JPH04308060A - Steel material for spring - Google Patents

Steel material for spring

Info

Publication number
JPH04308060A
JPH04308060A JP7174791A JP7174791A JPH04308060A JP H04308060 A JPH04308060 A JP H04308060A JP 7174791 A JP7174791 A JP 7174791A JP 7174791 A JP7174791 A JP 7174791A JP H04308060 A JPH04308060 A JP H04308060A
Authority
JP
Japan
Prior art keywords
spring
steel material
phase
centered cubic
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7174791A
Other languages
Japanese (ja)
Other versions
JPH07110981B2 (en
Inventor
Yukio Yamaoka
幸男 山岡
Masaru Kodama
勝 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP7174791A priority Critical patent/JPH07110981B2/en
Publication of JPH04308060A publication Critical patent/JPH04308060A/en
Publication of JPH07110981B2 publication Critical patent/JPH07110981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the amount of change in the dimension of a spring due to low temp. annealing after spring forming by regulating the volume percentage of the body-centered cubic phase, to extend the range of practical application of the volume percentage of the body-centered cubic phase capable of minimizing the above amount of dimensional change by regulating Mo content in a steel material, and to remarkably improve practical utility. CONSTITUTION:The steel material is a steel material for spring prepared by using a solution-treated steel material consisting of a multiphase mixed structure containing face-centered cubic lattice phase and body-centered cubic lattice phase as a starting material and forming it into the prescribed shape and dimensions. Further, the above steel material contains 0.5-4wt.% Mo and the volume percentage of the body-centered cubic lattice phase contained in the solution-treated steel material is regulated to 20-80%.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ばね用鋼材に関し、詳
細には、ばね用鋼線や板ばね用鋼板等の如きばね用鋼材
であって、特にばね成形後の低温焼鈍時の寸法変化が小
さいばね用鋼材に関する。
[Field of Industrial Application] The present invention relates to steel materials for springs, and more particularly to steel materials for springs such as steel wires for springs and steel plates for leaf springs, in particular dimensional changes during low-temperature annealing after spring forming. Regarding steel materials for springs with small sizes.

【0002】0002

【従来の技術】ばね用鋼材はコイルばねや板ばね等のば
ねの素材(鋼線や鋼板状等)であり、溶体化処理された
鋼材を原材料として所定形状寸法に成形加工してなるも
のである。一般的に該成形加工は伸線加工の如き冷間加
工と焼鈍とを繰り返して行われる。その繰り返しの最後
はばね性確保等のために冷間加工工程とされ、従ってば
ね用鋼材は所謂冷間加工上がりの状態のものになってい
る。例えば、コイルばね用鋼線は線材を1150℃に加
熱後水冷して焼鈍し、酸洗後、伸線加工をしてばね用鋼
線に仕上げられる。
[Prior Art] Spring steel is a material (steel wire, steel plate, etc.) for springs such as coil springs and leaf springs, and is made by forming solution-treated steel into a predetermined shape and size using raw material. be. Generally, the forming process is performed repeatedly by cold working such as wire drawing and annealing. At the end of this repetition, a cold working step is performed to ensure spring properties, and therefore the spring steel material is in a so-called cold worked state. For example, steel wire for coil springs is produced by heating the wire to 1150° C., cooling it with water, annealing it, pickling it, and then drawing it to produce a steel wire for springs.

【0003】かかるばね用鋼材は、ばね形状に成形され
た後、残留歪みの除去や弾性限度の向上等の目的で低温
焼鈍処理され、ばねと成る。このとき、焼鈍により寸法
変化が生じることは従来からよく知られている。
[0003] After the steel material for springs is formed into a spring shape, it is annealed at a low temperature for the purpose of removing residual strain and improving the elastic limit, and then becomes a spring. At this time, it has been well known that dimensional changes occur due to annealing.

【0004】例えば、ピアノ線、硬鋼線、ステンレス鋼
線などの所謂ばね用鋼線は、コイルばねに成形後、ピア
ノ線や硬鋼線では 250〜400 ℃で焼鈍され、該
焼鈍によりコイルばねの外径が小さくなり、ステンレス
鋼線では 300〜400 ℃の温度で焼鈍され、外径
が大きくなることが知られている(日本ばね協会編「ば
ね」(丸善株式会社発行)の第 314頁参照)。
For example, so-called spring steel wires such as piano wire, hard steel wire, and stainless steel wire are annealed at 250 to 400° C. after being formed into coil springs. It is known that the outer diameter of stainless steel wire becomes smaller when it is annealed at a temperature of 300 to 400°C (page 314 of "Spring" edited by Japan Spring Association (published by Maruzen Co., Ltd.)). reference).

