JP2677910B2 - Stainless steel for springs with excellent dimensional stability during low temperature annealing - Google Patents

Stainless steel for springs with excellent dimensional stability during low temperature annealing

Info

Publication number
JP2677910B2
JP2677910B2 JP3056792A JP5679291A JP2677910B2 JP 2677910 B2 JP2677910 B2 JP 2677910B2 JP 3056792 A JP3056792 A JP 3056792A JP 5679291 A JP5679291 A JP 5679291A JP 2677910 B2 JP2677910 B2 JP 2677910B2
Authority
JP
Japan
Prior art keywords
spring
springs
phase
stainless steel
volume ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3056792A
Other languages
Japanese (ja)
Other versions
JPH0711390A (en
Inventor
幸男 山岡
勝 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP3056792A priority Critical patent/JP2677910B2/en
Publication of JPH0711390A publication Critical patent/JPH0711390A/en
Application granted granted Critical
Publication of JP2677910B2 publication Critical patent/JP2677910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ばね用ステンレス鋼材
に関し、詳細には、ばね用鋼線や板ばね用鋼板等の如き
ばね用鋼材であって、特にばね成形後の低温焼鈍時の寸
法変化が小さい低温焼鈍時の寸法安定性に優れたばね用
ステンレス鋼材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel material for springs, and more particularly to a steel material for springs such as a steel wire for springs, a steel plate for leaf springs, etc. For springs with small changes and excellent dimensional stability during low temperature annealing
Regarding stainless steel materials.

【0002】[0002]

【従来の技術】ばね用鋼材はコイルばねや板ばね等のば
ねの素材(鋼線や鋼板状等)であり、溶体化処理或いは
焼鈍処理(以降、溶体化処理という)された鋼材を原材
料として所定形状寸法に成形加工してなるものである。
一般的に該成形加工は伸線加工の如き冷間加工と焼鈍と
を繰り返して行われる。その繰り返しの最後はばね性確
保等のために冷間加工工程とされ、従ってばね用鋼材は
所謂冷間加工上がりの状態のものになっている。例え
ば、コイルばね用鋼線は線材を1150℃に加熱後水冷して
焼鈍し、酸洗後、伸線加工をしてばね用鋼線に仕上げら
れる。尚、上記溶体化処理は鋼等の金属を加熱して合金
元素をマトリックスに固溶化させる処理であり、一方、
焼鈍処理は金属を加熱して加工歪み等を除去する処理で
あり、厳密には両者は冶金学的に異なるが、前者の溶体
化処理によれば加工歪み等の除去もなし得るので、本書
では両者を同義として扱い、両者を含めて溶体化処理と
いうものとした。
2. Description of the Related Art A steel material for springs is a spring material (steel wire, steel plate shape, etc.) such as a coil spring and a leaf spring, and a steel material that has been solution treated or annealed (hereinafter referred to as solution treatment) is used as a raw material. It is formed into a predetermined shape and dimension.
Generally, the forming process is performed by repeating cold working such as wire drawing and annealing. At the end of the repetition, a cold working process is performed to secure the spring property, so that the spring steel material is in a so-called cold working finished state. For example, a steel wire for a coil spring is produced by heating a wire to 1150 ° C., cooling it with water, annealing it, pickling it, and then wire-drawing it into a steel wire for a spring. Incidentally, the solution treatment is a treatment for heating a metal such as steel to solidify an alloy element into a matrix, while
The annealing treatment is a treatment for heating metal to remove work strain and the like, strictly speaking, both are different from each other in metallurgy, but since the former solution treatment can remove work strain and the like, in this document, Both are treated as synonyms, and both are called solution treatment.

【0003】かかるばね用鋼材は、ばね形状に成形され
た後、残留歪みの除去や弾性限度の向上等の目的で低温
焼鈍処理され、ばねと成る。このとき、焼鈍により寸法
変化が生じることは従来からよく知られている。
The spring steel material is formed into a spring shape, and then subjected to low-temperature annealing treatment for the purpose of removing residual strain and improving the elastic limit, thereby forming a spring. At this time, it is well known that dimensional changes occur due to annealing.

