JPH08300085A - Wire straightening equipment - Google Patents

Wire straightening equipment

Info

Publication number
JPH08300085A
JPH08300085A JP7104384A JP10438495A JPH08300085A JP H08300085 A JPH08300085 A JP H08300085A JP 7104384 A JP7104384 A JP 7104384A JP 10438495 A JP10438495 A JP 10438495A JP H08300085 A JPH08300085 A JP H08300085A
Authority
JP
Japan
Prior art keywords
load
bending
amount
work
straightening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7104384A
Other languages
Japanese (ja)
Other versions
JP3456053B2 (en
Inventor
Masayuki Katahira
雅幸 片平
Kimio Kasahara
君雄 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP10438495A priority Critical patent/JP3456053B2/en
Publication of JPH08300085A publication Critical patent/JPH08300085A/en
Application granted granted Critical
Publication of JP3456053B2 publication Critical patent/JP3456053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)

Abstract

PURPOSE: To efficiently straighten the bending at high precision by subtracting the amount corresponding to the elastic deformation from the measured value by a total deformation detecting means, comparing the result with the initial ending amount, stopping the application of the straightening load when the difference is zero, thereby applying the necessary straightening load in one action. CONSTITUTION: A control means 43 is provided with a subtractor 46 to subtract the amount corresponding to the elastic deformation from the total deformation of a work W obtained by a function generator and a pulse counter 44 as an elastic deformation operating means 45 to operate the amount corresponding to the elastic deformation of the work W which can be obtained by extrapolating the load-deformation characteristic in the elastic deformation range of the work W by the present straightening load. In addition, a comparator 47, etc., to compare the result of subtraction with the initial bending amount obtained by an initial bending measuring means 10 is provided. When the difference in comparison becomes zero, the load completion command is outputted to a driver 32f of a servo motor 32d.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般産業機器,工作機
械,半導体製造装置等に使用されるリニアガイド装置や
ボールねじ装置等をはじめ一般的に使用されている細長
い部材を構成する金属線材の曲がりを、短時間に能率良
く矯正することができる線材の曲がり矯正装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal wire rod constituting a generally used elongated member such as a linear guide device and a ball screw device used in general industrial equipment, machine tools, semiconductor manufacturing equipment and the like. The present invention relates to a bending correction device for a wire rod, which can efficiently correct the bending of the wire in a short time.

【0002】[0002]

【従来の技術】一般に線材の曲がり矯正は、当該線材を
二点支持して支持スパン間の曲がり量を測定した後、そ
の中点に曲がりの矯正荷重を負荷し、曲がり量に対し正
確には弾・塑性総変形量を曲がりと逆方向に発生させる
ことにより行われる。線形金属材料の塑性変形は弾性変
形領域と塑性変形領域とを持ち、通常、その変化は応力
−歪線図により表現される。
2. Description of the Related Art Generally, the straightening of a wire is carried out by supporting the wire at two points and measuring the amount of bending between supporting spans, and then applying a bending straightening load to the midpoint of the bending to accurately measure the amount of bending. This is done by generating the total amount of elastic and plastic deformation in the direction opposite to the bending. The plastic deformation of a linear metal material has an elastic deformation region and a plastic deformation region, and its change is usually represented by a stress-strain diagram.

【0003】しかし、矯正荷重を負荷している最中に発
生する線材の変形量は、弾性変形量と塑性変形量とが重
畳された総変形量として現れることから、曲がり矯正に
真に必要な変形量ではない。そのため、総変形量に基づ
いて行う従来の線材の曲がり矯正に際しては、矯正荷重
が線材の破断点Dに達することを避けるため、小さな矯
正荷重を線材に加えて少量の変形を与え曲がり測定する
ことを繰り返し、徐々に曲がりを矯正しつつ最終的に必
要な精度に収束させるのが普通である。図7は、こうし
た従来の加圧と測定の繰り返しによる線材の曲がり矯正
作業における荷重−変位特性線図の一例を示したもの
で、材料の降伏点を越える矯正荷重を4回繰り返し負荷
して塑性変形量を少しずつ増やしていき、4回目の負荷
で最終的に所要の塑性変形量を得ている。
However, since the amount of deformation of the wire material that occurs during the application of the straightening load appears as a total amount of deformation in which the elastic deformation amount and the plastic deformation amount are superposed, it is truly necessary for bending correction. It is not the amount of deformation. Therefore, in the conventional bending correction of a wire rod based on the total deformation amount, in order to avoid that the correction load reaches the breaking point D of the wire rod, a small correction load is applied to the wire rod and a small amount of deformation is applied to measure the bend. It is usual to repeat the above steps and gradually correct the bend while finally converging to the required accuracy. FIG. 7 shows an example of the load-displacement characteristic diagram in the bending correction work of the wire rod by repeating such conventional pressurization and measurement. The straightening load exceeding the yield point of the material is repeatedly applied four times, and the plasticity is improved. The amount of deformation is gradually increased, and the required amount of plastic deformation is finally obtained by the fourth load.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うなトライアンドエラーによる矯正では、降伏点を越え
る加圧を繰り返すことにより線材材料の降伏点がその加
圧の都度上昇し、塑性変形領域を狭めて破断点に近づ
く。そのため、線材にクラックが発生したり、最悪の場
合は破断に至るおそれがあるという問題点がある。
However, in such correction by trial and error, the yield point of the wire material is increased each time the pressure is applied by repeating the pressure exceeding the yield point, and the plastic deformation region is narrowed. Approach the break point. Therefore, there is a problem that cracks may occur in the wire material or, in the worst case, breakage may occur.

【0005】また、一回の加圧で適正な塑性変形を得る
ことができないため、加圧と測定を繰り返さねばなら
ず、矯正作業に時間がかかるという問題点がある。な
お、線材の曲がり矯正装置としては、線材を直列に配置
した複数段の加圧ローラの間に通しつつ、段階を追って
曲がり量を矯正していくものもあるが、このローラ矯正
は線材の断面形状が単純なものに限り適用可能である。
例えばリニアガイド装置の案内レールのように線材の長
さ方向の各所にボルト孔があったりして断面形状が不連
続な場合には、材料の弾・塑性特性(応力−歪特性)が
場所により変化してしまうため、矯正精度に限界があり
適用範囲が限られる。
Further, since proper plastic deformation cannot be obtained by pressing once, pressing and measurement must be repeated, and there is a problem that correction work takes time. As a wire bending correction device, there is also a device that corrects the bending amount step by step while passing the wire between a plurality of pressure rollers arranged in series. Applicable only to simple shapes.
For example, when the cross-sectional shape is discontinuous due to bolt holes at various points along the length of the wire, such as the guide rails of a linear guide device, the elastic and plastic characteristics (stress-strain characteristics) of the material may vary depending on the location. Since it changes, the correction accuracy is limited and the applicable range is limited.