【0005】トーションばねや引きばね等の如くコイル
両端に直線部分やフック部を有するものは、ばね成形後
の焼鈍により交差角が変化し、ピアノ線や硬鋼線から成
るものでは両端の交差角が増大して開き、ステンレス鋼
線から成るものでは閉じる。フォーミング材においても
その形状によるが成形後の焼鈍により成形材の寸法がか
なり変化する。ばね用冷間圧延鋼板、SUS301CS
P, SUS304CSP等のばね用ステンレス鋼板や
、ピアノ線、ステンレス鋼線を圧延して成る薄板等の如
き板ばね用鋼板の場合も、曲げ成形加工後の焼鈍により
その寸法がかなり変化する。
For products such as torsion springs and tension springs that have straight parts or hook parts at both ends of the coil, the intersection angle changes due to annealing after spring forming, and for products made of piano wire or hard steel wire, the intersection angle at both ends changes. increases and opens, and those made of stainless steel wire close. Although it depends on the shape of the forming material, the dimensions of the forming material change considerably due to annealing after forming. Cold rolled steel plate for springs, SUS301CS
In the case of stainless steel plates for springs such as P, SUS304CSP, etc., and steel plates for leaf springs such as thin plates made of piano wire and stainless steel wire, the dimensions change considerably due to annealing after bending and forming.

【0006】[0006]

【発明が解決しようとする課題】前記の如くばね用鋼材
はばね成形後の焼鈍により寸法変化が生じるので、作業
者はかかる変化を見込んで成形する。例えば、コイルば
ねの場合、ピアノ線、硬鋼線では仕様通りの仕上寸法よ
り外径が大き目のばねに成形し、ステンレス鋼線では小
さ目のばねに成形し、低温焼鈍により寸法変化が起こっ
て丁度仕様寸法のばねになるように工夫を凝らしている
As mentioned above, dimensional changes occur in spring steel materials due to annealing after spring forming, so workers form the springs with these changes in mind. For example, in the case of coil springs, piano wire and hard steel wire are formed into a spring with an outer diameter larger than the finished dimensions according to specifications, and stainless steel wire is formed into a smaller spring, and dimensional changes occur due to low-temperature annealing. We have worked hard to create springs with the specified dimensions.

【0007】しかしながら、上記寸法変化量は微妙な差
を有するものであるから、一般には長年の経験に依存せ
ざるを得ないという面があって大変であり、そのため実
作業においては、その都度ばねを予め予備成形して低温
焼鈍を行い、寸法変化量を把握する予備試験を種々行い
、その結果に基づき本生産しているのが現実であり、従
って、予備試験に時間を要し、それだけばね製造能率が
低下するという問題点があり、その改善が望まれている
。又、上記の如く予備試験に基づき本生産したとしても
、焼鈍後のばね寸法は一定ではなくてバラツキのあるこ
とが多いので、ばね寸法の高精度化がし難いという問題
点があり、その改善も望まれている。
However, since the amount of dimensional change mentioned above has subtle differences, it is generally difficult to rely on many years of experience. Therefore, in actual work, it is difficult to The reality is that springs are preformed in advance, annealed at low temperatures, various preliminary tests are conducted to determine the amount of dimensional change, and actual production is based on the results. There is a problem that manufacturing efficiency is reduced, and improvement of this problem is desired. In addition, even if actual production is carried out based on the preliminary tests as described above, the spring dimensions after annealing are not constant and often vary, so there is a problem that it is difficult to improve the precision of the spring dimensions. is also desired.

【0008】このようなことから、ばね成形後の低温焼
鈍処理時に寸法変化が生じ難いばね用鋼材が得られれば
上記問題点を解消できるので、かかるばね用鋼材の実現
が斯界において渇望されているのは言を俟たないところ
である。
[0008] For these reasons, the above-mentioned problems can be solved if a steel material for springs that does not undergo dimensional changes during low-temperature annealing treatment after spring forming can be obtained, and the realization of such a steel material for springs is highly desired in the industry. This is beyond words.

【0009】本発明は、かかる事情に着目してなされた
ものであって、その目的は、ばね成形後の低温焼鈍処理
時に寸法変化が生じ難いばね用鋼材を提供し、もってば
ねの生産性はもとよりばね寸法の高精度化を図るもので
ある。
[0009] The present invention has been made in view of the above circumstances, and its purpose is to provide a steel material for springs that does not easily undergo dimensional changes during low-temperature annealing treatment after spring forming, thereby improving the productivity of springs. This is intended to improve the precision of spring dimensions.