【0004】例えば、ピアノ線、硬鋼線、ステンレス鋼
線などの所謂ばね用鋼線は、コイルばねに成形後、ピア
ノ線や硬鋼線では 250〜400 ℃で焼鈍され、該焼鈍によ
りコイルばねの外径が小さくなり、ステンレス鋼線では
300〜400 ℃の温度で焼鈍され、外径が大きくなること
が知られている(日本ばね協会編「ばね」(丸善株式会
社発行)の第 314頁参照)。
For example, a so-called spring steel wire such as a piano wire, a hard steel wire, and a stainless steel wire is formed into a coil spring, and then the piano wire or the hard steel wire is annealed at 250 to 400 ° C., and the coil spring is annealed by the annealing. The outer diameter of the
It is known that the outer diameter is increased by annealing at a temperature of 300 to 400 ° C (see page 314 of "Spring" edited by Japan Spring Association (published by Maruzen Co., Ltd.)).

【0005】トーションばねや引きばね等の如くコイル
両端に直線部分やフック部を有するものは、ばね成形後
の焼鈍により交差角が変化し、ピアノ線や硬鋼線から成
るものでは両端の交差角が増大して開き、ステンレス鋼
線から成るものでは閉じる。フォーミング材においても
その形状によるが成形後の焼鈍により成形材の寸法がか
なり変化する。ばね用冷間圧延鋼板、SUS301CSP, SUS30
4CSP等のばね用ステンレス鋼板や、ピアノ線、ステンレ
ス鋼線を圧延して成る薄板等の如き板ばね用鋼板の場合
も、曲げ成形加工後の焼鈍によりその寸法がかなり変化
する。
For a torsion spring, a tension spring, or the like having straight portions or hooks at both ends of the coil, the crossing angle changes due to annealing after the spring is formed, and in the case of a piano wire or hard steel wire, the crossing angle at both ends. Increase and open, and those made of stainless steel wire close. Also in the forming material, the dimensions of the forming material change considerably due to annealing after forming, depending on its shape. Cold rolled steel plate for springs, SUS301CSP, SUS30
In the case of stainless steel sheets for springs such as 4CSP, and sheet steel sheets for leaf springs such as thin sheets formed by rolling piano wire and stainless steel wire, their dimensions change considerably due to annealing after bending.

【0006】[0006]

【発明が解決しようとする課題】前記の如くばね用鋼材
はばね成形後の焼鈍により寸法変化が生じるので、作業
者はかかる変化を見込んで成形する。例えば、コイルば
ねの場合、ピアノ線、硬鋼線では仕様通りの仕上寸法よ
り外径が大き目のばねに成形し、ステンレス鋼線では小
さ目のばねに成形し、低温焼鈍により寸法変化が起こっ
て丁度仕様寸法のばねになるように工夫を凝らしてい
る。
As described above, the spring steel material undergoes dimensional changes due to annealing after spring forming. Therefore, the operator takes into consideration such changes before forming. For example, in the case of coil springs, piano wires and hard steel wires are formed into springs with an outer diameter larger than the finished dimensions as specified, and stainless steel wires are formed into smaller springs, and dimensional changes occur due to low temperature annealing. We have devised a spring that has the specified dimensions.

【0007】しかしながら、上記寸法変化量は微妙な差
を有するものであるから、一般には長年の経験に依存せ
ざるを得ないという面があって大変であり、そのため実
作業においては、その都度ばねを予め予備成形して低温
焼鈍を行い、寸法変化量を把握する予備試験を種々行
い、その結果に基づき本生産しているのが現実であり、
従って、予備試験に時間を要し、それだけばね製造能率
が低下するという問題点があり、その改善が望まれてい
る。又、上記の如く予備試験に基づき本生産したとして
も、焼鈍後のばね寸法は一定ではなくてバラツキのある
ことが多いので、ばね寸法の高精度化がし難いという問
題点があり、その改善も望まれている。
However, since the above-mentioned amount of dimensional change has a delicate difference, it is generally difficult to rely on many years of experience, which is a serious problem. Is preformed by low temperature annealing in advance, various preliminary tests to grasp the amount of dimensional change are conducted, and the actual production is based on the results,
Therefore, there is a problem that the preliminary test requires time and the spring manufacturing efficiency is reduced accordingly, and improvement thereof is desired. Further, even if the main production is carried out based on the preliminary test as described above, the spring dimension after annealing is not constant and often varies, which makes it difficult to improve the spring dimension. Is also desired.

【0008】このようなことから、ばね成形後の低温焼
鈍処理時に寸法変化が生じ難いばね用鋼材が得られれば
上記問題点を解消できるので、かかるばね用鋼材の実現
が斯界において渇望されているのは言を俟たないところ
である。
[0008] From the above, the above problems can be solved if a steel material for springs which is unlikely to undergo dimensional change during low temperature annealing treatment after spring forming can be solved. Therefore, the realization of such a steel material for springs is eagerly desired in the art. There is no point in saying.