【0006】そこで、本発明は、このような従来の線材
の曲がり矯正方法の問題点に着目してなされたものであ
り、線材の曲がり矯正荷重と線材変位量とを同時に計測
して荷重−変位特性を求め、該荷重−変位特性における
弾性変形領域の値を基準として矯正荷重負荷時の当該線
材の塑性変形量を把握することにより真に必要な矯正荷
重を一回の加圧で負荷し、これにより能率良い高精度の
曲がり矯正を可能とする線材の曲がり矯正装置を提供す
ることを目的としている。
Therefore, the present invention has been made by paying attention to such a problem of the conventional method for straightening the bending of the wire, and the load-displacement is obtained by simultaneously measuring the bending straightening load of the wire and the displacement of the wire. Obtain the characteristics, load-correction load that is truly necessary by grasping the plastic deformation amount of the wire at the time of corrective load with reference to the value of the elastic deformation region in the load-displacement characteristic, and pressurizing with a single pressurization. Accordingly, it is an object of the present invention to provide a wire rod straightening device that enables efficient and high-precision bending straightening.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成する本
発明の線材の曲がり矯正装置は、金属線材の曲がり量と
位置とを金属線材の長手方向に沿って順次に測定する初
期曲がり測定手段と、前記初期曲がり測定手段の測定デ
ータに基づく所定の支持スパン毎に前記金属線材に曲が
り矯正荷重を負荷する曲がり矯正手段と、該曲がり矯正
手段による現矯正荷重の大きさを検出する現矯正荷重検
出手段と、現矯正荷重による前記金属線材の矯正方向の
弾性変形量及び塑性変形量の合計変形量を検出する総変
形量検出手段と、現矯正荷重に対する前記金属線材の弾
性変形分相当量を演算する弾性変形分演算手段と、前記
総変形量検出手段の測定値から前記弾性変形分相当量を
減算しその結果を前記初期曲がり量と比較して差が零と
なったときに前記曲がり矯正手段による曲がり矯正荷重
の負荷を停止する制御手段とを備えていることを特徴と
するものである。
SUMMARY OF THE INVENTION A wire rod bending straightening apparatus of the present invention which achieves the above-mentioned object, is an initial bend measuring means for sequentially measuring the bending amount and position of a metal wire rod along the longitudinal direction of the metal wire rod. A bending correction means for applying a bending correction load to the metal wire for each predetermined supporting span based on the measurement data of the initial bending measurement means, and a current correction load for detecting the magnitude of the current correction load by the bending correction means Detecting means, total deformation amount detecting means for detecting the total deformation amount of the elastic deformation amount and the plastic deformation amount in the correction direction of the metal wire rod by the current correction load, and the elastic deformation amount equivalent amount of the metal wire rod with respect to the current correction load. The elastic deformation amount calculating means for calculating and the elastic deformation amount equivalent amount are subtracted from the measured values of the total deformation amount detecting means, and the result is compared with the initial bending amount, and when the difference becomes zero, the Is characterized in that the rising and a control means for stopping the load of straightening load by correcting means.

【0008】[0008]

【作用】線材の曲がり素性は、全体曲がり、部分曲が
り、また単一円弧に近似される曲がり、蛇行した複雑曲
がりによって表現される。本発明の線材の曲がり矯正装
置においては、先ず曲がり測定系の初期曲がり測定手段
でワークの曲がり形態を測定することでワークである金
属線材の曲がり素性を的確に把握する。その際、ワーク
の全体の曲がり素性は蛇行した複雑曲がりであっても、
部分的には単一円弧曲がりに近似され、その連続形態と
し捉えることができる。そこでワークWの全体曲がりを
複数の単一円弧に区分して、その単一円弧毎に曲がりを
順次連続的に計測する。次に、曲がり矯正系において、
その単一円弧毎の曲がりデータに基づいてそれぞれの単
一円弧毎の曲がりを矯正することにより最終的に全体曲
がりを矯正する。
The bending feature of the wire is expressed by a total bend, a partial bend, a bend approximate to a single arc, and a meandering complex bend. In the wire rod straightening apparatus of the present invention, first, the bending feature of the metal wire rod which is the work is accurately grasped by measuring the bending form of the work by the initial bend measuring means of the bend measuring system. At that time, even if the bending feature of the whole work is a meandering complicated bend,
It is partially approximated to a single arc bend, and can be regarded as its continuous form. Therefore, the entire bend of the work W is divided into a plurality of single arcs, and the bends are successively measured for each single arc. Next, in the bending correction system,
Finally, the entire bend is corrected by correcting the bend for each single arc based on the bend data for each single arc.

【0009】いま、図1(b)に示すような曲がり量Y
C (以下、初期曲がり量という)を有する単一円弧状の
金属線材(ワーク)Wの両端を支持ポイントp1 ,p2
で二点支持し、その支持スパンLの中点個所に曲がり矯
正手段で曲がり矯正荷重Fを負荷して最大変形YB まで
加圧し、その後荷重を除去して曲がり零に至る迄の過程
を、ワークの変形量をY軸、荷重FをX軸にとって線図
に表すと、同図(a)に模式的に示す荷重−変形特性線
図が得られる。
Now, the bending amount Y as shown in FIG.
Both ends of a single arc-shaped metal wire (work) W having C (hereinafter, referred to as initial bending amount) are supported by supporting points p 1 and p 2.
Two points are supported by, the bending straightening means F applies a bending straightening load F to the middle point of the supporting span L to pressurize it to the maximum deformation Y B , and then the load is removed until the bending reaches zero. When the deformation amount of the work is plotted on the Y axis and the load F is plotted on the X axis, a load-deformation characteristic diagram schematically shown in FIG.

【0010】図中、Aは降伏点、Bは最大荷重変形点、
Cは曲がり零となる点、Dは破断点を表す。ワークは荷
重0から降伏点Aに至る弾性変形領域から二次曲線AB
で示される塑性変形領域を経て、最大荷重変形点Bに至
り最大変形YB に達する。ここで荷重Fを除くと、最大
荷重XB から荷重0に至る直線BC(0Aに平行)を経
て点Cに帰り曲がり零となる。直線Y=aXは弾性変形
領域0Aの荷重−変位関係を外延して得られる弾性特性
補間直線であり、図から明らかなように、この直線Y=
aXと二次曲線ABとのY座標の差が、初期曲がり量Y
C と等しくなる点が最大荷重変形点Bである。
In the figure, A is the yield point, B is the maximum load deformation point,
C represents a point at which the bend becomes zero, and D represents a break point. The work is quadratic curve AB from the elastic deformation area from load 0 to yield point A.
Through the plastic deformation region indicated by, the maximum load deformation point B is reached and the maximum deformation Y B is reached. Here Excluding load F, becomes zero bend back to the point C through a line extending from the maximum load X B to the load 0 BC (parallel to 0A). The straight line Y = aX is an elastic characteristic interpolation straight line obtained by extending the load-displacement relationship of the elastic deformation region 0A, and as is clear from the figure, this straight line Y = aX
The difference in the Y coordinate between aX and the quadratic curve AB is the initial bending amount Y.
The point equal to C is the maximum load deformation point B.

