amount of V, Nb, and Ti contained in the alloy element-saving duplex stainless steel is formed, and the precipitation of the nitride Although it has the effect of slightly increasing the temperature, it has been surprisingly found that the corrosion resistance tends to improve even if the amount of chromium nitride deposited increases. Claim 2 is disclosed as an invention including such an additional effect of adding trace elements.

Vが形成する窒化物、炭化物は、熱間加工および鋼材の冷却過程で生成し、耐食性を高める作用を有する。この理由として十分な確認はなされていないが、700℃以下でのクロム窒化物の生成速度を抑制する可能性が考えられる。この耐食性の改善のためにVを0.05%以上含有させる。0.5%を超えて含有させると粗大なV系炭窒化物が生成し、靱性が劣化する。そのため、上限を0.5%に限定する。添加する場合の好ましい含有量は0.1〜0.3%の範囲である。   The nitride and carbide formed by V are generated during the hot working and cooling of the steel material, and have the effect of increasing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve the corrosion resistance, V is contained in an amount of 0.05% or more. If the content exceeds 0.5%, coarse V-based carbonitrides are produced and the toughness deteriorates. Therefore, the upper limit is limited to 0.5%. The preferable content when added is in the range of 0.1 to 0.3%.

Nbが形成する窒化物、炭化物は、熱間加工および鋼材の冷却過程で生成し、耐食性を高める作用を有する。この理由として十分な確認はなされていないが、700℃以下でのクロム窒化物の生成速度を抑制する可能性が考えられる。この耐食性の改善のためにNbを0.01%以上含有させる。一方、過剰な添加は、熱間圧延前の加熱時に未固溶析出物として析出するようになって靭性を阻害するようになるため、その含有量の上限を0.20%と定めた。添加する場合の好ましい含有率範囲は0.03%〜0.10%である。   Nitrides and carbides formed by Nb are produced during the hot working and cooling of the steel material, and have the effect of increasing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve the corrosion resistance, Nb is contained in an amount of 0.01% or more. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling and impairs toughness, so the upper limit of its content was set to 0.20%. The preferable content range in the case of adding is 0.03% to 0.10%.

Tiは、極微量で酸化物、窒化物、硫化物を形成し、鋼の凝固および高温加熱組織の結晶粒を微細化する元素である。またV、Nbと同様にクロム窒化物のクロムの一部に置換する性質も有する。0.003%以上の含有によりTiの析出物が形成されるようになる。一方0.05%を越えて二相ステンレス鋼に含有させると粗大なTiNが生成して鋼の靭性を阻害するようになる。このためその含有量の上限を0.05%と定めた。Tiの好適な含有率は0.005〜0.020%である。   Ti is an element that forms oxides, nitrides and sulfides in a very small amount, and refines the solidified steel and crystal grains of the high-temperature heating structure. Further, like V and Nb, it also has a property of substituting for a part of chromium nitride chromium. A Ti precipitate is formed when the content is 0.003% or more. On the other hand, if it exceeds 0.05% and is contained in the duplex stainless steel, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the upper limit of the content was set to 0.05%. A suitable content of Ti is 0.005 to 0.020%.

請求項3では、耐食性を付加的に高める元素について規定した。選択的元素であるMo,Cu,W,Coから選ばれる1種または2種以上を更に含有する請求項3に係る発明の限定理由について説明する。
Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素であり、必要に応じて含有させることができる。耐食性改善のためには0.2%以上含有させることが好ましい。一方で金属間化合物析出を促進する元素であり、本発明鋼では熱間圧延時の析出を抑制する観点より1.5%の含有量を上限とする。
In Claim 3, it specified about the element which raises corrosion resistance additionally. The reason for limitation of the invention according to claim 3 that further contains one or more selected from Mo, Cu, W, and Co as selective elements will be described.
Mo is a very effective element that additionally increases the corrosion resistance of stainless steel, and can be contained as necessary. In order to improve corrosion resistance, it is preferable to contain 0.2% or more. On the other hand, it is an element that promotes precipitation of intermetallic compounds. In the steel of the present invention, the upper limit is set to a content of 1.5% from the viewpoint of suppressing precipitation during hot rolling.

Cuは、ステンレス鋼の酸に対する耐食性を付加的に高める元素であり、かつ靭性を改善する作用を有するため0.3%以上含有させることが推奨される。2.0%を越えて含有させると熱間圧延時に固溶度を超えてεCuが析出し脆化を発生するので上限を2.0%とした。Cuを含有させる場合の好ましい含有量は0.3〜1.5%である。   Cu is an element that additionally enhances the corrosion resistance of stainless steel to acids, and it has an effect of improving toughness, so it is recommended to contain 0.3% or more. If the content exceeds 2.0%, the solid solubility will be exceeded during hot rolling and εCu will precipitate and embrittlement will occur, so the upper limit was made 2.0%. The preferable content when Cu is contained is 0.3 to 1.5%.

Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素である。本発明鋼において耐食性を高める目的のためには1.0%を上限に含有させる。好ましい含有量は0.05〜0.5%である。   W, like Mo, is an element that additionally improves the corrosion resistance of stainless steel. For the purpose of enhancing the corrosion resistance in the steel of the present invention, 1.0% is contained at the upper limit. A preferable content is 0.05 to 0.5%.