【0010】0010

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るばね用鋼材は次のような構成としてい
る。即ち、請求項1記載のばね用鋼材は、面心立方格子
相と体心立方格子相とを含む多相混合組織から成ると共
に溶体化処理された鋼材を原材料として所定形状寸法に
成形加工してなるばね用鋼材において、前記鋼材がMo
を 0.5〜4wt%含有し、且つ、前記溶体化処理さ
れた鋼材に含まれる体心立方格子相の体積率が20〜8
0%であることを特徴とするばね用鋼材である。
[Means for Solving the Problems] In order to achieve the above object, a spring steel material according to the present invention has the following structure. That is, the spring steel material according to claim 1 is made of a multiphase mixed structure including a face-centered cubic lattice phase and a body-centered cubic lattice phase, and is formed by forming a solution-treated steel material into a predetermined shape and size as a raw material. In the spring steel material, the steel material is Mo
0.5 to 4 wt%, and the volume fraction of the body-centered cubic lattice phase contained in the solution-treated steel material is 20 to 8
This is a steel material for springs characterized by 0%.

【0011】請求項2記載のばね用鋼材は、前記ばね用
鋼材がコイルばねやトーションばね用等のばね用鋼線で
ある請求項1記載のばね用鋼材である。又、請求項3記
載のばね用鋼材は、前記ばね用鋼材が板ばね用鋼板であ
る請求項1記載のばね用鋼材である。
A second aspect of the present invention provides a spring steel material according to the first aspect, wherein the spring steel material is a spring steel wire for a coil spring, a torsion spring, or the like. Further, the spring steel material according to claim 3 is the spring steel material according to claim 1, wherein the spring steel material is a plate spring steel plate.

【0012】0012

【作  用】前述の如く、従来のコイルばねにおいては
、コイルばね成形後の低温焼鈍により、ピアノ線や硬鋼
線からなるものでは外径が収縮し、一方ステンレス鋼線
からなるものでは膨張する。金属組織的、結晶構造的に
は前者は殆どがフェライトやマルテンサイト等と言われ
る体心立方格子相(以降 BCC相という)からなり、
一方、後者のステンレス鋼は殆どがオーステナイトと言
われる面心立方格子相(以降 FCC相という)からな
る。故に、 FCC相からなるものと BCC相からな
るものとでは低温焼鈍による寸法変化の仕方は逆の関係
にあることになる。 従って、 FCC相と BCC相とを含む多相混合組織
から成るものでは両相が互いに打ち消し合う作用が働き
、低温焼鈍での寸法変化が生じ難くなるのではないかと
考えられる。
[Function] As mentioned above, in conventional coil springs, due to low-temperature annealing after coil spring forming, those made of piano wire or hard steel wire contract in outer diameter, while those made of stainless steel wire expand. . In terms of metallographic structure and crystal structure, the former consists mostly of body-centered cubic lattice phases (hereinafter referred to as BCC phases) such as ferrite and martensite.
On the other hand, the latter stainless steel consists mostly of a face-centered cubic lattice phase called austenite (hereinafter referred to as FCC phase). Therefore, the dimensional changes due to low-temperature annealing are in an opposite relationship between those made of the FCC phase and those made of the BCC phase. Therefore, it is thought that in a material consisting of a multiphase mixed structure including an FCC phase and a BCC phase, the two phases cancel each other out, making it difficult for dimensional changes to occur during low-temperature annealing.

【0013】本発明は、かかる考え方に基づき、 FC
C相と BCC相とを含む多相混合組織から成る種々の
ばねを成形し、低温焼鈍し、焼鈍前後のばね寸法変化量
を克明に調べ、その結果得られた下記知見に基づきなさ
れたものである。
[0013] The present invention is based on this idea, and the FC
This was done based on the following knowledge obtained by forming various springs with a multiphase mixed structure including C phase and BCC phase, annealing them at low temperature, and thoroughly investigating the amount of change in spring dimensions before and after annealing. be.

【0014】即ち、溶体化処理された鋼材(原材料)を
冷間加工と焼鈍とを繰り返し施工して、冷間加工上がり
状態のばね用鋼材に成形加工し、該ばね用鋼材より種々
のばねを成形し、低温焼鈍し、焼鈍前後のばね寸法変化
量を測定し、一方、上記原材料、ばね用鋼材、成形後ば
ねについて BCC相の体積率( FCC相及び BC
C相の全体積に対する BCC相の体積の百分率)を求
め、これら体積率とばね寸法変化量との関係を調べた。
That is, a solution-treated steel material (raw material) is repeatedly cold-worked and annealed to form a cold-worked spring steel material, and various springs are made from the spring steel material. The dimensional change of the spring before and after annealing was measured.
The percentage of the volume of the BCC phase relative to the total volume of the C phase was determined, and the relationship between these volume ratios and the amount of spring dimensional change was investigated.