【0011】ここで、塑性変形領域AB間における現矯
正荷重Xの値に対するワークの変形量Yは、弾性変形量
と塑性変形量とが重畳した合計量(以下、総変形量とい
う)である。従来一般の線材の曲がり矯正にあっては、
最大荷重変形点Bでは総変形量YB しか捉えていない。
しかしワークの曲がり矯正に必要な真の変形量は塑性変
形量のみで良く、弾性変形量はキャンセルする必要があ
る。
Here, the deformation amount Y of the work with respect to the value of the current correction load X between the plastic deformation regions AB is the total amount (hereinafter, referred to as total deformation amount) in which the elastic deformation amount and the plastic deformation amount are superposed. In the conventional straight wire bending correction,
At the maximum load deformation point B, only the total deformation amount Y B is captured.
However, the true amount of deformation required to correct the bending of the work is only the amount of plastic deformation, and the amount of elastic deformation must be canceled.

【0012】本発明にあっては、弾性変形領域における
直線Y=aXを塑性変形領域に補間して弾性変形量相当
分をキャンセルする。すなわち、本発明の線材の曲がり
矯正装置は、先ず、初期曲がり測定手段でワークの単一
円弧の初期曲がり量YC を正確に求めておく。次に、ワ
ークに曲がり矯正手段で曲がり矯正荷重を負荷する。こ
のとき、現矯正荷重検出手段で現在負荷しつつある矯正
荷重の大きさを刻々に検出すると共に、総変形量検出手
段で現に変形しつつあるワークの弾性変形量及び塑性変
形量の合計である総変形量を刻々に検出して図1(a)
のようなワークの荷重−変形特性線を認識する。もっと
も、矯正時に取得されるこの荷重−変形特性は、予め別
途に取得しておいても良い。
In the present invention, the straight line Y = aX in the elastic deformation region is interpolated in the plastic deformation region to cancel the elastic deformation amount. That is, in the wire bending correction apparatus of the present invention, first, the initial bending measuring means accurately finds the initial bending amount Y C of a single arc of the work. Next, a bending straightening load is applied to the work by the bending straightening means. At this time, the current corrective load detecting means detects the magnitude of the corrective load currently being applied moment by moment, and the total deformation amount detecting means is the sum of the elastic deformation amount and the plastic deformation amount of the workpiece currently being deformed. Figure 1 (a)
Recognize the load-deformation characteristic line of the work such as. However, this load-deformation characteristic acquired during correction may be acquired separately in advance.

【0013】そして矯正荷重が降伏点Aを越えて塑性変
形領域に達したら、弾性変形分演算手段により、弾性特
性補間直線Y=aX上において現矯正荷重に対応する点
EのY座標値をワークの弾性変形分相当量aXとして演
算する。制御手段は、現矯正荷重によるワークの総変形
量検出値から弾性変形分相当量を減算し、その減算結果
を初期曲がり量Ycと比較して、その差が零となったと
きに最大荷重変位点Bに達したと判断して、曲がり矯正
手段による曲がり矯正荷重の負荷を止める。
When the straightening load exceeds the yield point A and reaches the plastic deformation area, the elastic deformation component calculating means calculates the Y coordinate value of the point E corresponding to the current straightening load on the elastic characteristic interpolation line Y = aX. Is calculated as the elastic deformation equivalent amount aX. The control means subtracts the elastic deformation equivalent amount from the total deformation amount detection value of the work due to the current straightening load, compares the subtraction result with the initial bending amount Yc, and when the difference becomes zero, the maximum load displacement. When it is judged that the point B has been reached, the bending correction load is stopped by the bending correction means.

【0014】かくして、一回の矯正荷重で最大荷重XB
まで負荷して初期曲がり量にほぼ等しい塑性変形量を付
与し曲がり矯正を行うことをワークの単一円弧毎に順次
連続的に繰り返すことにより、能率良くワーク全体の曲
がりを矯正することができる。
Thus, the maximum load X B can be obtained by one straightening load.
It is possible to efficiently correct the bending of the entire work by sequentially repeating the load correction up to the point where a plastic deformation amount substantially equal to the initial bending amount is applied and the bending correction is performed for each single arc of the work.

【0015】[0015]

【実施例】以下、この発明の実施例を図面を参照して説
明する。図2ないし図4は、この発明の一実施例を示す
もので、図2は本発明の線材の曲がり矯正装置の一実施
例の全体平面図、図3は同側面図、図4は同装置の制御
系統の概略構成図である。この実施例の線材の曲がり矯
正装置は、曲がり測定系1と曲がり矯正系2とを連携さ
せて構成されている。曲がり測定系1には、ワークであ
る金属線材Wの曲がり具合を線材の長手方向に沿って順
次に測定する初期曲がり測定手段10が設けられてい
る。一方、曲がり矯正系2には、その初期曲がり測定手
段10での測定データに基づいてワークWを支持し、こ
れに曲がり矯正荷重を負荷する曲がり矯正手段30が設
けられている。
Embodiments of the present invention will be described below with reference to the drawings. 2 to 4 show one embodiment of the present invention. FIG. 2 is an overall plan view of one embodiment of the wire straightening apparatus of the present invention, FIG. 3 is the same side view, and FIG. 4 is the same apparatus. 3 is a schematic configuration diagram of the control system of FIG. The bending correction device for a wire according to this embodiment is configured by linking a bending measurement system 1 and a bending correction system 2. The bend measuring system 1 is provided with an initial bend measuring means 10 for sequentially measuring the bend of a metal wire W as a work along the longitudinal direction of the wire. On the other hand, the bending correction system 2 is provided with a bending correction means 30 that supports the work W based on the measurement data of the initial bending measurement means 10 and applies a bending correction load thereto.

【0016】前記初期曲がり測定手段10は、細長いテ
ーブル11上に併設したワーク支持・転送部12と自走
式の曲がり測定部13とを有して構成されている。ワー
ク支持・転送部12は、ワークWを曲がり計測時に支持
し計測後に長手方向に搬送する複数の駆動式ローラ14
と、それらのローラ14の上に降ろす前にベッセル支持
によりワークWを一度自然体に保持するため長手方向に
走行自在に間隔をおいて配した二箇所のリフタ15と、
ワークWをその軸周りに反転させる反転装置16とを備
えている。この反転装置16によりワークWの位相を変
えることで、ワークWに対する矯正荷重の負荷方向が一
方向であっても、曲がり方向の変化に対して複数方向か
らの矯正が可能になる。反転操作は測定・矯正をセット
した工程の必ず前で行う。
The initial bend measuring means 10 comprises a work supporting / transferring part 12 and a self-propelled bend measuring part 13 which are provided on an elongated table 11. The work support / transfer unit 12 includes a plurality of drive rollers 14 that support the work W at the time of bending measurement and convey the work W in the longitudinal direction after the measurement.
And two lifters 15 arranged at intervals in the longitudinal direction so that the work W can be temporarily held in a natural body by supporting the vessel before being lowered onto the rollers 14,
And a reversing device 16 for reversing the work W around its axis. By changing the phase of the work W by the reversing device 16, even if the load direction of the correction load on the work W is one direction, it is possible to correct the change in the bending direction from a plurality of directions. The reversing operation is always performed before the process of setting measurement and correction.