Coは、鋼の靭性と耐食性を高めるために有効な元素であり、選択的に添加される。その含有量は0.03%以上が好ましい。2.0%を越えて含有させると高価な元素であるためにコストに見合った効果が発揮されないようになるため上限を2.0%と定めた。添加する場合の好ましい含有量は0.03〜1.0%である。   Co is an element effective for enhancing the toughness and corrosion resistance of steel, and is selectively added. The content is preferably 0.03% or more. If the content exceeds 2.0%, it is an expensive element, so that an effect commensurate with the cost cannot be exhibited, so the upper limit was set to 2.0%. The preferable content when added is 0.03 to 1.0%.

請求項4では、熱間加工性の向上を図るために必要に応じて選択的に含有させるB、Ca、Mg、REMを下記の通り限定する。
B、Ca、Mg、REMは、いずれも鋼の熱間加工性を改善する元素であり、その目的で1種または2種以上添加される。B、Ca、Mg、REMいずれも過剰な添加は、逆に熱間加工性および靭性を低下するため、その含有量の上限を次のように定めた。
BとCaについては0.0050%、Mgについては0.0030%、REMについては0.10%である。好ましい含有量はそれぞれBとCa:0.0005〜0.0030%、Mg:0.0001〜0.0015%、REM:0.005〜0.05%である。ここでREMはLaやCe等のランタノイド系希土類元素の含有量の総和とする。
In Claim 4, B, Ca, Mg, and REM to be selectively contained as necessary to improve hot workability are limited as follows.
B, Ca, Mg, and REM are all elements that improve the hot workability of steel, and one or more of them are added for that purpose. Since excessive addition of any of B, Ca, Mg, and REM conversely decreases hot workability and toughness, the upper limit of the content is set as follows.
B and Ca are 0.0050%, Mg is 0.0030%, and REM is 0.10%. Preferred contents are B and Ca: 0.0005 to 0.0030%, Mg: 0.0001 to 0.0015%, and REM: 0.005 to 0.05%, respectively. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.

ついで本発明の請求項5記載の限定理由について説明する。
熱間圧延の最終仕上圧延パスの入側温度TFは、熱延鋼材の強度を支配する重要な因子であり、これが低下するほど高い強度が得られる。一方、低下しすぎると熱間圧延中にクロム窒化物の析出量が増加し、靱性と耐食性を損なうようになる。また、TFが高すぎると、溶体化熱処理を施したのと変わらなくなり強度が低下して、溶体化熱処理を省略する本発明の目的を達成できない。
Next, the reason for limitation according to claim 5 of the present invention will be described.
The entry temperature TF of the final finishing rolling pass of hot rolling is an important factor governing the strength of the hot-rolled steel material, and the higher the strength, the higher the strength. On the other hand, if it is too low, the amount of chromium nitride deposited during hot rolling increases, and the toughness and corrosion resistance are impaired. On the other hand, if the TF is too high, the strength is lowered as if the solution heat treatment was performed, and the object of the present invention omitting the solution heat treatment cannot be achieved.

本発明者らの実験において、TFがクロム窒化物析出温度より30℃を超えて下回ると、靱性と耐食性の低下が限度を超えるようになったため、TFの下限をクロム窒化物析出温度−30(℃)と定めた。
すなわち、選択的成分であるV、Nb、Tiを含有しない鋼材については下記(1)式に従う、前記選択的成分を含有する鋼材については下記(2)式に従う、熱間圧延の最終仕上圧延パスの入側温度TFを定めた。
TF ≧ TN −30 ・・・ (1)
TF ≧ TN2−30 ・・・ (2)
In our experiments, when TF is below 30 ° C. below the chromium nitride precipitation temperature, the decrease in toughness and corrosion resistance exceeds the limit. Therefore, the lower limit of TF is reduced to the chromium nitride precipitation temperature −30 ( ° C).
That is, the final finishing rolling pass of hot rolling according to the following formula (1) for steel materials not containing the selective components V, Nb, Ti, and the following formula (2) for steel materials containing the selective components: Entry side temperature TF was determined.
TF ≧ TN−30 (1)
TF ≧ TN2-30 (2)

また、TFの上限について特に定めないが、溶体化熱処理を施した熱延鋼材よりも降伏強度が50MPa以上高い、熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材を得るためには、1000℃未満とすることが必要である。溶体化熱処理温度は鋼の組成によりいくらか上下し、本発明鋼の場合、溶体化熱処理は950〜1050℃×5分であるが、実施例での降伏強度差の確認は1000℃×5分で行った。   Further, although the upper limit of TF is not particularly defined, the alloy element-saving duplex stainless steel hot-rolled steel material in which the yield strength is 50 MPa or more higher than that of the hot-rolled steel material subjected to the solution heat treatment and the solution heat treatment as hot rolled is omitted. In order to obtain, it is necessary to make it less than 1000 degreeC. The solution heat treatment temperature varies somewhat depending on the steel composition. In the case of the steel of the present invention, the solution heat treatment is 950 to 1050 ° C. × 5 minutes, but the confirmation of the yield strength difference in the examples is 1000 ° C. × 5 minutes. went.