【0009】本発明は、かかる事情に着目してなされた
ものであって、その目的は、ばね成形後の低温焼鈍処理
時に寸法変化が生じ難いばね用ステンレス鋼材を提供
し、もってばねの生産性はもとよりばね寸法の高精度化
に資さしめようとするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a stainless steel material for springs which is unlikely to cause a dimensional change during the low temperature annealing treatment after the spring forming, thereby improving spring productivity. In addition to trying to improve the precision of the spring dimensions, it is intended to be used.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るばね用ステンレス鋼材は次のような構
成としている。即ち、請求項1記載のばね用ステンレス
鋼材は、面心立方格子相と体心立方格子相とを含む多相
混合組織から成り、溶体化処理した状態での原材料の
に含まれる体心立方格子相の量が、該体心立方格子相
と面心立方格子相との体積の和に対する体心立方格子相
の体積比の百分率である体積率で表して30〜70%と
なる値であることを特徴とする低温焼鈍時の寸法安定性
に優れたばね用ステンレス鋼材である。
In order to achieve the above object, the spring stainless steel material according to the present invention has the following constitution. That spring stainless <br/> steel according to claim 1, wherein the Ri consists multiphase mixed structure comprising a face-centered cubic lattice phase and body-centered cubic lattice phase, raw materials of the steel in a state of solution treated < The amount of body-centered cubic lattice phase contained in the material is
Body-centered cubic lattice phase for the sum of the volume of and the face-centered cubic lattice phase
The volume ratio, which is the percentage of the volume ratio of
Dimensional stability at low-temperature annealing, which is a composed value
Excellent stainless steel material for springs.

【0011】請求項2記載のばね用ステンレス鋼材は、
前記ばね用ステンレス鋼材がコイルばねトーションば
用のばね用ステンレス鋼線である。又、請求項3記載
のばね用ステンレス鋼材は、前記ばね用ステンレス鋼材
が板ばね用ステンレス鋼板である
The stainless steel material for springs according to claim 2 is
The spring stainless steel material is a coil spring and a spring stainless steel wire for a torsion spring . Further, the stainless steel spring according to claim 3, wherein the stainless steel for the spring is stainless steel sheet for leaf springs.

【0012】[0012]

【作 用】前述の如く、従来のコイルばねにおいては、
コイルばね成形後の低温焼鈍により、ピアノ線や硬鋼線
からなるものでは外径が収縮し、一方ステンレス鋼線か
らなるものでは膨張する。金属組織的、結晶構造的には
前者は殆どがフェライトやマルテンサイト等と言われる
体心立方格子相(以降 BCC相という)からなり、一方、
後者のステンレス鋼は殆どがオーステナイトと言われる
面心立方格子相(以降 FCC相という)からなる。故に、
FCC相からなるものと BCC相からなるものとでは低温焼
鈍による寸法変化の仕方は逆の関係にあることになる。
従って、 FCC相と BCC相とを含む多相混合組織から成る
ものでは両相が互いに打ち消し合う作用が働き、低温焼
鈍での寸法変化が生じ難くなるのではないかと考えられ
る。
[Operation] As mentioned above, in the conventional coil spring,
Due to the low-temperature annealing after forming the coil spring, the outer diameter of the piano wire or hard steel wire shrinks, while the stainless steel wire expands. In terms of metallographic structure and crystal structure, the former mostly consist of body-centered cubic lattice phase (hereinafter referred to as BCC phase) called ferrite or martensite.
Most of the latter stainless steels consist of face-centered cubic lattice phase (hereinafter FCC phase) called austenite. Therefore,
The dimensional changes due to low temperature annealing are inversely related to those of the FCC phase and those of the BCC phase.
Therefore, it is considered that in the case of a multi-phase mixed structure containing the FCC phase and the BCC phase, the two phases act to cancel each other out, making it difficult for dimensional changes to occur during low temperature annealing.

【0013】本発明は、かかる考え方に基づき、 FCC相
と BCC相とを含む多相混合組織から成る種々のばねを成
形し、低温焼鈍し、焼鈍前後のばね寸法変化量を克明に
調べ、その結果得られた下記知見に基づきなされたもの
である。
Based on this concept, the present invention molds various springs having a multi-phase mixed structure containing an FCC phase and a BCC phase, anneals them at a low temperature, and carefully examines the amount of spring dimensional change before and after annealing. This is based on the following findings obtained.