【0017】なお、17はプレッシャローラで、押さえ
ローラ17aとその昇降用シリンダ17bとよりなる。
押さえローラ17aで駆動式ローラ14の上にワークW
を押しつけて曲がりを有するワークWの浮きを抑え、確
実に曲がり矯正系2へ搬送するための機構である。曲が
り測定部13は、例えばスピンドルタイプの直線位置セ
ンサなどの変位センサ20を搭載した自走テーブル21
と、この自走テーブル21の直線案内機構であるリニア
ガイド装置22と、直線駆動機構であるラック・ピニオ
ン装置23及び駆動用サーボモータ24を備え、予め真
直度精度を出してあるテーブル11上に計測テーブルユ
ニットとして配設されている。
A pressure roller 17 is composed of a pressing roller 17a and a lifting cylinder 17b.
The work W is placed on the driving roller 14 by the pressing roller 17a.
It is a mechanism for pressing the work piece W to suppress the floating of the work W having a bend, and reliably transporting the work W to the bend correction system 2. The bend measuring unit 13 includes a self-propelled table 21 equipped with a displacement sensor 20 such as a spindle type linear position sensor.
A linear guide device 22 which is a linear guide mechanism of the self-propelled table 21, a rack and pinion device 23 which is a linear drive mechanism, and a driving servomotor 24 are provided on the table 11 which provides straightness accuracy in advance. It is arranged as a measurement table unit.

【0018】前記曲がり矯正手段30は、初期曲がり測
定手段10の下流側に隣接して配置されており、初期曲
がり測定データに基づいて定めた所定の位置でワークW
を二点支持する支持部31と、その支持スパン間の一点
に曲がり矯正荷重を負荷する加圧部32とを備えてい
る。支持部31は、対称に配した一対のワーク支持ロー
ラ31aと、このワーク支持ローラ31aをワークWに
対し離接する支持ローラ離接機構31b及び支持ローラ
間隔調節機構31cとで構成されている。加圧部32
は、前記一対のワーク支持ローラ31aの対称軸上に配
した一個の加圧ローラ32aと、その加圧ローラ32a
の送り機構である二個一対のボールねじ装置32bと、
そのボールねじ軸に駆動力を伝達するギア機構32c
と、その駆動源としてのサーボモータ32dとで構成さ
れている。
The bending correction means 30 is disposed adjacent to the downstream side of the initial bending measurement means 10 and at a predetermined position determined based on the initial bending measurement data, the work W is provided.
Is provided with a supporting portion 31 for supporting the two points, and a pressing portion 32 for applying a bending correction load to one point between the supporting spans. The support portion 31 is composed of a pair of symmetrically arranged work support rollers 31a, a support roller separation / contact mechanism 31b for separating and contacting the work W with respect to the work W, and a support roller spacing adjustment mechanism 31c. Pressure unit 32
Is a pressure roller 32a arranged on the axis of symmetry of the pair of work supporting rollers 31a, and the pressure roller 32a.
A pair of ball screw devices 32b that are the feeding mechanism of
Gear mechanism 32c for transmitting driving force to the ball screw shaft
And a servomotor 32d as a drive source thereof.

【0019】なお、曲がり測定系1から曲がり矯正系2
へとワークWを搬送するに際して、狙った被矯正個所を
支持部31に所定距離だけ正確に送り出して位置決めす
る必要があり、図4に示すように、そのためのエンコー
ダ付位置検知用ローラ26を設けてそのパルス出力をパ
ルスカウンタ27を介して制御装置にフィードバックす
るようになっている。
The bending measurement system 1 to the bending correction system 2
When the work W is conveyed to the position, it is necessary to accurately send out a targeted portion to be corrected to the support portion 31 by a predetermined distance and to position it, and as shown in FIG. 4, an encoder-equipped position detection roller 26 is provided for that purpose. The pulse output is fed back to the control device via the pulse counter 27.

【0020】次に、上記の構成を有する曲がり矯正手段
30のメカニズムの制御系について、図4の装置系統概
念図に基づき説明する。曲がり矯正手段30の加圧ロー
ラ32aには、現在ワークWに対して負荷中の矯正荷重
(現矯正荷重)Fの大きさxを刻々と検出する現矯正荷
重検出手段として、ロードセルなどの荷重サンサ40が
設置されている。この荷重センサ40の出力は荷重セン
サアンプ41からA/D変換器42を介して制御手段4
3にフィードバックされる。制御手段43には又、初期
曲がり測定手段10の曲がり測定用変位センサ20の出
力が変位センサアンプ20aを介して送られると共に、
その変位センサ20のx座標測定用の位置センサである
エンコーダ24e(サーボモータ24に内蔵)のパルス
出力がパルスカウンタ24bを介して送りこまれる。更
に、曲がり矯正手段30の加圧ローラ32aのy座標測
定用の位置センサであるエンコーダ32e(サーボモー
タ32dに内蔵)のパルス出力が、ワークWの矯正変形
量情報としてパルスカウンタ44を介してフィードバッ
クされる。前記エンコーダ32eとパルスカウンタ44
とで、現矯正荷重FによるワークWの矯正方向の弾性変
形量Y(荷重Fの大きさXと比例しY=aXで表され
る)と塑性変形量との合計変形量を検出するための総変
形量検出手段が構成されている。
Next, the control system of the mechanism of the bending correction means 30 having the above-mentioned structure will be described based on the conceptual view of the apparatus system of FIG. The pressure roller 32a of the bending correction means 30 is provided with a load sensor such as a load cell as a current correction load detection means for detecting the magnitude x of the correction load (current correction load) F being applied to the work W at present. 40 are installed. The output of the load sensor 40 is transmitted from the load sensor amplifier 41 to the control means 4 via the A / D converter 42.
It is fed back to 3. The output of the bending measurement displacement sensor 20 of the initial bending measurement means 10 is sent to the control means 43 via the displacement sensor amplifier 20a, and
The pulse output of the encoder 24e (built in the servo motor 24), which is a position sensor for measuring the x coordinate of the displacement sensor 20, is sent through the pulse counter 24b. Further, the pulse output of the encoder 32e (built into the servo motor 32d), which is a position sensor for measuring the y-coordinate of the pressure roller 32a of the bending correction means 30, is fed back via the pulse counter 44 as correction deformation amount information of the work W. To be done. The encoder 32e and the pulse counter 44
In order to detect the total deformation amount of the elastic deformation amount Y of the work W in the correction direction by the current correction load F (proportional to the magnitude X of the load F and represented by Y = aX) and the plastic deformation amount. A total deformation amount detecting means is configured.