【0015】その結果、溶体化処理された鋼材(原材料
)での BCC相の体積率が50%付近の範囲、即ちA
(=50−α)%〜B(=50+β)%の範囲において
焼鈍前後のばね寸法変化量が極めて小さく、かかる範囲
(A〜B%)は鋼材にMoを0.5wt%以上含有させ
ることにより20〜80%の範囲にまで拡大し、焼鈍前
後のばね寸法変化量を確実に安定して(即ち実用性高く
)小さくし得るという知見が得られた。又、ばね用鋼材
又は成形後のばねにおいても BCC相の一種である加
工誘起マルテンサイト(以降、DM相という)を含有し
ない場合には、上記と同様の傾向を示すことが判った。 従って、焼鈍前後のばね寸法変化量を上記の如く小さく
するための必要十分条件は、鋼材にMoを0.5wt%
以上含有させると共に、DM相を含有しない場合のBC
C相体積率を20〜80%にする事であり、かかる体積
率にするには確実にDM相を含有しない溶体化処理され
た鋼材での BCC相体積率を20〜80%にすればよ
い。
[0015] As a result, the volume fraction of the BCC phase in the solution-treated steel material (raw material) is in the range of around 50%, that is, A
In the range of (=50-α)% to B(=50+β)%, the spring dimensional change before and after annealing is extremely small, and this range (A to B%) can be achieved by containing 0.5wt% or more of Mo in the steel material. It has been found that the change in spring dimensions before and after annealing can be reduced reliably and stably (that is, with high practicality) by increasing the variation to a range of 20 to 80%. Furthermore, it has been found that the same tendency as described above is exhibited when the spring steel material or the formed spring does not contain deformation-induced martensite (hereinafter referred to as DM phase), which is a type of BCC phase. Therefore, the necessary and sufficient condition for reducing the spring dimensional change before and after annealing as described above is to add 0.5wt% Mo to the steel material.
BC containing the above and not containing DM phase
The aim is to set the C phase volume fraction to 20 to 80%, and to achieve this volume percentage, the BCC phase volume fraction in a solution-treated steel material that does not contain the DM phase must be set to 20 to 80%. .

【0016】そこで、本発明に係るばね用鋼材は、面心
立方格子相( FCC相)と体心立方格子相( BCC
相)とを含む多相混合組織から成ると共に溶体化処理さ
れた鋼材を原材料として所定形状寸法に成形加工してな
るばね用鋼材であって、前記鋼材がMoを 0.5〜4
wt%含有し、且つ、前記溶体化処理された鋼材に含ま
れる体心立方格子相の体積率(BCC相の体積率)を2
0〜80%にしているのである。故に、本発明に係るば
ね用鋼材によれば、上記必要十分条件が充たされ、ばね
成形後の低温焼鈍によるばね寸法変化量を確実に安定し
て(実用性高く)極めて小さくし得るようになる。従っ
て、予備試験の必要性がなくてばねの生産性を向上し得
、又、焼鈍後のばね寸法のバラツキが少なくてばね寸法
の高精度化を実用性高く果たし得るようになる。
Therefore, the spring steel material according to the present invention has a face-centered cubic lattice phase (FCC phase) and a body-centered cubic lattice phase (BCC phase).
A spring steel material formed by forming a solution-treated steel material into a predetermined shape and size as a raw material, the steel material having a multiphase mixed structure containing a phase) containing Mo of 0.5 to 4.
wt%, and the volume fraction of the body-centered cubic lattice phase (volume fraction of the BCC phase) contained in the solution-treated steel material is 2.
It is set at 0 to 80%. Therefore, according to the steel material for springs according to the present invention, the above-mentioned necessary and sufficient conditions are satisfied, and the spring dimensional change due to low-temperature annealing after spring forming can be reliably stabilized (highly practical) and extremely small. Become. Therefore, there is no need for a preliminary test, which improves the productivity of the spring, and there is less variation in the dimensions of the spring after annealing, making it possible to achieve high precision in the dimensions of the spring with high practicality.

【0017】上記Mo含有量、 BCC相体積率の数値
限定理由を以下説明する。Mo含有量:0.5wt%未
満では上記ばね寸法変化量の極小化を示す BCC相体
積率の実用可能範囲が狭くて実用性に劣り、その結果ば
ね寸法のバラツキを生じる可能性があり、寸法の高精度
化を常時果たすことが容易でなくて実用性に欠け、一方
、Moは高価な元素であって4wt%超では経済性が著
しく悪くなり、又、鋼材組成によっては鋼材が脆化して
支障を生じる場合があり、従ってMo含有量は 0.5
〜4wt%にする必要がある。
[0017] The reasons for limiting the above-mentioned Mo content and BCC phase volume fraction will be explained below. If the Mo content is less than 0.5 wt%, the above spring dimensional change will be minimized.The practical range of the BCC phase volume ratio is narrow and practical, and as a result, the spring dimensions may vary, and the dimensions On the other hand, Mo is an expensive element, and if it exceeds 4wt%, it becomes extremely uneconomical, and depending on the steel composition, the steel may become brittle. Therefore, the Mo content is 0.5.
It is necessary to make it ~4wt%.