【0014】即ち、溶体化処理(溶体化処理或いは焼鈍
処理)された鋼材(原材料)を冷間加工と焼鈍とを繰り
返し施工して、冷間加工上がり状態のばね用鋼材に成形
加工し、該ばね用鋼材より種々のばねを成形し、低温焼
鈍し、焼鈍前後のばね寸法変化量を測定し、一方、上記
原材料、ばね用鋼材、成形後のばねについて BCC相の体
積率( FCC相及び BCC相の全体積に対する BCC相の体積
の百分率)を求め、これら体積率とばね寸法変化量との
関係を調べた。
That is, a solution-treated (solution-treated or annealed) steel material (raw material) is repeatedly cold-worked and annealed to form a cold-worked spring steel material, Various springs were formed from steel for springs, annealed at low temperature, and the amount of spring dimensional change before and after annealing was measured.On the other hand, for the above raw materials, steel for springs, and springs after forming, BCC phase volume ratio (FCC phase and BCC phase) The percentage of the volume of the BCC phase with respect to the total volume of the phases) was calculated, and the relationship between these volume ratios and the spring dimensional change was investigated.

【0015】その結果、溶体化処理された鋼材(原材
料)での BCC相の体積率を30〜70%にすると、焼鈍前後
のばね寸法変化量を確実に極めて小さくし得、又、ばね
用鋼材又は成形後のばねにおいても、 BCC相の一種であ
る加工誘起マルテンサイト(以降、M0相という)を含有
しない場合には、 BCC相の体積率が30〜70%のとき、上
記と同様にばね寸法変化量が小さくなるという知見が得
られた。従って、焼鈍前後のばね寸法変化量を上記の如
く小さくするための必要十分条件は、M0相を含有しない
場合の BCC相の体積率を30〜70%にすることであり、そ
のためにはM0相を含有することの多いばね用鋼材又はば
ねでの体積率ではなく、溶体化処理された鋼材(原材
料)での BCC相の体積率を30〜70%にする必要がある。
As a result, when the volume ratio of the BCC phase in the solution-treated steel material (raw material) is set to 30 to 70%, the amount of spring dimensional change before and after annealing can be surely made extremely small. Or, even in the spring after forming, when the work-induced martensite (hereinafter referred to as M 0 phase), which is a kind of BCC phase, is not contained, when the volume ratio of the BCC phase is 30 to 70%, the same as above. It was found that the amount of spring dimensional change is small. Therefore, the necessary and sufficient condition for reducing the amount of spring dimensional change before and after annealing as described above is to set the volume ratio of the BCC phase in the case of not containing the M 0 phase to 30 to 70%. It is necessary to set the volume ratio of BCC phase in solution-treated steel (raw material) to 30 to 70%, not the volume ratio of spring steel or spring that often contains 0 phase.

【0016】そこで、本発明に係るばね用ステンレス
材は、面心立方格子相( FCC相)と体心立方格子相( B
CC相)とを含む多相混合組織から成ると共に、溶体化処
理した状態での原材料の鋼材に含まれる体心立方格子相
としてのフェライト相の量が、該フェライト相と面心立
方格子相としてのオーステナイト相との体積の和に対す
るフェライト相の体積比の百分率である体積率で表して
30〜70%となる値であるステンレス鋼材にしている
のである。故に、本発明に係るばね用ステンレス鋼材に
よれば、上記必要十分条件が充たされ、ばね成形後の低
温焼鈍によるばね寸法変化量を確実に極めて小さくし得
るようになる。従って、予備試験の必要性がなくてばね
の生産性を向上し得、又、焼鈍後のばね寸法のバラツキ
が少なくてばね寸法の高精度化を果たし得るようにな
る。
Therefore, the stainless steel material for spring according to the present invention has a face centered cubic lattice phase (FCC phase) and a body centered cubic lattice phase (B
Together consist of multiphase mixed structure containing CC-phase) and, solution treatment
Body-centered cubic lattice phase contained in the raw material steel material in the treated state
The amount of the ferrite phase as
For volume sum with austenite phase as square lattice phase
Volume ratio, which is the percentage of the volume ratio of the ferrite phase
It is a stainless steel material having a value of 30 to 70% . Therefore, according to the spring stainless steel material of the present invention, the above necessary and sufficient conditions are satisfied, and the amount of change in the spring dimension due to the low temperature annealing after the spring forming can be surely made extremely small. Therefore, the productivity of the spring can be improved without the need for a preliminary test, and the spring dimension can be made highly accurate with little variation in the spring dimension after annealing.