【0021】上記制御手段43には、上記現矯正荷重F
によるワークWの弾性変形領域での荷重−変形特性を塑
性変形領域に外延(直線補間)して得られるワークWの
弾性変形分相当量を演算する弾性変形分演算手段45と
しての例えば関数発生器、前記パルスカウンタ44で得
られたワークWの合計変形量から前記弾性変形分相当量
を減算する減算器46、その減算結果を前記初期曲がり
測定手段10で得られた初期曲がり量と比較する比較器
47等が設けられており、比較差が零となったとき、サ
ーボモータ32dのドライバ32fに負荷完了指令を出
力するように構成されている。
The current straightening load F is applied to the control means 43.
For example, a function generator as the elastic deformation amount calculation means 45 for calculating the elastic deformation amount equivalent amount of the work W obtained by extending (linear interpolation) the load-deformation characteristics in the elastic deformation region of the work W to the plastic deformation region by A subtracter 46 for subtracting the elastic deformation equivalent amount from the total deformation amount of the work W obtained by the pulse counter 44, and a comparison for comparing the subtraction result with the initial bending amount obtained by the initial bending measuring means 10. A device 47 and the like are provided and are configured to output a load completion command to the driver 32f of the servomotor 32d when the comparison difference becomes zero.

【0022】以上のように構成されたこの線材の曲がり
矯正装置で、例えば図4のように波うった二次元の曲が
りを有するワークWの曲がり矯正を行う場合、まず、ロ
ーラ支持転送部12のローラ14上にワークWを載置す
る。次に、間隔を調整したリフタ15,15で、ワーク
Wのベッセル支持点を支持しワークWを挙上する。ここ
にベッセル支持点とは、線材の自重たわみによる全長短
縮量が最少となる支点位置であり、長さLの線材の両端
からそれぞれ0.22Lだけ内側の位置にある。この点
を二点支持することで自重たわみのバランスをとり線材
を最も安定した自然体に保持することができ、自由たわ
みの弾性変形による曲がりが最少となって測定精度が向
上する。
When the work straightening device for bending the work W having the two-dimensional bending as shown in FIG. The work W is placed on the roller 14. Next, the lifters 15 and 15 with adjusted intervals support the vessel support points of the work W and lift the work W. Here, the vessel support point is a fulcrum position where the amount of shortening of the total length due to the deflection of the wire rod by its own weight is minimized, and the position is 0.22 L inward from both ends of the wire rod of length L, respectively. By supporting this point at two points, it is possible to balance the deflection of its own weight and hold the wire in the most stable natural body, and the bending due to elastic deformation of the free deflection is minimized to improve the measurement accuracy.

【0023】この自然体に保持したワークWの一端を反
転装置16で把持して軸周りに90度旋回させ、曲がり
方向を水平にした状態でリフタ15を降ろし、ワークW
をローラ14上に置く。次に、原点位置に寄せた初期曲
がり測定手段10の変位センサ20の測定子をワークW
に接触させ、サーボモータ24でラック・ピニオン装置
23のピニオンを駆動させて図2で左端から右端へ向け
て自走させつつワークW全長にわたり初期曲がり量を計
測する。この計測で、エンコーダ24eのパルス出力が
パルスカウンタ24bを介して制御手段43に送られ
て、一定のパルス数毎にワークWの長手方向(x方向)
の一定間隔(例えば5mm毎)の座標が図外の記憶部に
記憶される。同時に、その定間隔のパルス毎に、曲がり
測定用変位センサ20のストローク長がy方向の変位と
して出力されて変位センサアンプ20aを介して制御手
段43に送られて記憶部に記憶される。
One end of the work W held in the natural body is grasped by the reversing device 16 and swung 90 degrees around the axis, and the lifter 15 is lowered in a state where the bending direction is horizontal and the work W is
On the roller 14. Next, the probe of the displacement sensor 20 of the initial bending measuring means 10 which is moved to the origin position is used as the work W
2, the pinion of the rack and pinion device 23 is driven by the servo motor 24, and the initial bending amount is measured over the entire length of the work W while self-propelled from the left end to the right end in FIG. In this measurement, the pulse output of the encoder 24e is sent to the control means 43 via the pulse counter 24b, and the longitudinal direction (x direction) of the work W is fixed every fixed number of pulses.
Coordinates at regular intervals (for example, every 5 mm) are stored in a storage unit (not shown). At the same time, the stroke length of the displacement measuring displacement sensor 20 is output as the displacement in the y direction for each pulse of the constant interval, and is sent to the control means 43 via the displacement sensor amplifier 20a and stored in the storage unit.

【0024】こうして得られたワークWのy方向変形量
とその計測点のx方向位置とから、全体の曲がりパター
ンが認識される。この全体の曲がりパターンは、部分的
な単一円弧曲がりA1,A2の連続形態であり、各単一
円弧A1,A2のスパンL1,L2 毎のワークの初期曲
がり量Ycとその計測位置座標に基づいて曲がり矯正を
行う。
The entire bending pattern is recognized from the amount of deformation of the work W in the y direction thus obtained and the position of the measurement point in the x direction. The entire bending pattern is a continuous form of partial single arc bends A1 and A2, and the initial bending amount Yc of the work for each span L 1 and L 2 of each single arc A1 and A2 and its measurement position coordinates. Bend correction based on.

【0025】曲がり矯正系へのワーク搬送は、ローラ支
持・転送部12の駆動式ローラ14を図示しない駆動源
により回転駆動させることで行われる。このとき、ワー
クWの自重だけでは、曲がりのためにワークWが駆動式
ローラ14から浮いてしまい動かなくなることもあり得
る。そこで、図3に示すようなプレッシャローラ17で
ワークWを駆動式ローラ14に押しつけながら搬送す
る。このとき、エンコーダ付位置検知用ローラ26をワ
ークWに押し当ててその曲がりに沿い転動させる。この
ローラ26の転動はロータリエンコーダのパルス出力と
してパルスカウンタ27を介して制御手段43にフィー
ドバックされ、ワーク長手方向の送り位置が正確に把握
される。この場合の送り量は直線距離であるのに対しロ
ーラ26ではワークの送り長を曲線トレースすることに
なるが、ワークWの長さディメンジョンは曲がり量ディ
メンジョンより遙に大きいことから両者の測定誤差は十
分無視できる量である。
The work is conveyed to the bending correction system by rotating the drive type roller 14 of the roller support / transfer section 12 by a drive source (not shown). At this time, there is a possibility that the work W may be lifted from the drive roller 14 and may not move due to bending due to its own weight. Therefore, the work W is conveyed while being pressed against the drive type roller 14 by the pressure roller 17 as shown in FIG. At this time, the position detection roller 26 with an encoder is pressed against the work W and rolled along the bend. The rolling of the roller 26 is fed back to the control means 43 as a pulse output of the rotary encoder via the pulse counter 27, and the feed position in the longitudinal direction of the work is accurately grasped. The feed amount in this case is a linear distance, whereas the roller 26 traces the feed length of the work in a curved line, but since the length dimension of the work W is much larger than the bending amount dimension, the measurement error between the two is large. This is a sufficiently negligible amount.