【0018】BCC相体積率:20%未満、或いは80
%超では、低温焼鈍によるばね寸法変化が生じ、ばね寸
法変化量の極小化の確実性に欠けると共にばね寸法の高
精度化を果たし難くなり、従って、 BCC相体積率は
20〜80%にする必要があるのである。
BCC phase volume fraction: less than 20%, or 80%
%, spring dimensional changes occur due to low-temperature annealing, making it difficult to minimize the amount of spring dimensional change and making it difficult to achieve high precision in spring dimensions. Therefore, the BCC phase volume fraction should be 20 to 80%. There is a need.

【0019】例えば、図1〜4は以上のことを立証した
線図であって、図1は、ばね用鋼材の原材料として溶体
化処理された線材(原線)を使用した場合の該原線での
 BCC相の体積率と、コイルばね成形後の低温焼鈍(
300℃×10分)前後における外径変化率(Db)と
の関係を、鋼材中のMo含有量(原線中のMo含有量と
同等)をパラメータとして示したものである。尚、Db
は下記■式により求めた。
For example, FIGS. 1 to 4 are diagrams that prove the above, and FIG. 1 shows a raw wire when solution-treated wire (raw wire) is used as a raw material for spring steel material. The volume fraction of the BCC phase in , and the low temperature annealing after coil spring forming (
The relationship between the outer diameter change rate (Db) at around 300° C. for 10 minutes is shown using the Mo content in the steel material (equivalent to the Mo content in the raw wire) as a parameter. Furthermore, Db
was determined by the following formula (■).

【0020】Db(%)=100 ×(D1−D2)/
D1 −−−■但し■式において、D1はコイルばね成
形後の外径(mm)、D2は低温焼鈍後の外径(mm)
である。
[0020] Db (%) = 100 × (D1-D2)/
D1 ---■ However, in the formula, D1 is the outer diameter (mm) after coil spring forming, and D2 is the outer diameter (mm) after low-temperature annealing.
It is.

【0021】図1から判る如く、原線での BCC相の
体積率が50%付近ではいづれもDbが殆ど零であって
極めて小さいが、かかるDbの極小値を示す BCC相
体積率の範囲(A〜B%)は、Mo含有量:0.5wt
%未満のとき狭く、これに対してMo含有量:0.5w
t%以上のとき極めて広くて20〜80%になり、この
範囲においてはDb略零であってばね寸法変化が生じな
い。従って、鋼材にMoを0.5wt%以上含有させ、
且つ、原線(即ち溶体化処理された鋼材)での BCC
相体積率を20〜80%にすると、Dbを略零にし得、
且つ、Db略零にするための BCC相体積率の実用可
能範囲が広くて実用性を大幅に向上し得ることが判る。 このとき、原線を加工して得られるばね用鋼材(鋼線)
において、DM相を多量に含有して BCC相体積率が
たとえ 100%になってもよく、Dbは小さくなる。 一方、原線での BCC相体積率が20%よりも小さい
とき、加工によりDM相を生成させてばね用鋼材でのB
CC 相の体積率を20〜80%にし得るが、そのよう
にしてもDbは小さくできず、却って大きくなる。
As can be seen from FIG. 1, when the volume fraction of the BCC phase in the original wire is around 50%, Db is almost zero and extremely small, but the range of the volume fraction of the BCC phase ( A~B%) Mo content: 0.5wt
narrow when it is less than %, whereas Mo content: 0.5w
When it is t% or more, it is extremely wide, ranging from 20 to 80%, and within this range, Db is approximately zero and no change in spring dimensions occurs. Therefore, by making the steel material contain 0.5 wt% or more of Mo,
And BCC on raw wire (i.e. solution treated steel)
When the phase volume ratio is set to 20 to 80%, Db can be reduced to approximately zero,
In addition, it can be seen that the practical range of the BCC phase volume fraction for reducing Db to approximately zero is wide, and the practicality can be greatly improved. At this time, spring steel material (steel wire) obtained by processing the raw wire
In this case, the BCC phase volume fraction may be even 100% by containing a large amount of DM phase, and Db becomes small. On the other hand, when the BCC phase volume fraction in the raw wire is smaller than 20%, the DM phase is generated by processing and the BCC phase in the spring steel material is reduced.
Although the volume fraction of the CC phase can be made 20 to 80%, even if this is done, Db cannot be made smaller, but rather becomes larger.

【0022】図2は引張ばねの場合についての結果を示
すものであって、鋼材のMo含有量:0.5wt %以
上のとき、原線(溶体化処理された鋼材)での BCC
相体積率:20〜80%において、ばね成形後の低温焼
鈍(300℃×10分)前後の両端フックの交差角変化
量が小さい。又、トーションばねについても同様傾向の
結果が得られた。
FIG. 2 shows the results for the case of a tension spring, and shows that when the Mo content of the steel material is 0.5 wt % or more, the BCC of the raw wire (solution-treated steel material) is
When the phase volume ratio is 20 to 80%, the amount of change in the intersection angle of the hooks at both ends before and after the low-temperature annealing (300°C x 10 minutes) after spring forming is small. Similar results were also obtained for torsion springs.