【0017】例えば、図1〜4はこのことを立証した線
図であって、図1は、ばね用鋼材の原材料段階での BCC
相の体積率、及び、冷間加工上がり状態のばね用鋼材に
おけるM0相の体積率と、コイルばね成形後の低温焼鈍前
後の外径変化率(Db)との関係を示したものである。尚、
Dbは下記式により求めた。
For example, FIGS. 1 to 4 are diagrams demonstrating this, and FIG. 1 shows a BCC at the raw material stage of steel for springs.
The volume ratio of the phases, and shows the relationship between the volume fraction of M 0 phase in the steel spring of cold working up state, the outer diameter change ratio before and after low-temperature annealing after the coil spring forming and (Db) . still,
Db was calculated by the following formula.

【0018】Db(%)=100 ×(D1−D2)/D1 --- 但し式において、D1はコイルばね成形後の外径(mm)、
D2は低温焼鈍後の外径(mm)である。
Db (%) = 100 × (D 1 −D 2 ) / D 1 --- In the formula, D 1 is the outer diameter (mm) after coil spring molding,
D 2 is the outer diameter (mm) after low temperature annealing.

【0019】図1から判る如く、原材料段階での BCC相
の体積率が30〜70%の範囲においては、ばね用鋼材での
M0相(原材料からの加工により生じたもの)の体積率に
かかわらず、Dbは0.25%以下と小さく、たとえ該M0相の
体積率を多量に含有して、その結果ばね用鋼材での BCC
相の体積率が 100%になってもDbは小さい。一方、原材
料段階での BCC相の体積率が小さいときは、加工により
M0相を生成させてばね用鋼材でのBCC 相の体積率を30〜
70%にし得るが、そのようにしてもDbは小さくできず、
却って大きくなる。
As can be seen from FIG. 1, when the BCC phase volume ratio in the raw material stage is in the range of 30 to 70%, the spring steel material is
Db is as small as 0.25% or less regardless of the volume fraction of the M 0 phase (generated by processing from the raw material), and even if a large volume fraction of the M 0 phase is contained, as a result, in the spring steel material. BCC
Db is small even if the volume ratio of the phase reaches 100%. On the other hand, when the volume ratio of BCC phase at the raw material stage is small,
By generating a M 0 phase 30 the volume ratio of BCC phases with steel spring
It can be 70%, but even then, Db cannot be reduced,
On the contrary, it grows.

【0020】図2は引きばねの場合の結果を示すもので
あって、原材料段階での BCC相体積率:30〜70%では、
ばね用鋼材でのM0相体積率にかかわらず、両端フックの
交差角は小さい。又、トーションばねについても同様傾
向の結果が得られた。
FIG. 2 shows the results in the case of a tension spring, and in the BCC phase volume ratio of 30 to 70% at the raw material stage,
The crossing angle of both end hooks is small regardless of the M 0 phase volume ratio in the spring steel. Further, the same tendency was obtained for the torsion spring.

【0021】図3はフォーミング品の場合の結果であっ
て、原材料段階での BCC相体積率:30〜70%では図中に
示したLの寸法変化が小さい。又、図4に示す如く、板
ばねの場合も原材料段階での BCC相体積率:30〜70%で
はV角の変化量が小さい。
FIG. 3 shows the results for the formed product, and the dimensional change of L shown in the figure is small at the BCC phase volume ratio of 30 to 70% at the raw material stage. Further, as shown in FIG. 4, even in the case of a leaf spring, the change amount of the V angle is small at the BCC phase volume ratio of 30 to 70% at the raw material stage.

【0022】尚、前にも述べたが、本発明においては溶
体化処理及び焼鈍処理を同義語として扱うものであり、
従って、前記溶体化処理は溶体化処理或いは焼鈍処理の
ことである。
As described above, the solution treatment and the annealing treatment are treated as synonyms in the present invention.
Therefore, the solution treatment is a solution treatment or an annealing treatment.

【0023】[0023]

【実施例】種々の成分のCr-Ni-Si系の鋼よりなるばね用
鋼材(線材及び板材)を製造し、これらより各種ばねを
製作し、 BCC相体積率や低温焼鈍による寸法変化量等を
測定した。その詳細を以下説明する。
[Examples] Spring steels (wires and plates) made of Cr-Ni-Si-based steels with various components were manufactured, and various springs were manufactured from these, and BCC phase volume ratio and dimensional change due to low temperature annealing, etc. Was measured. The details will be described below.