TFから600℃までの温度域の冷却時には、クロム窒化物の析出が進行する。この析出を抑制するには鋼材を速く冷却することが必要である。クロム窒化物の析出速度は、クロム窒化物析出温度が高い鋼種ほど大きくなる。クロム窒化物析出温度を960℃以下に制限した本発明において、TFから600℃までの冷却時間が5分を超えるとクロム窒化物の析出量が増加し、靱性と耐食性を損なうようになる。
このため、本発明に係る合金元素節減型二相ステンレス熱延鋼材の製造方法においては、熱間圧延の最終仕上圧延パスの入側温度TFから600℃までの温度域を5分以下の時間で冷却することとした。板厚20mm以下の鋼材であれば空冷することで、この制限をほぼ満たすことが可能である。
During cooling in the temperature range from TF to 600 ° C., precipitation of chromium nitride proceeds. In order to suppress this precipitation, it is necessary to cool the steel material quickly. The precipitation rate of chromium nitride increases as the steel type has a higher chromium nitride precipitation temperature. In the present invention in which the chromium nitride deposition temperature is limited to 960 ° C. or less, when the cooling time from TF to 600 ° C. exceeds 5 minutes, the amount of chromium nitride deposited increases, and the toughness and corrosion resistance are impaired.
For this reason, in the manufacturing method of alloy element-saving duplex stainless steel hot rolled steel according to the present invention, the temperature range from the entry side temperature TF to 600 ° C. of the final finishing rolling pass of hot rolling is 5 minutes or less. It was decided to cool. A steel material having a thickness of 20 mm or less can substantially satisfy this restriction by air cooling.

請求項6では、本発明に係る合金元素節減型二相ステンレス熱延鋼材の熱間圧延終了後の加速冷却について定めた。
熱間圧延終了後の加速冷却は、圧延終了後の鋼材中へのクロム窒化物析出を抑制するために実施する。熱間圧延後の鋼材中への析出は過冷却状態で進行するが、600〜800℃の中で析出速度が極大値を示す。その極大値はクロム窒化物析出温度からの過冷却度に応じて増加することから、仕上圧延後すみやかに冷却する必要がある。
Claim 6 defines accelerated cooling after the hot rolling of the alloy element-saving duplex stainless steel hot rolled steel according to the present invention.
Accelerated cooling after the end of hot rolling is performed to suppress chromium nitride precipitation in the steel after the end of rolling. Precipitation into the steel material after hot rolling proceeds in a supercooled state, but the precipitation rate shows a maximum value in 600 to 800 ° C. Since the maximum value increases according to the degree of supercooling from the chromium nitride precipitation temperature, it is necessary to cool immediately after finish rolling.

したがって、板厚20mm超の鋼材については加速冷却を実施することが好ましく、本発明者らの実験結果にもとづき、その加速冷却開始温度TCをクロム窒化物析出温度−200(℃)以上とすることを規定する。
すなわち、選択的成分であるV、Nb、Tiを含有しない板厚20mm超の鋼材については下記(3)式に従う、前記選択的成分を含有する板厚20mm超の鋼材については下記(4)式に従う、熱間圧延終了後の加速冷却開始温度TCを定めた。
TN −200 ≦ TC ≦ TN +50 (但し、TF≧TC)・・・ (3)
TN2−200 ≦ TC ≦ TN2+50 (但し、TF≧TC)・・・ (4)
Therefore, it is preferable to perform accelerated cooling for a steel material having a thickness of more than 20 mm, and based on the results of experiments by the present inventors, the accelerated cooling start temperature TC is set to a chromium nitride precipitation temperature of −200 (° C.) or higher. Is specified.
That is, the steel material having a thickness of more than 20 mm that does not contain the selective components V, Nb, and Ti is in accordance with the following formula (3). The steel material having a thickness of more than 20 mm that contains the selective component is represented by the following formula (4) Accelerating cooling start temperature TC after the end of hot rolling is determined.
TN −200 ≦ TC ≦ TN + 50 (however, TF ≧ TC) (3)
TN2-200 ≦ TC ≦ TN2 + 50 (however, TF ≧ TC) (4)

そして、本発明に係る板厚20mm超の合金元素節減型二相ステンレス熱延鋼材の製造方法においては、熱間圧延終了後の加速冷却開始温度TCから加速冷却を開始することにより、熱間圧延の最終仕上圧延パスの入側温度TFから600℃までの温度域を5分以下の時間で冷却することとした。
なお、本発明の目的は、あくまでもTFから600℃までの温度域を5分以下で冷却してクロム窒化物の析出を抑制し、これにより靱性と耐食性に優れた合金元素節減型二相ステンレス熱延鋼材を得ることにあるので、板厚20mm以下の鋼材はもちろんのこと板厚20mm超の鋼材についても、TFから600℃までの温度域を5分以下で冷却できる場合については、加速冷却が必ずしも必要であるということではない。例えば、TFから600℃までを空冷や放冷でもって5分以下で冷却できる場合については、必ずしも加速冷却を実施する必要はない。TFからの冷却の途中において、あるいはTFからの冷却の開始とともに加速冷却を行う趣旨は、板厚20mm超の鋼材についてはTFから600℃までを5分以下で冷却できない場合があることから、これを避けるために最適温度であるTCから加速冷却を開始することとしたものである。
And in the manufacturing method of the alloy element saving type duplex stainless steel hot rolled steel material having a plate thickness exceeding 20 mm according to the present invention, the hot rolling is started by starting the accelerated cooling from the accelerated cooling start temperature TC after the end of the hot rolling. In the final finishing rolling pass, the temperature range from the entry temperature TF to 600 ° C. was cooled in 5 minutes or less.
The purpose of the present invention is to cool the temperature region from TF to 600 ° C. in 5 minutes or less to suppress the precipitation of chromium nitride, thereby reducing the alloy element-saving duplex stainless steel heat excellent in toughness and corrosion resistance. Since it is to obtain a rolled steel material, not only steel materials with a thickness of 20 mm or less, but also steel materials with a thickness of more than 20 mm can be cooled in a temperature range from TF to 600 ° C. in 5 minutes or less. It is not necessarily necessary. For example, in the case where cooling from TF to 600 ° C. can be performed by air cooling or standing cooling in 5 minutes or less, it is not always necessary to perform accelerated cooling. The purpose of performing accelerated cooling in the middle of cooling from TF or with the start of cooling from TF is that steel materials with a thickness of more than 20 mm may not be cooled from TF to 600 ° C. in less than 5 minutes. In order to avoid this, accelerated cooling is started from TC which is the optimum temperature.