【0026】こうして、ワークWの初めの単一円弧A1
部分を支持部31に送り出し、先に測定しておいた単一
円弧部分毎の初期曲がり量データに基づく支持ポイント
1,p2 をワーク支持ローラ31aで二点支持する。
このときの2個のワーク支持ローラ31a間の支持スパ
ンLは支持ローラ間隔調節機構31cで設定され、また
ワーク支持ローラ31aのワークWに対する離接動作は
支持ローラ離接機構31bにより行われる。
Thus, the first single arc A1 of the work W
The portion is sent to the supporting portion 31, and the supporting points p 1 and p 2 based on the previously measured initial bending amount data for each single arc portion are supported by the work supporting roller 31a at two points.
At this time, the support span L between the two work supporting rollers 31a is set by the support roller spacing adjusting mechanism 31c, and the separating operation of the work supporting roller 31a with respect to the work W is performed by the supporting roller separating / contacting mechanism 31b.

【0027】次いで、支持したワークの支持スパンL間
の中央線上に位置する一個の加圧ローラ32aにより、
単一円弧A1部分への矯正荷重の負荷を行う。この負荷
は、制御手段43から加圧部32のモータドライバ32
fへの指令によりサーボモータ32dを駆動させ、その
回転力をギア機構32cを介してボールねじ装置32b
に伝達し、サーボモータ32dの回転数に比例してY方
向に送り出される加圧ローラ32aでワークを加圧する
ことにより行われる。これにより、ワークの支持スパン
L間の曲がりは反対方向に加圧されて次第に変形する。
その際、変形量(Y方向変位)に伴ってロータリエンコ
ーダ32eから出力されるパルス信号がパルスカウンタ
44を経てワークの曲がり矯正の変位情報として制御手
段43に刻々にフィードバックされる。同時に、荷重セ
ンサ40からは荷重の大きさに比例してアナログ荷重信
号が連続的に出力され、荷重センサアンプ41からA/
D変換器42を介して曲がり矯正の変位情報として制御
手段43にフィードバックされる。このように、本発明
では矯正加圧中のワークWの変形量を変位計で直接に計
測する代わりに、加圧ローラを駆動するサーボモータ3
2dに設けたロータリエンコーダ32eで間接的に計測
する。これにより、最大数十トンに達することもある矯
正荷重が装置全体を歪めて正確な計測に影響を及ぼすよ
うな事態を避けられるという利点がある。
Then, by one pressing roller 32a located on the center line between the supporting spans L of the supported work,
A straightening load is applied to the single arc A1 portion. This load is applied from the control means 43 to the motor driver 32 of the pressurizing unit 32.
The servomotor 32d is driven by a command to f, and its rotational force is transmitted via the gear mechanism 32c to the ball screw device 32b.
The pressure is applied to the work by the pressure roller 32a, which is transmitted in the Y direction in proportion to the rotation speed of the servo motor 32d. As a result, the bending between the support spans L of the work is pressed in the opposite direction and gradually deforms.
At that time, the pulse signal output from the rotary encoder 32e in accordance with the deformation amount (Y direction displacement) is fed back to the control means 43 momentarily as displacement information for correcting the bending of the work through the pulse counter 44. At the same time, the load sensor 40 continuously outputs an analog load signal in proportion to the magnitude of the load, and the load sensor amplifier 41 outputs A / A.
It is fed back to the control means 43 via the D converter 42 as displacement information for bending correction. As described above, in the present invention, instead of directly measuring the deformation amount of the work W during straightening and pressing with the displacement meter, the servo motor 3 that drives the pressing roller is used.
The rotary encoder 32e provided in 2d measures indirectly. This has the advantage of avoiding situations where straightening loads, which can reach up to tens of tons, distort the entire device and affect accurate measurements.

【0028】こうして刻々と曲がり矯正手段30の制御
手段にフィードバックされてくるワークへの現矯正荷重
データとこれによるワークの変形データに基づいて、当
該ワークWの図1(a)に示されるような荷重−変形特
性が認識され、図外の記憶部に記憶されると共に、必要
に応じて表示装置48に表示される。ワークは、矯正荷
重により、はじめに弾性変形し、その後降伏点Aを通過
して塑性変形領域に至ると、以後は弾性変形量と塑性変
形量とが重畳した総変形量がパルスカウンタ44から制
御手段43にフィードバックされてくる。
As shown in FIG. 1A of the work W based on the current correction load data on the work and the deformation data of the work resulting from this which are fed back to the control means of the bending correction means 30 every moment. The load-deformation characteristics are recognized, stored in a storage unit (not shown), and displayed on the display device 48 as needed. The work is first elastically deformed by the straightening load, and then passes through the yield point A to reach the plastic deformation region. After that, the total deformation amount in which the elastic deformation amount and the plastic deformation amount are superposed from the pulse counter 44 to the control means. It will be fed back to 43.

【0029】ここにおいて、上記加圧ローラ32aによ
る加圧中にリアルタイムで制御手段43にフィードバッ
クされてくる荷重データと変位データとに基づいて、弾
性変形領域における直線Y=aXを塑性変形領域に補間
し、弾性変形分演算手段45で現矯正荷重検出値Xに対
するワークの弾性変形分相当量aXを演算する。そし
て、その演算結果を現総変形量データから減算器46で
減算するとともに、減算結果を先に記憶した初期曲がり
量Ycと比較することを繰り返しつつ加圧を行う。やが
て、塑性変形がB点に達すると、総変形量YB と弾性変
形分相当量aXBとの差(YB −aXB )の値は初期曲
がり量Ycと一致し(YB −aXB =Yc)になる。そ
の時点で制御手段43はモータドライバ32fに加圧停
止指令を出力する。これによりサーボモータ32dの駆
動が逆転されて加圧ローラ32aは後退し、ワークWは
弾性変形量相当分がキャンセルされた真の塑性変形分だ
けの変形が得られる。すなわち、一回の矯正荷重で最大
荷重XB まで一気に負荷し、初期曲がり量YC にほぼ等
しい塑性変形量を付与して単一円弧A1部分の曲がりを
矯正することができる。以後、続けて単一円弧A2部分
を曲がり矯正系2に送り出し、前記同様に処理すること
を順次に繰り返すことにより、能率良くワークW全体の
曲がりを矯正することができる。
Here, the straight line Y = aX in the elastic deformation area is interpolated into the plastic deformation area based on the load data and the displacement data fed back to the control means 43 in real time during the pressing by the pressing roller 32a. Then, the elastic deformation component calculating means 45 calculates the elastic deformation component equivalent amount aX of the work with respect to the current correction load detection value X. Then, the subtraction unit 46 subtracts the calculation result from the current total deformation amount data, and pressurization is performed while repeatedly comparing the subtraction result with the previously stored initial bending amount Yc. Eventually, the plastic deformation reaches the point B, the value of the difference between the total deformation amount Y B and the elastic deformation amount corresponding amount aX B (Y B -aX B) is consistent with the initial amount of flexure Yc (Y B -aX B = Yc). At that time, the control means 43 outputs a pressure stop command to the motor driver 32f. As a result, the drive of the servo motor 32d is reversed and the pressure roller 32a retracts, and the work W is deformed by the amount of true plastic deformation in which the amount of elastic deformation is canceled. That is, the maximum load X B can be applied all at once with one straightening load, and the amount of plastic deformation substantially equal to the initial amount of bending Y C can be applied to correct the bending of the single arc A1 portion. After that, the single arc A2 portion is continuously sent out to the bending correction system 2, and the same processing as described above is sequentially repeated, whereby the bending of the entire work W can be corrected efficiently.