【0023】図3はフォーミング品の場合の結果であっ
て、鋼材のMo含有量:0.5wt %以上のとき、原
線(溶体化処理された鋼材)での BCC相体積率:2
0〜80%において、低温焼鈍(300℃×10分)前
後の図中に示したLの寸法変化が小さい。又、図4に示
す如く板ばねの場合も、鋼材のMo含有量:0.5wt
 %以上のとき、原材料段階での BCC相体積率:2
0〜80%において、低温焼鈍(300℃×10分)前
後のV角の変化量が小さい。
[0023] Figure 3 shows the results for a formed product, and shows that when the Mo content of the steel material is 0.5 wt% or more, the BCC phase volume fraction in the raw wire (solution-treated steel material) is 2.
At 0% to 80%, the dimensional change of L shown in the figure before and after low temperature annealing (300°C x 10 minutes) is small. Also, as shown in Fig. 4, in the case of a leaf spring, the Mo content of the steel material is 0.5wt.
% or more, BCC phase volume fraction at raw material stage: 2
In the range of 0 to 80%, the amount of change in the V angle before and after low temperature annealing (300°C x 10 minutes) is small.

【0024】[0024]

【表1】[Table 1]

【0025】[0025]

【表2】[Table 2]

【0026】[0026]

【実施例】種々の成分のCr−Ni−Si系及び Cr
−Ni−Si−Mo系の鋼よりなるばね用鋼材(線材及
び板材)を製造し、これらより各種ばねを製作し、 B
CC相体積率や低温焼鈍による寸法変化量等を測定した
。その詳細を以下説明する。
[Example] Various components of Cr-Ni-Si system and Cr
- Manufacture spring steel materials (wire rods and plate materials) made of Ni-Si-Mo steel, manufacture various springs from these materials, B
The CC phase volume fraction and the amount of dimensional change due to low-temperature annealing were measured. The details will be explained below.

【0027】(実施例1)Φ5.5mm の線材を11
00℃で溶体化処理し、酸洗・コーティング処理後Φ3
.0mmまで伸線加工し、更に1100℃で溶体化処理
した。これを原材料(原線)とし、酸洗・コーティング
後 120m/minの速度で伸線加工し、Φ1.0m
m のばね用線材を作った。このとき、原線での BC
C相の体積率、公称Mo量及び化学成分を表1に示す如
く種々変化させた。
(Example 1) 11 wire rods with a diameter of 5.5 mm
After solution treatment at 00℃, pickling and coating treatment, Φ3
.. The wire was drawn to a thickness of 0 mm and then solution-treated at 1100°C. This was used as a raw material (raw wire), and after pickling and coating, it was drawn at a speed of 120 m/min to a diameter of 1.0 m.
I made a wire rod for a spring. At this time, BC at the original line
The volume fraction of the C phase, the nominal amount of Mo, and the chemical composition were varied as shown in Table 1.

【0028】次に、上記ばね用線材を用い、巻き数:1
5巻、ばね指数 D/d:10のコイルばねに成形した
。ここで、D はコイルばねの外径、d は線材径であ
る。その後、300℃で10分の低温焼鈍を行い、焼鈍
前後のばね外径の変化率Dbを求めた。その結果を表2
に示す。Db値がマイナスのものは外径が収縮したこと
を意味する。
Next, using the above spring wire material, the number of turns: 1
It was formed into a coil spring with 5 turns and a spring index D/d:10. Here, D is the outer diameter of the coil spring, and d is the wire diameter. Thereafter, low-temperature annealing was performed at 300° C. for 10 minutes, and the rate of change Db in the spring outer diameter before and after annealing was determined. Table 2 shows the results.
Shown below. A negative Db value means that the outer diameter has shrunk.

【0029】又、上記ばね用線材を用い、巻き数:45
巻、D/d:10の引張ばねに成形し、上記同様の焼鈍
を行い、焼鈍前後のフック交差角変化量を求め、又、巻
き数:6巻、D/d:10のトーションばねを成形し、
同様に焼鈍前後の対角変化量を求めた。更に、図3中に
示したものと同様のフォーミング材を成形し、同様に焼
鈍前後のLの寸法変化を求めた。これらの結果を表2に
示す。値がマイナスのものは角度又はLが減少したこと
を意味する。
[0029] Also, using the above spring wire material, the number of turns: 45
It was formed into a tension spring with 6 turns, D/d: 10, annealed in the same manner as above, the amount of change in the hook intersection angle before and after annealing was determined, and a torsion spring with 6 turns, D/d: 10 was formed. death,
Similarly, the amount of diagonal change before and after annealing was determined. Furthermore, a forming material similar to that shown in FIG. 3 was molded, and the dimensional change in L before and after annealing was similarly determined. These results are shown in Table 2. A negative value means that the angle or L has decreased.

【0030】(実施例2)実施例1と同様のΦ5.5m
m の線材を圧延して厚み:2.0mmのリボン状の板
にした後、1100℃で溶体化処理した。これを原材料
(原板)とし、酸洗後板厚減少率75%の冷間圧延を行
い、板厚:0.5mmのばね用板材を作った。尚、該原
板での BCC相体積率は原線でのそれ(表1に示すも
の)と同様である。
(Example 2) Φ5.5m similar to Example 1
After rolling a wire rod of 2.0 mm into a ribbon-like plate with a thickness of 2.0 mm, it was solution-treated at 1100°C. This was used as a raw material (original plate), and after pickling, cold rolling was performed at a plate thickness reduction rate of 75% to produce a plate material for a spring with a plate thickness of 0.5 mm. The volume fraction of the BCC phase in the original plate is the same as that in the original wire (shown in Table 1).

【0031】次に、上記ばね用板材を用い、図4中に示
したものと同様の板ばね(先端曲げ半径:板厚の8倍)
を成形し、実施例1と同様の焼鈍(300 ℃×10分
)を行い、焼鈍前後の対角変化量を求めた。その結果を
表2に示す。値がマイナスのものは対角が減少したこと
を意味する。
Next, using the above spring plate material, a plate spring similar to that shown in FIG. 4 (tip bending radius: 8 times the plate thickness)
was molded and annealed in the same manner as in Example 1 (300°C x 10 minutes), and the amount of diagonal change before and after annealing was determined. The results are shown in Table 2. A negative value means that the diagonal has decreased.

【0032】表2及び表1から判る如く、鋼材(原線、
ばね用線材又は原板)のMo含有量を0.5〜4wt%
にし、且つ、原材料(原線又は原板)での BCC相体
積率:20〜80%にしたものにおいては、それ以外の
場合に比し、低温焼鈍前後の寸法変化量(Db、対角変
化量等)が極めて小さい。
As can be seen from Tables 2 and 1, steel materials (raw wire,
Mo content of spring wire rod or original plate) is 0.5 to 4 wt%.
In addition, when the BCC phase volume fraction in the raw material (original wire or original plate) is set to 20 to 80%, the amount of dimensional change (Db, amount of diagonal change) before and after low-temperature annealing is higher than in other cases. etc.) is extremely small.

【0033】尚、上記実施例では溶体化処理を1100
℃で行ったが、この温度に限定されず、合金元素が固溶
化する温度でよく、例えば1000℃で行ってもよい。 又、かかる処理前に合金元素が既に固溶化しており、加
工歪み等の歪みがある場合は、その歪みを除去し得る温
度に加熱して焼鈍するだけでもよい。
[0033] In the above example, the solution treatment was carried out at 1100
℃, but is not limited to this temperature, and may be any temperature at which the alloying elements become a solid solution, for example, 1000°C. In addition, if the alloying elements have already been dissolved into a solid solution before such treatment and there is distortion such as processing distortion, it is sufficient to simply heat and anneal to a temperature that can remove the distortion.

【0034】[0034]

【発明の効果】本発明に係るばね用鋼材は以上説明した
構成を有し作用をなすものであって、溶体化処理された
鋼材に含まれる体心立方格子相の体積率の調整によって
、ばね成形後の低温焼鈍によるばね寸法変化量を確実に
安定して極めて小さくし得るようになり、しかも鋼材中
Mo含有量の調整によって上記ばね寸法変化量の極小化
可能な体心立方格子相の体積率の実用可能範囲を拡大し
て実用性を大幅に向上しており、従って、予備試験の必
要性がなくてばねの生産性を向上し得、又、焼鈍後のば
ね寸法のバラツキが少なくてばね寸法の高精度化を実用
性高く果たし得るようになるという効果を奏するもので
ある。
[Effects of the Invention] The steel material for springs according to the present invention has the structure and function described above, and by adjusting the volume fraction of the body-centered cubic lattice phase contained in the solution-treated steel material, the spring steel material has the structure and function described above. The volume of the body-centered cubic lattice phase makes it possible to reliably and stably reduce the amount of spring dimensional change due to low-temperature annealing after forming, and to minimize the spring dimensional change by adjusting the Mo content in the steel material. The practicality has been greatly improved by expanding the practical range of the rate, and therefore there is no need for preliminary tests, which improves the productivity of springs, and there is less variation in spring dimensions after annealing. This has the effect of increasing the precision of spring dimensions with high practicality.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】ばね用鋼線の原材料(原線)での体心立方格子
相(BCC相)の体積率、及び、Mo含有量と、低温焼
鈍によるコイルばねの外径変化率(Db)との関係を示
す線図である。
[Figure 1] Volume fraction of body-centered cubic lattice phase (BCC phase) and Mo content in raw material (raw wire) of spring steel wire, Mo content, and outer diameter change rate (Db) of coil spring due to low-temperature annealing. FIG.