また、加速冷却開始温度TCを極端に高くすると逆に耐食性を低下する場合があるため、TCの上限をクロム窒化物析出温度+50(℃)以下とした。クロム窒化物析出温度−150℃からクロム窒化物析出温度までの範囲でTCを設定することが望ましい。
なお、加速冷却の媒体は水または気水混合でおこなうことが設備コストの観点より合理的である。
Further, if the accelerated cooling start temperature TC is extremely increased, the corrosion resistance may be lowered. Therefore, the upper limit of TC is set to the chromium nitride precipitation temperature +50 (° C.) or less. It is desirable to set the TC in the range from the chromium nitride precipitation temperature of −150 ° C. to the chromium nitride precipitation temperature.
In addition, it is reasonable from the viewpoint of equipment cost to perform the accelerated cooling medium by water or air-water mixing.

以下に実施例について記載する。表1に供試鋼の化学組成を示す。
なお、表1に示した成分について含有量が記載されていない部分は不純物レベルであることを示し、REMはランタノイド系希土類元素を意味し、含有量はそれら元素の合計を示している。また、Oは不可避的不純物である。
Examples are described below. Table 1 shows the chemical composition of the test steel.
In addition, the part in which content is not described about the component shown in Table 1 shows that it is an impurity level, REM means a lanthanoid type rare earth element, and content shows the sum total of these elements. O is an inevitable impurity.

表中のクロム窒化物析出温度は、以下の手順で求めた。
(1) 10mm厚の供試鋼を後述する条件で溶体化熱処理する。
(2) 800〜1000℃の任意の温度で20分間均熱処理を行い、その後5秒以内に水冷を行う。
(3) 冷却後の供試鋼表層を#500研磨する。
(4) 3g試料を分取し、非水溶液中(3%マレイン酸+1%テトラメチルアンモニウムクロライド+残部メタノール)で電解(100mV定電圧)してマトリックスを溶解する。
(5) 0.2μm穴径のフィルターで残渣(=析出物)を濾過し、析出物を抽出する。
(6) 残渣の化学組成を分析し、そのクロム含有量を求める。この残渣中のクロム含有量をクロム窒化物の析出量の指標とする。
(7) (2)の均熱処理温度を種々変化させ、残渣中のクロム含有量が0.01%以下となる均熱処理温度のうちの最低温度をTNとする。また、V、Ti、Nbのいずれか1種以上を含有する場合は、クロム含有量が0.03%以下となる均熱処理温度のうちの最低温度をTN2とする。
The chromium nitride precipitation temperature in the table was determined by the following procedure.
(1) Solution heat treatment is performed on a test steel having a thickness of 10 mm under the conditions described later.
(2) A soaking process is performed for 20 minutes at an arbitrary temperature of 800 to 1000 ° C., and then water cooling is performed within 5 seconds.
(3) Polish the surface layer of the test steel after cooling # 500.
(4) A 3 g sample is taken and electrolyzed (100 mV constant voltage) in a non-aqueous solution (3% maleic acid + 1% tetramethylammonium chloride + remaining methanol) to dissolve the matrix.
(5) The residue (= precipitate) is filtered with a 0.2 μm hole diameter filter, and the precipitate is extracted.
(6) Analyze the chemical composition of the residue and determine its chromium content. The chromium content in the residue is used as an index of the amount of chromium nitride deposited.
(7) The soaking temperature in (2) is changed variously, and the lowest temperature among soaking temperatures at which the chromium content in the residue is 0.01% or less is defined as TN. Moreover, when it contains any 1 or more types of V, Ti, and Nb, let TN2 be the minimum temperature among the soaking | heat-treating temperatures from which chromium content will be 0.03% or less.

いずれの鋼も厚さが140mmの鋼片を熱間圧延素材とした。
熱間圧延は、1150〜1250℃の所定の温度に加熱した後、実験室の2段圧延機により実施し、圧下を繰り返し、780〜1080℃で最終仕上圧延を実施し、最終板厚が6〜35mmになるように圧延した。
この熱延鋼材を半割し、片方の鋼材に溶体化熱処理を施した。溶体化熱処理は1000℃に設定した熱処理炉に鋼材を挿入し、5分の均熱時間を取った後に抽出し、その後常温まで水冷を実施した。
For all the steels, a steel piece having a thickness of 140 mm was used as a hot rolled material.
Hot rolling is performed at a predetermined temperature of 1150 to 1250 ° C., and then carried out by a two-stage rolling mill in a laboratory, repeatedly subjected to reduction, and subjected to final finish rolling at 780 to 1080 ° C., with a final thickness of 6 Rolled to ˜35 mm.
This hot-rolled steel material was halved and solution heat treatment was performed on one steel material. In the solution heat treatment, the steel material was inserted into a heat treatment furnace set at 1000 ° C., extracted after a soaking time of 5 minutes, and then cooled to room temperature.

熱延鋼材の引張試験は、板厚が6mmの材料についてはASTM13B形状の板状試験片を、板厚10mmの材料については平行部が8mm径の丸棒引張試験片を、板厚20、30、35mmの材料については10mm径の丸棒引張試験片を圧延直角方向に採取した。なお、板厚30、35mmの材料については板厚1/4部を中心として採取した。溶体化熱処理を施す前後での降伏強度差を表2、3に示した。   The tensile test of the hot-rolled steel material is performed using ASTM 13B-shaped plate-shaped test pieces for materials having a plate thickness of 6 mm, and round bar tensile test pieces having a parallel portion having a diameter of 8 mm for materials having a plate thickness of 10 mm. For the 35 mm material, 10 mm diameter round bar tensile specimens were taken in the direction perpendicular to the rolling direction. In addition, about the material of plate | board thickness 30 and 35 mm, it extract | collected centering on ¼ part of plate | board thickness. Tables 2 and 3 show the difference in yield strength before and after the solution heat treatment.

熱延鋼材の孔食電位測定は、鋼材の表皮下1mmの面に対してJISG0577に定められた方法にて電流密度が100μA/cmに対応する電位(VC’100)を溶体化熱処理を施す前後の鋼材についてそれぞれn=4で測定し、平均値を求めた。その平均値の差を表2、3に示した。 The pitting corrosion potential measurement of hot-rolled steel is performed by solution heat treatment with a potential (VC′100) corresponding to a current density of 100 μA / cm 2 by a method defined in JIS G0577 with respect to the surface of 1 mm of the surface of the steel. The front and rear steel materials were measured at n = 4, and the average value was obtained. The difference between the average values is shown in Tables 2 and 3.

熱延鋼材の衝撃靭性は、2mmV機械加工ノッチを圧延方向に加工したJIS4号シャルピー試験片により破面が圧延方向に平行に伝播する向きに各2本採取した。
なお、6mmの材料では1/2サイズの、10mmの材料では3/4サイズのシャルピー試験片にて、20mmの板厚の材料では板厚中央部のフルサイズシャルピー試験片にて、板厚30mm、35mmの材料は板厚1/4部を中心として採取したフルサイズシャルピー試験片にて評価した。
試験温度は−20℃とし、最大エネルギー500J仕様の試験機にて衝撃試験を実施した。表2と表3に各3本の衝撃値の平均値(J/cm)の結果を示した。
The impact toughness of the hot-rolled steel material was sampled in a direction in which the fracture surface propagated parallel to the rolling direction using a JIS No. 4 Charpy test piece in which a 2 mmV machined notch was machined in the rolling direction.
It should be noted that the 6 mm material is 1/2 size, the 10 mm material is 3/4 size Charpy test piece, and the 20 mm thickness material is the full size Charpy test piece at the center of the plate thickness, 30 mm thick. The 35 mm material was evaluated with a full-size Charpy test piece collected centering on 1/4 part of the plate thickness.
The test temperature was −20 ° C., and an impact test was performed with a tester with a maximum energy of 500 J. Tables 2 and 3 show the results of average values (J / cm 2 ) of the three impact values.

表2に示す実施例は、表1に示した鋼を、TF(熱間圧延最終仕上温度)を930℃として板厚10mmに仕上げ、その後空冷した熱延鋼材の特性を示している。
クロム窒化物析出温度を960℃以下に低下した鋼材において溶体化熱処理を省略した状態で、溶体化熱処理材との強度差が50MPa以上であり、孔食電位が0.05V以下の低下量にとどまる。また−20℃における衝撃値が50J/cm以上を示す。このように請求項1、2に開示した本発明の熱延鋼材は、強度、耐食性、衝撃特性に優れることが明らかである。
The Example shown in Table 2 has shown the characteristic of the hot-rolled steel materials which finished the steel shown in Table 1 to plate thickness 10mm by making TF (hot rolling final finishing temperature) 930 degreeC, and air-cooled after that.
In a steel material in which the chromium nitride precipitation temperature is lowered to 960 ° C. or less, the solution heat treatment is omitted, the strength difference from the solution heat treatment material is 50 MPa or more, and the pitting potential is only a decrease of 0.05 V or less. . Moreover, the impact value in -20 degreeC shows 50 J / cm < 2 > or more. Thus, it is clear that the hot-rolled steel material of the present invention disclosed in claims 1 and 2 is excellent in strength, corrosion resistance, and impact characteristics.