【0024】(実施例1)Φ5.5mm の線材を1100℃で溶
体化処理し、酸洗・コーティング処理後Φ3.0mmまで伸
線加工し、更に1100℃で溶体化処理した。これを原材料
(原線)とし、酸洗・コーティング後120 m/minの速度
で伸線加工し、ばね用線材を作った。このとき、伸線加
工量、原線での BCC相の体積率及び化学成分、ばね用線
材でのM0相の体積率を表1に示す如く種々変化させた。
Example 1 A wire having a diameter of Φ5.5 mm was solution treated at 1100 ° C., pickled and coated, drawn to a diameter of Φ3.0 mm, and further solution treated at 1100 ° C. This was used as a raw material (raw wire), and after pickling and coating, wire drawing was performed at a speed of 120 m / min to make a spring wire material. At this time, the wire drawing amount, the BCC phase volume ratio and chemical composition of the original wire, and the M 0 phase volume ratio of the spring wire rod were variously changed as shown in Table 1.

【0025】次に、上記ばね用線材を用い、巻き数:15
巻、ばね指数 D/d:10のコイルばねに成形した。ここ
で、D はコイルばねの外径、d は線材径である。その
後、300℃で10分の低温焼鈍を行い、焼鈍前後のばね外
径の変化率Dbを求めた。その結果を表3に示す。Db値が
マイナスのものは外径が収縮したことを意味する。
Next, using the above wire for spring, the number of windings is 15
It was wound and formed into a coil spring with spring index D / d: 10. Here, D is the outer diameter of the coil spring, and d is the wire diameter. After that, low-temperature annealing was performed at 300 ° C. for 10 minutes, and the change rate Db of the outer diameter of the spring before and after annealing was determined. Table 3 shows the results. A negative Db value means that the outer diameter has contracted.

【0026】又、上記ばね用線材を用い、巻き数:45
巻、D/d:10の引張ばねに成形し、上記同様の焼鈍を行
い、焼鈍前後のフック交差角変化量を求め、又、巻き
数:6巻、D/d:10のトーションばねを成形し、同様に焼
鈍前後の対角変化量を求めた。更に、図3中に示したも
のと同様のフォーミング材を成形し、同様に焼鈍前後の
Lの寸法変化を求めた。これらの結果を表3に示す。値
がマイナスのものは角度又はLが減少したことを意味す
る。
The above wire for spring is used and the number of turns is 45.
Winding, forming into a tension spring with D / d: 10, annealing similar to the above, obtaining the amount of change in hook crossing angle before and after annealing, and forming a torsion spring with 6 turns and D / d: 10 Then, similarly, the diagonal change amount before and after annealing was obtained. Further, a forming material similar to that shown in FIG. 3 was molded, and the dimensional change of L before and after annealing was similarly obtained. Table 3 shows the results. A negative value means that the angle or L has decreased.

【0027】(実施例2)実施例1と同様のΦ5.5mm の
線材を圧延して厚み:3.0mmのリボン状の板にした後、11
00℃で溶体化処理した。これを原材料(原板)とし、酸
洗後表1と同様の加工率で冷間圧延してばね用板材を作
った。このときの加工率、原板での BCC相体積率、ばね
用板材でのM0相の体積率を表2に示す。尚、表1の場合
と加工法が異なるためにM0相体積率も少し異なる。
(Embodiment 2) A wire having a diameter of 5.5 mm similar to that of Embodiment 1 is rolled into a ribbon-shaped plate having a thickness of 3.0 mm, and then 11
Solution treatment was performed at 00 ° C. This was used as a raw material (raw plate), and after pickling, it was cold-rolled at the same processing rate as in Table 1 to make a spring plate material. Table 2 shows the processing rate, the BCC phase volume ratio in the original plate, and the M 0 phase volume ratio in the spring plate material. Since the processing method is different from that in Table 1, the volume ratio of M 0 phase is slightly different.

【0028】次に、上記ばね用板材を用い、図4中に示
したものと同様の板ばね(先端曲げ半径:板厚の8倍)
を成形し、実施例1と同様の焼鈍を行い、焼鈍前後の対
角変化量を求めた。その結果を表4に示す。値がマイナ
スのものは対角が減少したことを意味する。
Next, using the above spring plate material, a plate spring similar to that shown in FIG. 4 (tip bending radius: 8 times the plate thickness)
Was molded and annealed in the same manner as in Example 1 to obtain the amount of diagonal change before and after annealing. Table 4 shows the results. A negative value means that the diagonal has decreased.