【図2】原線での BCC相の体積率、及び、Mo含有
量と、低温焼鈍による引張ばねのフック交差角変化量と
の関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the volume fraction of the BCC phase in the original wire, the Mo content, and the amount of change in the hook intersection angle of the tension spring due to low-temperature annealing.

【図3】原線での BCC相の体積率、及び、Mo含有
量と、低温焼鈍によるフォーミング品のL寸法変化量と
の関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the volume fraction of the BCC phase in the original wire, the Mo content, and the amount of change in L dimension of the formed product due to low-temperature annealing.

【図4】原材料(原板)での BCC相の体積率、及び
、Mo含有量と、低温焼鈍による板ばねのV角の変化量
との関係を示す線図である。
FIG. 4 is a diagram showing the relationship between the volume fraction of the BCC phase and the Mo content in the raw material (original plate) and the amount of change in the V angle of the leaf spring due to low-temperature annealing.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  面心立方格子相と体心立方格子相とを
含む多相混合組織から成ると共に溶体化処理された鋼材
を原材料として所定形状寸法に成形加工してなるばね用
鋼材において、前記鋼材がMoを 0.5〜4wt%含
有し、且つ、前記溶体化処理された鋼材に含まれる体心
立方格子相の体積率が20〜80%であることを特徴と
するばね用鋼材。
1. A spring steel material formed from a solution-treated steel material having a multiphase mixed structure including a face-centered cubic lattice phase and a body-centered cubic lattice phase and formed into a predetermined shape and size using the steel material as a raw material. A steel material for a spring, characterized in that the steel material contains 0.5 to 4 wt% of Mo, and the volume fraction of the body-centered cubic lattice phase contained in the solution-treated steel material is 20 to 80%.
【請求項2】  前記ばね用鋼材がコイルばねやトーシ
ョンばね用等のばね用鋼線である請求項1記載のばね用
鋼材。
2. The spring steel material according to claim 1, wherein the spring steel material is a spring steel wire for a coil spring, a torsion spring, or the like.
【請求項3】  前記ばね用鋼材が板ばね用鋼板である
請求項1記載のばね用鋼材。
3. The spring steel material according to claim 1, wherein the spring steel material is a plate spring steel plate.
JP7174791A 1991-04-04 1991-04-04 Steel material for spring Expired - Lifetime JPH07110981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7174791A JPH07110981B2 (en) 1991-04-04 1991-04-04 Steel material for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7174791A JPH07110981B2 (en) 1991-04-04 1991-04-04 Steel material for spring

Publications (2)

Publication Number Publication Date
JPH04308060A true JPH04308060A (en) 1992-10-30
JPH07110981B2 JPH07110981B2 (en) 1995-11-29

Family

ID=13469433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7174791A Expired - Lifetime JPH07110981B2 (en) 1991-04-04 1991-04-04 Steel material for spring

Country Status (1)

Country Link
JP (1) JPH07110981B2 (en)

Also Published As

Publication number Publication date
JPH07110981B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JPH04308060A (en) Steel material for spring
JPH06293946A (en) Production of fine crystal grain super alloy member
JPS62294130A (en) Production of stainless steel having high strength and non-magnetism
JP2677910B2 (en) Stainless steel for springs with excellent dimensional stability during low temperature annealing
JPH09263912A (en) High strength double phase structure chromium stainless steel sheet for punching and its production
JPS6156236A (en) Manufacture of two phase stainless steel hot rolled steel strip for working
KR101783107B1 (en) Steel and stainless steel with two phase structure of austenite and martensite
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPS60187652A (en) High-elasticity alloy
JPH0830252B2 (en) Stainless steel wire for spring
JPS58217834A (en) Superelastic spring
KR20170059071A (en) Method for manufacturing steel and stainless steel with two phase structure of austenite and martensite
JPS6140746B2 (en)
DE2622108C3 (en) Use of an iron alloy containing copper and / or molybdenum for parts with high damping ability against vibrations
JP2525786B2 (en) Method for producing steel with ultrafine grain structure
GB2248849A (en) Process for working a beta type titanium alloy
JPS63219527A (en) Manufacture of ferritic stainless steel excellent in cold workability
JPS60177127A (en) Manufacture of fe-co-mn-c alloy wire rod
JPS6053725B2 (en) Method for manufacturing austenitic stainless steel sheets and steel strips
JPS626727B2 (en)
JPH07258729A (en) Production of martensitic precipitation hardening type stainless steel
JPH0499241A (en) Coiled spring and its manufacture
JPS61177360A (en) Manufacture of bidirectional shape memory alloy
JPS61238951A (en) Manufacture of high elasticity spring
JPH03229841A (en) Spring stainless steel wire excellent in dimensional stability at the time of low temperature annealing

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990112