表3に示す実施例は、表1に示した鋼の一部を用いて、種々の熱間圧延条件にて6〜35mmの板厚の熱延鋼材とし、強度、耐食性、衝撃特性を評価した結果を示している。
本発明例では、溶体化熱処理材との強度差が50MPa以上であり、孔食電位が0.05V以下の低下量にとどまる。また−20℃における衝撃値が50J/cm以上を示す。このように請求項3、4に開示した条件で製造された本発明熱延鋼材は、強度、耐食性、衝撃特性に優れることが明らかである。
なお、比較例42では、TFが溶体化処理温度を超える非常な高温であり、このため強度が低く目的の強度に達していない。
In the examples shown in Table 3, a part of the steel shown in Table 1 was used to obtain a hot rolled steel material having a thickness of 6 to 35 mm under various hot rolling conditions, and the strength, corrosion resistance, and impact characteristics were evaluated. Results are shown.
In the example of the present invention, the strength difference from the solution heat treatment material is 50 MPa or more, and the pitting corrosion potential is only a decrease of 0.05 V or less. Moreover, the impact value in -20 degreeC shows 50 J / cm < 2 > or more. Thus, it is clear that the hot-rolled steel material of the present invention manufactured under the conditions disclosed in claims 3 and 4 is excellent in strength, corrosion resistance, and impact characteristics.
In Comparative Example 42, TF is a very high temperature exceeding the solution treatment temperature. Therefore, the strength is low and the target strength is not reached.

以上の実施例からわかるように本発明により溶体化熱処理を省略した高強度二相ステンレス熱延鋼材が得られることが明確となった。   As can be seen from the above examples, it has been clarified that the present invention provides a high-strength duplex stainless steel hot-rolled steel material in which solution heat treatment is omitted.

Figure 0005406230
Figure 0005406230

Figure 0005406230
Figure 0005406230

Figure 0005406230
Figure 0005406230

本発明により、強度が高く合金元素節減型の経済的な高強度二相ステンレス鋼材を提供することが可能となり、海水淡水化機器、輸送船のタンク類、各種容器等として使用できるなど産業上寄与するところは極めて大である。
The present invention makes it possible to provide a high-strength, high-strength, high-strength duplex stainless steel material that saves alloying elements and contributes to the industry, such as seawater desalination equipment, tanks for transport vessels, and various containers. The place to do is extremely large.

Claims (6)