【0030】図5に、この実施例により得られたワーク
の荷重−変位特性図の一例を示した。なお、上記の説明
では、加圧ローラ32aの荷重を測定する矯正荷重検出
手段であるロードセル40を単体で使用するものとした
が、大きな加圧最大荷重の場合に分解能が低下すること
を考慮して、ロードセルを複数並列に設定し、ロードセ
ルにかかる荷重を分散させると共に単体分解能を確保す
ることにより、最大荷重と分解能とを両立させるように
することも可能である。
FIG. 5 shows an example of the load-displacement characteristic diagram of the work obtained in this embodiment. In the above description, the load cell 40, which is the correction load detecting means for measuring the load of the pressure roller 32a, is used alone, but in consideration of the fact that the resolution decreases when a large pressure maximum load is applied. By setting a plurality of load cells in parallel to disperse the load applied to the load cells and ensure the single resolution, it is possible to achieve both the maximum load and the resolution.

【0031】従来は、例えばリニアガイド装置の案内レ
ール(幅20ミリ×高さ12.5ミリ×長さ4000ミ
リ)の曲がり(最大0.4ミリ)を0.1ミリ以下に矯
正するのに20分間を要していたが、本実施例の装置で
は約5分程度で完了することができた。また、矯正精度
は、狭範囲曲がり量0.1ミリ以下の仕様に対して、±
20μm以下の精度を確保することができた。すなわ
ち、作業時間は1/4,矯正精度は60%向上するとい
う結果が得られた。
Conventionally, for example, to correct the bending (maximum 0.4 mm) of the guide rail (width 20 mm × height 12.5 mm × length 4000 mm) of the linear guide device to 0.1 mm or less. Although it took 20 minutes, the apparatus of this embodiment could be completed in about 5 minutes. In addition, the straightening accuracy is ± ± for the specifications with a narrow range bending amount of 0.1 mm or less.
An accuracy of 20 μm or less could be secured. That is, it was found that the working time was 1/4 and the correction accuracy was improved by 60%.

【0032】図6は、本発明の矯正方法で、マニュアル
制御により19個の試料ワークの曲がり矯正を実験した
際の、ワークの矯正変形の狙い量(目標量)と実際の変
形量との対比グラフである。変形の狙い量50μmに対
し±19μm(±38%)の範囲内の曲がり矯正が可能
であった。なお、本発明の制御手段としてはコンピュー
タを用いても良い。
FIG. 6 shows the comparison between the target amount (correction amount) of the straightening deformation of the work and the actual amount of deformation when the bending straightening of 19 sample works was tested by the straightening method of the present invention by the manual control. It is a graph. It was possible to correct the bending within the range of ± 19 μm (± 38%) with respect to the target deformation amount of 50 μm. A computer may be used as the control means of the present invention.

【0033】[0033]

【発明の効果】以上説明したように、本発明の線材の曲
がり矯正装置によれば、金属線材の曲がりを単一円弧の
連なりに近似させ、各単一円弧毎の曲がり量を初期曲が
り測定手段で計測すると共に長手方向座標を求めて曲が
り矯正手段における所要の矯正支持スパン当たりの変形
量を取得し、これに基づいて得られるワークの荷重−変
位特性に応じて、曲がり矯正手段で矯正荷重値と変形量
とをリアルタイムで検出しつつ矯正荷重を負荷する。こ
うして、弾性変形量をキャンセルした真の塑性変形量に
従いワークの曲がりを一回の加圧で矯正することによ
り、能率良い高精度の曲がり矯正を可能とすることがで
きるという効果を奏する。
As described above, according to the bending correction apparatus for a wire of the present invention, the bending of the metal wire is approximated to a series of single arcs, and the bending amount of each single arc is measured by the initial bending measuring means. And the longitudinal direction coordinates are obtained to obtain the required deformation amount per corrective support span in the bending correction means, and the correction load value is obtained by the bending correction means according to the load-displacement characteristic of the workpiece obtained based on this. The straightening load is applied while detecting the deformation amount and the deformation amount in real time. In this way, by correcting the bending of the work with one pressurization in accordance with the true plastic deformation amount in which the elastic deformation amount is canceled, there is an effect that it is possible to efficiently and accurately correct the bending.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は金属線材の曲がり矯正における荷重−
変形特性線図、(b)は金属線材の曲がり態様の説明図
である。
FIG. 1 (a) is a load for straightening a bend of a metal wire-
Deformation characteristic diagram, (b) is an explanatory view of the bending mode of the metal wire.

【図2】本発明の線材の曲がり矯正装置の一実施例の平
面図である。
FIG. 2 is a plan view of an embodiment of the wire straightening device of the present invention.

【図3】図2の側面図である。FIG. 3 is a side view of FIG.

【図4】同装置の系統概念図である。FIG. 4 is a system conceptual diagram of the same device.

【図5】本実施例において得られた荷重−変位特性図で
ある。
FIG. 5 is a load-displacement characteristic diagram obtained in this example.

【図6】本発明の実施例における矯正変形の狙い量と実
際の変形量との対比グラフである。
FIG. 6 is a comparison graph of the target amount of corrective deformation and the actual amount of deformation in the example of the present invention.

【図7】従来の線材の曲がり矯正作業における荷重−変
位特性線図の一例である。
FIG. 7 is an example of a load-displacement characteristic diagram in a conventional bending correction work for a wire rod.