【0029】表3〜4から判る如く、いづれのばねの場
合も、原材料(原線又は原板)でのBCC相体積率:30〜7
0%においては、それ以外の場合に比し、ばね用鋼材
(ばね用線材又は板材)でのM0相の体積率にかかわら
ず、寸法変化量(Db、対角変化量等)が極めて小さい。
As can be seen from Tables 3 and 4, in any spring, the BCC phase volume ratio of the raw material (raw wire or raw plate): 30 to 7
At 0%, the amount of dimensional change (Db, amount of diagonal change, etc.) is extremely small compared to other cases, regardless of the volume ratio of the M 0 phase in the spring steel material (spring wire rod or plate). .

【0030】尚、上記実施例では溶体化処理を1100℃で
行ったが、この温度に限定されず、合金元素が固溶化す
る温度でよく、例えば1000℃で行ってもよい。又、かか
る処理前に合金元素が既に固溶化しており、加工歪み等
の歪みがある場合は、その歪みを除去し得る温度に加熱
して焼鈍するだけでもよい。
Although the solution heat treatment is carried out at 1100 ° C. in the above-mentioned embodiment, the temperature is not limited to this temperature and may be a temperature at which the alloying element is solid-solved, for example, 1000 ° C. Further, when the alloying element has already been solid-soluted before such treatment and there is strain such as work strain, it is sufficient to heat to a temperature at which the strain can be removed and to anneal.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【発明の効果】本発明に係るばね用ステンレス鋼材によ
れば、ばね成形後の低温焼鈍によるばね寸法変化量を確
実に極めて小さくし得るようになり、従って、予備試験
の必要性がなくてばね製造工程での生産性を向上し得、
又、焼鈍後のばね寸法のバラツキが少なくて製品におけ
ばね寸法の高精度化を果たし得るようになる。
According to the stainless steel material for springs of the present invention, it is possible to surely reduce the amount of spring dimensional change due to low temperature annealing after spring forming, and therefore the spring can be eliminated without the need for preliminary tests. Can improve productivity in the manufacturing process ,
Also, put the product with a small variation of the spring dimensions after annealing
So it may play a precision of spring sizes that.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ばね用鋼線の原材料(原線)での体心立方格子
相(BCC相)の体積率、及び、ばね用鋼線(冷間加工上が
り状態)での加工誘起マルテンサイト(M0相)の体積率
と、低温焼鈍によるコイルばねの外径変化率(Db)との関
係を示す線図である。
[Fig. 1] Volume fraction of body-centered cubic lattice phase (BCC phase) in the raw material (raw wire) of spring steel wire, and work-induced martensite (M in cold-worked steel wire for spring (M) FIG. 3 is a diagram showing a relationship between a volume ratio of ( 0 phase) and an outer diameter change rate (Db) of a coil spring due to low temperature annealing.

【図2】原線での BCC相の体積率、及び、ばね用鋼線で
のM0相の体積率と、低温焼鈍による引きばねのフック交
差角変化量との関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the volume ratio of the BCC phase in the original wire, the volume ratio of the M 0 phase in the spring steel wire, and the amount of change in hook crossing angle of the tension spring due to low temperature annealing. .

【図3】原線での BCC相の体積率、及び、ばね用鋼線で
のM0相の体積率と、低温焼鈍によるフォーミング品のL
寸法変化量との関係を示す線図である。
[FIG. 3] Volume ratio of BCC phase in the original wire, volume ratio of M 0 phase in the steel wire for spring, and L of the formed product by low temperature annealing
It is a diagram which shows the relationship with the amount of dimensional change.

【図4】原材料(原板)での BCC相の体積率、及び、ば
ね用板材(冷間加工上がり)でのM0相の体積率と、低温
焼鈍による板ばねのV角の変化量との関係を示す線図で
ある。
FIG. 4 shows the volume ratio of the BCC phase in the raw material (raw plate), the volume ratio of the M 0 phase in the spring plate material (after cold working), and the change amount of the V angle of the leaf spring due to low temperature annealing. It is a diagram showing a relationship.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16F 1/02 F16F 1/02 A Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area F16F 1/02 F16F 1/02 A

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 面心立方格子相と体心立方格子相とを含
む多相混合組織から成り、溶体化処理した状態での原材
料の鋼材に含まれる体心立方格子相の量が、該体心立方
格子相と面心立方格子相との体積の和に対する体心立方
格子相の体積比の百分率である体積率で表して30〜7
0%となる値であることを特徴とする低温焼鈍時の寸法
安定性に優れたばね用ステンレス鋼材。
1. A Ri consists multiphase mixed structure comprising a face-centered cubic lattice phase and body-centered cubic lattice phase, raw materials in a state of solution treated
Of the body-centered cubic lattice phase contained in the steel material
Body-centered cubic for the sum of the volume of the lattice phase and the face-centered cubic lattice phase
30 to 7 in terms of volume ratio, which is the percentage of the volume ratio of the lattice phase
Dimension during low temperature annealing characterized by a value of 0%
Stainless steel material for springs with excellent stability .
【請求項2】 前記ステンレスばね用鋼材がコイルば
トーションばね用のばね用ステンレス鋼線である請
求項1記載の低温焼鈍時の寸法安定性に優れたばね用
テンレス鋼材。
Wherein said stainless spring steel coil springs, stainless steel wire for spring which claim 1 spring scan with excellent dimensional stability at low-temperature annealing of the description of the torsion spring
Tenless steel material.
【請求項3】 前記ばね用ステンレス鋼材が板ばね用
テンレス鋼板である請求項1記載の低温焼鈍時の寸法安
定性に優れたばね用ステンレス鋼材。
3. The stainless steel material for springs is a spring for leaf springs .
The dimensional stability during low temperature annealing according to claim 1, which is a stainless steel plate.
Stainless steel material for springs with excellent qualities.
JP3056792A 1991-03-20 1991-03-20 Stainless steel for springs with excellent dimensional stability during low temperature annealing Expired - Fee Related JP2677910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056792A JP2677910B2 (en) 1991-03-20 1991-03-20 Stainless steel for springs with excellent dimensional stability during low temperature annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056792A JP2677910B2 (en) 1991-03-20 1991-03-20 Stainless steel for springs with excellent dimensional stability during low temperature annealing

Publications (2)

Publication Number Publication Date
JPH0711390A JPH0711390A (en) 1995-01-13
JP2677910B2 true JP2677910B2 (en) 1997-11-17

Family

ID=13037264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056792A Expired - Fee Related JP2677910B2 (en) 1991-03-20 1991-03-20 Stainless steel for springs with excellent dimensional stability during low temperature annealing

Country Status (1)

Country Link
JP (1) JP2677910B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142747A (en) * 1985-12-18 1987-06-26 Kobe Steel Ltd Manufacture of spring steel for cold forming and cold-formed coiled spring by use of same
JPH0826404B2 (en) * 1987-06-22 1996-03-13 日新製鋼株式会社 Method for producing high strength stainless steel with excellent overhang strength and toughness

Also Published As

Publication number Publication date
JPH0711390A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
JP5265835B2 (en) Method for producing non-oriented electrical steel sheet
EP0684320A1 (en) Process of making electrical steels
JP6119928B1 (en) Cold rolled steel sheet and method for producing the same
JPH0913136A (en) Spiral spring and its production
JP2677910B2 (en) Stainless steel for springs with excellent dimensional stability during low temperature annealing
JPS6026648A (en) Manufacture of shape memory ni-ti alloy plate
JPH07110981B2 (en) Steel material for spring
JP7102988B2 (en) Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JP2590533B2 (en) Manufacturing method of silicon steel sheet
JPS60258414A (en) Production of non-oriented electrical iron sheet having high magnetic flux density
US3874954A (en) Method of preparing iron silicon alloys with high silicon content for cold working requiring ductility
JP2003342693A (en) Austenitic stainless steel foil for vapor deposition substrate of high-temperature superconducting material and its production method
JPH062046A (en) Production of ferritic stainless steel sheet excellent in surface characteristic and deep drawability
JPH0830252B2 (en) Stainless steel wire for spring
JPH06264207A (en) Production of al-based intermetallic compound thin film excellent in oxidation resistance
JPH0860277A (en) Nickel-titanium alloy
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JP2004217996A (en) Ferritic stainless steel sheet superior in formability, and manufacturing method therefor
JPH101763A (en) Production of nickel-titanium alloy material
KR20170059071A (en) Method for manufacturing steel and stainless steel with two phase structure of austenite and martensite
JPH062044A (en) Production of thin cast slab of ferritic stainless steel
JP3941408B2 (en) Method for producing ferritic stainless steel sheet with excellent formability
JPH06184632A (en) Production of ferritic stainless steel thin sheet
JPH0633160A (en) Spring material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970715

LAPS Cancellation because of no payment of annual fees