質量%で、
C :0.03%以下、
Si:0.05〜1.0%、
Mn:0.5〜7.0%、
P :0.05%以下、
S :0.010%以下、
Ni:0.1〜5.0%、
Cr:18.0〜25.0%、
N :0.05〜0.30%、
Al:0.001〜0.05%、
を含有し、残部がFeおよび不可避的不純物よりなり、
熱間圧延中におけるクロム窒化物の析出に関する指標となるクロム窒化物析出温度TNが960℃以下であって、
1000℃で5分間の均熱処理後、常温まで水冷する溶体化熱処理を施した熱延鋼材よりも降伏強度が50MPa以上高い、熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。
(ここで、クロム窒化物析出温度TNは、溶体化熱処理された鋼材を800〜1000℃で20分間の均熱処理後、5秒以内に水冷に供し、冷却後の鋼材についてクロム窒化物の析出量を非金属介在物の電解抽出残渣分析法によって求め、Cr残渣量が0.01%以下となる均熱処理温度のうちの最低温度とする。)
% By mass
C: 0.03% or less,
Si: 0.05 to 1.0%,
Mn: 0.5 to 7.0%,
P: 0.05% or less,
S: 0.010% or less,
Ni: 0.1 to 5.0%,
Cr: 18.0 to 25.0%,
N: 0.05-0.30%
Al: 0.001 to 0.05%,
And the balance consists of Fe and inevitable impurities,
The chromium nitride precipitation temperature TN, which is an index related to precipitation of chromium nitride during hot rolling, is 960 ° C. or less,
Alloy element-saving duplex stainless steel with a yield strength of 50 MPa or more higher than that of hot-rolled steel that has undergone solution heat treatment that is water-cooled to room temperature after soaking at 1000 ° C. for 5 minutes, and that eliminates solution heat treatment as hot-rolled Hot rolled steel.
(Here, the chromium nitride precipitation temperature TN is obtained by subjecting the steel material that has undergone solution heat treatment to 800-1000 ° C. for 20 minutes and then subjecting the steel material to water cooling within 5 seconds. Is determined by an electrolytic extraction residue analysis method for non-metallic inclusions, and is defined as the lowest temperature among soaking temperatures at which the Cr residue amount is 0.01% or less.)
質量%で、
C :0.03%以下、
Si:0.05〜1.0%、
Mn:0.5〜7.0%、
P :0.05%以下、
S :0.010%以下、
Ni:0.1〜5.0%、
Cr:18.0〜25.0%、
N :0.05〜0.30%、
Al:0.001〜0.05%、
を含有し、更に、
V :0.05〜0.5%、
Nb:0.01〜0.20%、
Ti:0.003〜0.05%
から選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物よりなり、
熱間圧延中におけるクロム窒化物の析出に関する第二の指標となるクロム窒化物析出温度TN2が960℃以下であって、
1000℃で5分間の均熱処理後、常温まで水冷する溶体化熱処理を施した熱延鋼材よりも降伏強度が50MPa以上高い、熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。
(ここで、クロム窒化物析出温度TN2は、溶体化熱処理された鋼材を800〜1000℃で20分間の均熱処理後、5秒以内に水冷に供し、冷却後の鋼材についてクロム窒化物の析出量を非金属介在物の電解抽出残渣分析法によって求め、Cr残渣量が0.03%以下となる均熱処理温度のうちの最低温度とする。)
% By mass
C: 0.03% or less,
Si: 0.05 to 1.0%,
Mn: 0.5 to 7.0%,
P: 0.05% or less,
S: 0.010% or less,
Ni: 0.1 to 5.0%,
Cr: 18.0 to 25.0%,
N: 0.05-0.30%
Al: 0.001 to 0.05%,
Further,
V: 0.05-0.5%
Nb: 0.01-0.20%,
Ti: 0.003 to 0.05%
1 type or 2 types or more chosen from, The remainder consists of Fe and an unavoidable impurity,
A chromium nitride precipitation temperature TN2 serving as a second index for precipitation of chromium nitride during hot rolling is 960 ° C. or less,
Alloy element-saving duplex stainless steel with a yield strength of 50 MPa or more higher than that of hot-rolled steel that has undergone solution heat treatment that is water-cooled to room temperature after soaking at 1000 ° C. for 5 minutes, and that eliminates solution heat treatment as hot-rolled Hot rolled steel.
(Here, the chromium nitride precipitation temperature TN2 is obtained by subjecting the solution heat-treated steel to water cooling within 5 seconds after soaking at 800-1000 ° C. for 20 minutes, and the amount of chromium nitride deposited on the steel after cooling. Is determined by an electrolytic extraction residue analysis method for non-metallic inclusions, and is defined as the lowest temperature among soaking temperatures at which the Cr residue amount is 0.03% or less.)
更に、
Mo:1.5%以下、
Cu:2.0%以下、
W :1.0%以下、
Co:2.0%以下
から選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。
Furthermore,
Mo: 1.5% or less,
Cu: 2.0% or less,
W: 1.0% or less,
The alloy element-saving duplex stainless steel omitting the solution heat treatment as hot-rolled according to claim 1 or 2, characterized in that it contains one or more selected from Co: 2.0% or less Hot rolled steel.
更に、
B :0.0050%以下、
Ca:0.0050%以下、
Mg:0.0030%以下、
REM:0.10%以下
から選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。
Furthermore,
B: 0.0050% or less,
Ca: 0.0050% or less,
Mg: 0.0030% or less,
REM: 1 type or 2 types or more chosen from 0.10% or less, The alloy element which omitted the solution heat treatment as hot-rolling of any one of Claims 1-3 characterized by the above-mentioned Saving type duplex stainless steel hot rolled steel.
請求項1〜4のいずれか1項に記載の熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材の製造方法であって、
選択的成分であるV、Nb、Tiを含有しない鋼材については下記(1)式に従って、前記選択的成分を含有する鋼材については下記(2)式に従って、熱間圧延の最終仕上圧延パスの入側温度TFから600℃までの温度域を5分以下の時間で冷却することを特徴とする合金元素節減型二相ステンレス熱延鋼材の製造方法。
TF ≧ TN −30 ・・・ (1)
TF ≧ TN2−30 ・・・ (2)
It is a manufacturing method of the alloy element saving type duplex stainless steel hot rolled steel material which omitted the solution heat treatment as hot-rolling according to any one of claims 1 to 4,
The steel material that does not contain the selective components V, Nb, and Ti is in accordance with the following formula (1), and the steel material that contains the selective component is in accordance with the following formula (2). A method for producing an alloying element-saving duplex stainless steel hot rolled steel, characterized in that the temperature range from the side temperature TF to 600 ° C is cooled in a time of 5 minutes or less.
TF ≧ TN−30 (1)
TF ≧ TN2-30 (2)
選択的成分であるV、Nb、Tiを含有しない板厚20mm超の鋼材については下記(3)式に従って、前記選択的成分を含有する板厚20mm超の鋼材については下記(4)式に従って、熱間圧延終了後の加速冷却開始温度TCから加速冷却を開始することにより、熱間圧延の最終仕上圧延パスの入側温度TFから600℃までの温度域を5分以下の時間で冷却することを特徴とする請求項5に記載の合金元素節減型二相ステンレス熱延鋼材の製造方法。
TN −200 ≦ TC ≦ TN +50 (但し、TF≧TC)・・・ (3)
TN2−200 ≦ TC ≦ TN2+50 (但し、TF≧TC)・・・ (4)
According to the following formula (3) for steel materials with a thickness of more than 20 mm that do not contain V, Nb, Ti, which are selective components, By starting accelerated cooling from the accelerated cooling start temperature TC after the end of hot rolling, the temperature range from the entry side temperature TF to 600 ° C. of the final finishing rolling pass of hot rolling is cooled in 5 minutes or less. The method for producing an alloying element-saving duplex stainless steel hot-rolled steel according to claim 5.
TN −200 ≦ TC ≦ TN + 50 (however, TF ≧ TC) (3)
TN2-200 ≦ TC ≦ TN2 + 50 (however, TF ≧ TC) (4)
JP2011015091A 2011-01-27 2011-01-27 Alloy element-saving duplex stainless steel hot rolled steel material and method for producing the same Active JP5406230B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2011015091A JP5406230B2 (en) 2011-01-27 2011-01-27 Alloy element-saving duplex stainless steel hot rolled steel material and method for producing the same
US13/978,743 US9862168B2 (en) 2011-01-27 2012-01-26 Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
EP20156705.4A EP3685952B1 (en) 2011-01-27 2012-01-26 Alloying element-saving hot rolled duplex stainless steel material, and production method for same
PCT/JP2012/051637 WO2012102330A1 (en) 2011-01-27 2012-01-26 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
KR1020137019635A KR20130105721A (en) 2011-01-27 2012-01-26 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
EP12738972.4A EP2669397B1 (en) 2011-01-27 2012-01-26 Alloying element-saving hot rolled duplex stainless steel material and production method for same
EP20153720.6A EP3693121B8 (en) 2011-01-27 2012-01-26 Clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
EP20208685.6A EP3835447B1 (en) 2011-01-27 2012-01-26 Clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
CN201280004715.3A CN103298965B (en) 2011-01-27 2012-01-26 Alloying element is reduced type two phase stainless steel hot-rolled steel material, is possessed two phase stainless steel as the pluramelt of sandwich material and their manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015091A JP5406230B2 (en) 2011-01-27 2011-01-27 Alloy element-saving duplex stainless steel hot rolled steel material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012153953A JP2012153953A (en) 2012-08-16
JP5406230B2 true JP5406230B2 (en) 2014-02-05

Family

ID=46835989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015091A Active JP5406230B2 (en) 2011-01-27 2011-01-27 Alloy element-saving duplex stainless steel hot rolled steel material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5406230B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018364B2 (en) * 2011-03-17 2016-11-02 新日鐵住金ステンレス株式会社 Duplex stainless steel for chemical tankers with excellent linear heatability
FI125734B (en) * 2013-06-13 2016-01-29 Outokumpu Oy Duplex ferritic austenitic stainless steel
JP6492811B2 (en) * 2015-03-13 2019-04-03 新日鐵住金株式会社 Welding material and weld metal and welded joint formed using the same
JP6708482B2 (en) * 2016-06-02 2020-06-10 日鉄ステンレス株式会社 Duplex stainless steel for storage tanks
JP7269470B2 (en) * 2019-03-18 2023-05-09 日本製鉄株式会社 Duplex stainless steel and manufacturing method thereof
WO2020203939A1 (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Stainless steel sheet
CN110438406A (en) * 2019-09-12 2019-11-12 哈尔滨汽轮机厂有限责任公司 A kind of supercritical turbine high-pressure inner cylinder hot jacket ring forging material and preparation method thereof
JP7390865B2 (en) 2019-11-12 2023-12-04 日鉄ステンレス株式会社 Duplex stainless hot rolled steel and welded structures
CN115466902B (en) * 2022-06-30 2023-05-05 福建青拓特钢技术研究有限公司 Niobium-containing economical high-plasticity duplex stainless steel with excellent intergranular corrosion resistance and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197824A (en) * 1984-03-16 1985-10-07 Sumitomo Metal Ind Ltd Production of hot rolled two-phase stainless steel strip having high toughness
JPS6156236A (en) * 1984-08-23 1986-03-20 Sumitomo Metal Ind Ltd Manufacture of two phase stainless steel hot rolled steel strip for working
JPS62110880A (en) * 1985-11-09 1987-05-21 Sumitomo Metal Ind Ltd Production of two-phase stainless steel clad steel
SE517449C2 (en) * 2000-09-27 2002-06-04 Avesta Polarit Ab Publ Ferrite-austenitic stainless steel
EP1867748A1 (en) * 2006-06-16 2007-12-19 Industeel Creusot Duplex stainless steel
CN103498113B (en) * 2008-03-26 2016-03-09 新日铁住金不锈钢株式会社 The solidity to corrosion of welded heat affecting zone and the good alloy saving duplex stainless steel of toughness
JP5288980B2 (en) * 2008-10-02 2013-09-11 新日鐵住金ステンレス株式会社 Duplex stainless steel with excellent impact toughness and its manufacturing method

Also Published As

Publication number Publication date
JP2012153953A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5406230B2 (en) Alloy element-saving duplex stainless steel hot rolled steel material and method for producing the same
JP5406233B2 (en) Clad steel plate made of duplex stainless steel and method for producing the same
JP4978741B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same
CN103108974B (en) High-strength hot rolled steel sheet having excellent toughness and method for producing same
WO2012102330A1 (en) Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
US9212412B2 (en) Lean duplex stainless steel excellent in corrosion resistance and toughness of weld heat affected zone
KR100957664B1 (en) Austenitic-ferritic stainless steel sheet
CN103108972B (en) High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
JP5366609B2 (en) Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
US20150167135A1 (en) Duplex stainless steel
KR102349888B1 (en) Two-phase stainless steel and its manufacturing method
KR101828199B1 (en) Abrasion-resistant steel plate and method for manufacturing the same
JPWO2007080646A1 (en) Cryogenic steel
WO2014148540A1 (en) Clad steel plate having as mating material duplex stainless steel having good linear heating performance, and method for manufacturing same
JP6468410B1 (en) Hot-rolled steel sheet and manufacturing method thereof
JPWO2019216269A1 (en) Hot rolled steel sheet and method of manufacturing the same
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
KR20210027412A (en) High Mn steel and its manufacturing method
JP2015147967A (en) High-strength cold-rolled steel sheet and production method thereof
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP7273296B2 (en) steel plate
JP7323091B1 (en) Steel plate and its manufacturing method
JP7306624B2 (en) steel plate
JP4291756B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130522

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130522

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130522

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5406230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250