【符号の説明】[Explanation of symbols]

1 曲がり測定系 2 曲がり矯正系 10 初期曲がり測定手段 30 曲がり矯正手段 40 総変形量検出手段 43 制御手段 45 弾性変形分演算手段 DESCRIPTION OF SYMBOLS 1 Bending measurement system 2 Bending correction system 10 Initial bending measuring means 30 Bending correction means 40 Total deformation amount detection means 43 Control means 45 Elastic deformation amount calculation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属線材の曲がり量と位置とを金属線材の
長手方向に沿って順次に測定する初期曲がり測定手段
と、 前記初期曲がり測定手段の測定データに基づく所定の支
持スパン毎に前記金属線材に曲がり矯正荷重を負荷する
曲がり矯正手段と、 該曲がり矯正手段による現矯正荷重の大きさを検出する
矯正荷重検出手段と、 現矯正荷重による前記金属線材の矯正方向の弾性変形量
及び塑性変形量の合計変形量を検出する総変形量検出手
段と、 現矯正荷重に対する前記金属線材の弾性変形分相当量を
演算する弾性変形分演算手段と、 前記総変形量検出手段の測定値から前記弾性変形分相当
量を減算しその結果を前記初期曲がり量と比較して差が
零となったときに前記曲がり矯正手段による曲がり矯正
荷重の負荷を停止する制御手段とを備えていることを特
徴とする線材の曲がり矯正装置。
1. An initial bend measuring means for sequentially measuring a bending amount and a position of the metal wire along a longitudinal direction of the metal wire, and the metal for each predetermined supporting span based on measurement data of the initial bend measuring means. Bending straightening means for applying a bending straightening load to the wire, straightening load detecting means for detecting the magnitude of the current straightening load by the bending straightening means, and elastic deformation amount and plastic deformation in the straightening direction of the metal wire by the current straightening load. Total deformation amount detecting means for detecting the total deformation amount of the amount, elastic deformation amount calculating means for calculating the elastic deformation equivalent amount of the metal wire with respect to the current correction load, and the elasticity from the measurement value of the total deformation amount detecting means. And a control means for stopping the load of the bending correction load by the bending correction means when the deformation equivalent amount is subtracted and the result is compared with the initial bending amount and the difference becomes zero. Straightening device of the wire, characterized in that there.
JP10438495A 1995-04-27 1995-04-27 Guide rail bending straightening device Expired - Fee Related JP3456053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10438495A JP3456053B2 (en) 1995-04-27 1995-04-27 Guide rail bending straightening device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10438495A JP3456053B2 (en) 1995-04-27 1995-04-27 Guide rail bending straightening device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003122013A Division JP2003311328A (en) 2003-04-25 2003-04-25 Device for straightening bend of wire rod

Publications (2)

Publication Number Publication Date
JPH08300085A true JPH08300085A (en) 1996-11-19
JP3456053B2 JP3456053B2 (en) 2003-10-14

Family

ID=14379269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10438495A Expired - Fee Related JP3456053B2 (en) 1995-04-27 1995-04-27 Guide rail bending straightening device

Country Status (1)

Country Link
JP (1) JP3456053B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172642A (en) * 2008-01-24 2009-08-06 Furukawa Electric Co Ltd:The Apparatus and device for straightening linear body
CN114147144A (en) * 2021-12-06 2022-03-08 广东电网有限责任公司 Wire body straightening device and method
WO2022137270A1 (en) * 2020-12-21 2022-06-30 Schnell S.P.A. Method and apparatus for straightening elongated elements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150669A (en) * 1983-02-15 1984-08-28 Hitachi Zosen Corp Straightening method for welding wire
JPS6182939A (en) * 1984-10-01 1986-04-26 Nippon Steel Weld Prod & Eng Co Ltd Bend straightening device of steel wire rod
JPS6457919A (en) * 1987-08-27 1989-03-06 Toshiba Corp Straightening machine
JPH01278915A (en) * 1988-04-30 1989-11-09 Nippon Seiko Kk Method and apparatus for correcting bend of long-sized stock
JPH04210819A (en) * 1990-11-30 1992-07-31 Aichi Steel Works Ltd Method for operating and controlling straightener of round rod
JPH05337582A (en) * 1992-06-12 1993-12-21 Furukawa Electric Co Ltd:The Method for straightening wiry material
JPH0631365A (en) * 1992-07-15 1994-02-08 Toyota Motor Corp Wire feeding device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150669A (en) * 1983-02-15 1984-08-28 Hitachi Zosen Corp Straightening method for welding wire
JPS6182939A (en) * 1984-10-01 1986-04-26 Nippon Steel Weld Prod & Eng Co Ltd Bend straightening device of steel wire rod
JPS6457919A (en) * 1987-08-27 1989-03-06 Toshiba Corp Straightening machine
JPH01278915A (en) * 1988-04-30 1989-11-09 Nippon Seiko Kk Method and apparatus for correcting bend of long-sized stock
JPH04210819A (en) * 1990-11-30 1992-07-31 Aichi Steel Works Ltd Method for operating and controlling straightener of round rod
JPH05337582A (en) * 1992-06-12 1993-12-21 Furukawa Electric Co Ltd:The Method for straightening wiry material
JPH0631365A (en) * 1992-07-15 1994-02-08 Toyota Motor Corp Wire feeding device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172642A (en) * 2008-01-24 2009-08-06 Furukawa Electric Co Ltd:The Apparatus and device for straightening linear body
WO2022137270A1 (en) * 2020-12-21 2022-06-30 Schnell S.P.A. Method and apparatus for straightening elongated elements
CN114147144A (en) * 2021-12-06 2022-03-08 广东电网有限责任公司 Wire body straightening device and method
CN114147144B (en) * 2021-12-06 2024-01-09 广东电网有限责任公司 Wire straightening device and method

Also Published As

Publication number Publication date
JP3456053B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
EP2910895B1 (en) Coordinate measuring machine and method for calculating correction matrix by coordinate measuring machine
KR920010735B1 (en) Roll profile measuring method and apparatus
JP2527996B2 (en) Workpiece inspection method and device
US6453730B2 (en) Surface texture measuring instrument, surface texture measuring method and stylus radius measuring instrument
JP5983311B2 (en) Steel plate shape correction method
US6189364B1 (en) Bending angle correction method and press brake
JP3503359B2 (en) Method and apparatus for controlling pressure of welding gun
JPH11325829A (en) Wear elongation amount measuring method of link chain and its measuring equipment
JPH08300085A (en) Wire straightening equipment
JP2003311328A (en) Device for straightening bend of wire rod
JPH08338718A (en) Shape measuring machine
CN109060365B (en) Machine for detecting inclination angle of rear axle of car
JP3076712B2 (en) Roller guide caliber shift method and apparatus
JPH0979932A (en) Method for calibrating sensitivity of pressure distribution sensor
JP2022162744A (en) Curvature radius instrumentation system and bending roll using it
JPH10291015A (en) Device for measuring pass-line of roller table and pass line
JPS614911A (en) Method and device for dimensional measurement of nuclear fuel pellet
KR0178299B1 (en) Correction device for deflection of bar
SU1761335A1 (en) Method of straightening long-size products
JPH0979838A (en) Straightness measuring device
JP2007071705A (en) Instrument for measuring bent amount of thin-diametric long round rod
JPH0221131Y2 (en)
JPH06186028A (en) Measuring method for straightness of long member
JPH065719U (en) Straightening device for long end bending
JPH06109455A (en) Measuring device for straightness of long material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees