JPH08299778A - Solid organometallic compound feeder and its production - Google Patents

Solid organometallic compound feeder and its production

Info

Publication number
JPH08299778A
JPH08299778A JP7946396A JP7946396A JPH08299778A JP H08299778 A JPH08299778 A JP H08299778A JP 7946396 A JP7946396 A JP 7946396A JP 7946396 A JP7946396 A JP 7946396A JP H08299778 A JPH08299778 A JP H08299778A
Authority
JP
Japan
Prior art keywords
organometallic compound
solid
filling container
filling
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7946396A
Other languages
Japanese (ja)
Other versions
JP2964313B2 (en
Inventor
Hiromi Osaki
浩美 大崎
Toshinobu Ishihara
俊信 石原
Isao Kaneko
功 金子
Kohei Sato
幸平 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7946396A priority Critical patent/JP2964313B2/en
Publication of JPH08299778A publication Critical patent/JPH08299778A/en
Application granted granted Critical
Publication of JP2964313B2 publication Critical patent/JP2964313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: To provide a feeder capable of supplying an organometallic compd. solid at ordinary temps. to be fed into an epitaxial growth system in a stabilized concn. for a long time. CONSTITUTION: A stainless steel packing 16 with the porosity controlled to 50-80vol.% is packed in a packing vessel 10 to the 50-80vol.% of the total capacity of the vessel 10, and further an organometallic compd. solid at ordinary temps. is packed as a granular solid 17 to constitute the solid organometallic compd. feeder. When the compd. is produced, the packing 16 is placed in the vessel 10, then the organometallic compd. solid at ordinary temps. is fed, the vessel 10 is heated above the m.p. of the compd. to melt the compd., and the vessel 10 is rotated and cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、常温で固体の有機金
属化合物の供給装置及びその製造方法に関する。さらに
詳しくは、化合物半導体を製造する際に用いられるMO
CVD(Metalorganic Chemical
Vapor Deposition)法等によるエピ
タキシャル成長用材料として有用な、常温で固体の有機
金属化合物を、無駄なく長期的に安定した濃度で供給で
きる装置及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supplying an organometallic compound which is solid at room temperature and a method for producing the same. More specifically, MO used in manufacturing compound semiconductors
CVD (Metalorganic Chemical
The present invention relates to an apparatus and a method for producing the same, which is useful as a material for epitaxial growth by the Vapor Deposition method or the like and which can supply an organometallic compound which is solid at room temperature at a stable concentration for a long time without waste.

【0002】[0002]

【従来の技術】近年、III−V族及びII−VI族化
合物半導体が、半導体発光素子、マイクロ波トランジス
タ等の広い分野に用いられるようになり、それらの優れ
た特性を利用して、高速コンピューター用集積回路、オ
プトエレクトロニクス用集積回路等にも使用されるよう
になった。
2. Description of the Related Art In recent years, III-V and II-VI group compound semiconductors have come to be used in a wide range of fields such as semiconductor light emitting devices and microwave transistors. It has also come to be used in integrated circuits for electronics and integrated circuits for optoelectronics.

【0003】これら広範な用途に利用される化合物半導
体は、結晶成長法として有機金属化合物を用いたMOC
VD法により製造される。MOCVD法は、化合物ある
いは混晶半導体のエピタキシャル薄膜を形成する上で多
く用いられる結晶成長法の一つで、例えば、トリメチル
インジウム、トリメチルアルミニウム、トリメチルガリ
ウムのような有機金属化合物を原料とし、その熱分解反
応を利用して薄膜の結晶成長を行う方法である。
Compound semiconductors used for these wide range of applications are MOCs using an organometallic compound as a crystal growth method.
It is manufactured by the VD method. The MOCVD method is one of crystal growth methods often used in forming an epitaxial thin film of a compound or a mixed crystal semiconductor. For example, an organic metal compound such as trimethylindium, trimethylaluminum, and trimethylgallium is used as a raw material, and the heat This is a method of growing a thin film crystal by utilizing a decomposition reaction.

【0004】MOCVD法で用いられるこれら有機金属
化合物は、通常、ガス導入用及び排出用配管が接続され
た密閉容器に充填され、水素などのキャリヤガスを容器
内に導入し、排出用配管から有機金属化合物の蒸気で飽
和されたキャリヤガスを得る形で使用される。
These organometallic compounds used in the MOCVD method are usually filled in a closed container to which gas introduction and discharge pipes are connected, a carrier gas such as hydrogen is introduced into the container, and the organic gas is discharged from the discharge pipe. It is used in the form of obtaining a carrier gas saturated with the vapor of a metal compound.

【0005】一般に、常温で固体の有機金属化合物は、
容器の内壁に付着されていたり、小さな粒状の形で容器
に充填されている。しかし、これらの充填方法で充填さ
れた固体の有機金属化合物は、キャリヤガスにより定常
的に一定の濃度で供給することが難しいという欠点を有
する。すなわち、キャリヤガスと固体の有機金属化合物
との接触状態を均一に保つことが難しいため、接触面積
に変動が生じたりし、一定濃度での供給ができない。
Generally, an organometallic compound which is solid at room temperature is
It is attached to the inner wall of the container or filled in the form of small particles. However, the solid organometallic compounds filled by these filling methods have a drawback that it is difficult to constantly supply them at a constant concentration by the carrier gas. That is, since it is difficult to keep the contact state between the carrier gas and the solid organometallic compound uniform, the contact area may fluctuate, and it is impossible to supply at a constant concentration.

【0006】有機金属化合物をエピタキシャル成長させ
て形成される金属間化合物半導体は、成長時の有機金属
化合物の組成比率が変化すると、電気的及び光学的特性
的に著しい悪影響を受ける。したがって、高性能素子を
得るためには、安定に一定濃度の有機金属化合物を供給
することが必要である。また、それに際し、複雑な供給
装置を必要とせず、気化容器のみで実現されることが要
求されている。
An intermetallic compound semiconductor formed by epitaxially growing an organometallic compound is significantly adversely affected in electrical and optical characteristics when the composition ratio of the organometallic compound during growth changes. Therefore, in order to obtain a high performance device, it is necessary to stably supply a constant concentration of the organometallic compound. Further, in that case, it is required that the supply device is realized only by the vaporization container without requiring a complicated supply device.

【0007】特にトリメチルインジウム等の固体有機金
属化合物では、液体有機金属化合物と同じ容器でキャリ
ヤガスのバブリング方式による供給を行った場合、有機
金属化合物の充填量が多いときと少ないときで供給量に
変化が生じるため、充填した有機金属化合物を一定条件
で最後まで使用することが困難であるという問題を有し
ている。
In particular, in the case of a solid organometallic compound such as trimethylindium, when the carrier gas is supplied by the bubbling method in the same container as the liquid organometallic compound, the supply amount varies depending on whether the filling amount of the organometallic compound is large or small. Because of the change, there is a problem that it is difficult to use the filled organometallic compound under constant conditions until the end.

【0008】これら問題を解決する方法としては、容器
内に充填物を入れる方法(特公平6−20051号公
報)、充填物に被覆させる方法(特開平1−26551
1号公報)が知られている。
As a method for solving these problems, a method of putting a filling material in a container (Japanese Patent Publication No. 6-20051) and a method of covering the filling material (Japanese Patent Laid-Open No. 1-26551)
No. 1) is known.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、容器内
に充填物を入れる方法については、それだけでは良好な
安定性の改善とはならず、徐々に濃度が減少するという
欠点があった。また、充填物に被覆させる方法について
も、長時間安定した濃度で使用できず、また、単に被覆
させるだけでは、固体原料の被覆量が多くなるとその効
果は十分得られないばかりか、充填量を多くし、長時間
使用しようとすると、容器をかなり大きくしなければな
らず、不経済であるという欠点があった。
However, the method of putting the filler in the container has a drawback that the stability is not improved by itself and the concentration is gradually decreased. Also, as for the method of coating the filling, it cannot be used at a stable concentration for a long time, and if the coating is simply performed, the effect cannot be sufficiently obtained when the coating amount of the solid raw material is large, and the filling amount is not sufficient. If it is used many times and used for a long time, the container has to be considerably large, which is uneconomical.

【0010】本発明は、上記の問題を解決する為なされ
たもので、エピタキシャル成長装置内に供給する常温で
固体の有機金属化合物を安定した濃度で長時間供給でき
る装置及びその製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and provides an apparatus capable of supplying a stable concentration of an organometallic compound which is solid at room temperature for a long time and a method of manufacturing the same. With the goal.

【0011】[0011]

【課題を解決するための手段】本発明の請求項1記載の
発明は、充填容器内に、気孔率を50〜80体積%に調
整したステンレス製充填物を該充填容器の全容量に対し
50〜80体積%となるように充填し、さらに常温で固
体の有機金属化合物を粒状の固形物として充填したこと
を特徴とする固体有機金属化合物供給装置である。
According to a first aspect of the present invention, a filling material made of stainless steel having a porosity adjusted to 50 to 80% by volume is added to the filling container at a total volume of 50. The solid organometallic compound supply device is characterized in that the organometallic compound is filled so as to be 80% by volume, and further, the organometallic compound which is solid at room temperature is filled as a granular solid.

【0012】また、本発明の請求項2記載の発明は、請
求項1記載の装置において、常温で固体の有機金属化合
物をステンレス製充填物100重量部に対して100重
量部より多く充填すことを特徴とする。
Further, in the invention according to claim 2 of the present invention, in the apparatus according to claim 1, more than 100 parts by weight of the organometallic compound which is solid at room temperature is filled with respect to 100 parts by weight of the stainless filler. Is characterized by.

【0013】さらに、本発明の請求項3記載の発明は、
請求項1記載の装置において、常温で固体の有機金属化
合物がトリメチルインジウムであることを特徴とする。
Further, the invention according to claim 3 of the present invention is
The apparatus according to claim 1, wherein the organometallic compound which is solid at room temperature is trimethylindium.

【0014】次に、本発明の請求項4記載の発明は、充
填容器内に、気孔率を50〜80体積%に調整したステ
ンレス製充填物を該充填容器の全容量に対し50〜80
体積%となるように充填した後、常温で固体の有機金属
化合物を入れ、該有機金属化合物の融点以上に該充填容
器を加熱し、充填容器内の有機金属化合物を融解した
後、容器を回転させながら冷却することにより、充填容
器内に有機金属化合物を粒状の固形物として満たすこと
を特徴とする固体金属化合物供給装置の製造方法であ
る。
Next, in the invention according to claim 4 of the present invention, a stainless filler having a porosity adjusted to 50 to 80% by volume is filled in the filling container in an amount of 50 to 80 with respect to the total volume of the filling container.
After filling so as to be volume%, add an organometallic compound that is solid at room temperature, heat the filling container to a temperature above the melting point of the organometallic compound, melt the organometallic compound in the filling container, and then rotate the container. The method for producing a solid metal compound supply device is characterized in that the organometallic compound is filled in the filling container as a granular solid by cooling while allowing it to proceed.

【0015】また、本発明の請求項5記載の発明は、請
求項4記載の製造方法において、常温で固体の有機金属
化合物をステンレス製充填物100重量部に対して10
0重量部より多く充填することを特徴とする。
According to a fifth aspect of the present invention, in the manufacturing method according to the fourth aspect, 10 parts by weight of the organometallic compound solid at room temperature is added to 100 parts by weight of the stainless filler.
It is characterized by filling more than 0 parts by weight.

【0016】また、本発明の請求項6記載の発明は、請
求項4記載の製造方法において、常温で固体の有機金属
化合物がトリメチルインジウムであることを特徴とす
る。
The invention according to claim 6 of the present invention is characterized in that, in the manufacturing method according to claim 4, the organometallic compound which is solid at room temperature is trimethylindium.

【0017】さらに、本発明の請求項7記載の発明は、
請求項4記載の製造方法において、充填容器を回転させ
ながら冷却する際の容器の回転数が50〜l00rpm
であることを特徴とする。
Further, the invention according to claim 7 of the present invention is
The manufacturing method according to claim 4, wherein the number of rotations of the container during cooling while rotating the filling container is 50 to 100 rpm.
Is characterized in that.

【0018】次に、本発明をさらに詳細に説明する。図
1は、本発明の固体有機金属化合物供給装置の一例を示
す。充填容器10は、ノズル11、バルブ12を有する
ノズル13及びバルブ14を有するノズル15が設けら
れている。この充填容器10内に、気孔率(空隙率)を
50〜80体積%に調整したステンレス充填物16を容
器の全容量に対し50〜80体積%となるように充填
し、さらに、常温で固体の有機金属化合物を粒状の固形
物とした粒状有機金属化合物17を充填する。
Next, the present invention will be described in more detail. FIG. 1 shows an example of the solid organometallic compound supply device of the present invention. The filling container 10 is provided with a nozzle 11, a nozzle 13 having a valve 12, and a nozzle 15 having a valve 14. The filling container 10 is filled with a stainless filler 16 having a porosity (porosity) adjusted to 50 to 80% by volume so as to be 50 to 80% by volume with respect to the total volume of the container, and further solid at room temperature. The granular organometallic compound 17 which is a granular solid of the organometallic compound is filled.

【0019】ステンレス製充填物16は、100メッシ
ュ程度の金網を小さく丸め、3mmφ×3mmLとなる
ように切断し、さらに気孔率(空隙率)が50〜80体
積%となるように、径方向に荷重をかけ、つぶすことで
調整することにより得られる。気孔率(空隙率)が50
%以下では十分に有機金属化合物が保持できず、不経済
である。また、80体積%以上では、有機金属化合物の
入った充填容器10を回転させて粒状化する際に付着し
にくい為、有機金属化合物を充填容器内で十分に分散さ
せる効果が少なく、安定した濃度での供給が難しくな
る。
The filler 16 made of stainless steel is obtained by rolling a wire mesh of about 100 mesh into small pieces and cutting them into 3 mmφ × 3 mmL, and further in the radial direction so that the porosity (porosity) becomes 50 to 80% by volume. It is obtained by applying a load and adjusting by crushing. Porosity (porosity) is 50
If it is less than%, the organometallic compound cannot be sufficiently retained, which is uneconomical. Further, when the content is 80% by volume or more, it is difficult to adhere when the filling container 10 containing the organometallic compound is rotated and granulated, so that the effect of sufficiently dispersing the organometallic compound in the filling container is small and a stable concentration is obtained. Supply becomes difficult.

【0020】ステンレス充填物16は、充填容器内の全
容量に対して50〜80%となるように充填する。50
%以下では、有機金属化合物の充填量もそれに伴って減
少する為、不経済である。80%以上では、有機金属化
合物の入った充填容器10を回転させて粒状化する際に
ステンレス製充填物16の移動量が少なく、所望の機能
が得られるような粒状化した有機金属化合物が得られな
い。
The stainless filling 16 is filled so as to be 50 to 80% of the total volume in the filling container. Fifty
% Or less, it is uneconomical because the filling amount of the organometallic compound decreases accordingly. When it is 80% or more, the amount of movement of the stainless steel filler 16 is small when the filling container 10 containing the organometallic compound is rotated and granulated, so that the granulated organometallic compound having a desired function is obtained. I can't.

【0021】常温で固体の有機金属化合物としては、例
えばトリメチルインジウムが挙げられる。有機金属化合
物は、ステンレス製充填物100重量部に対して100
重量部より多く充填することが望ましい。l00重量部
以下では、所望の機能が得られず、長時間安定した濃度
で供給できなくなる。また、充填容器10の容量に対し
て充填できる有機金属化合物の充填量が少なくなってし
まい、不経済であり、好ましくない。
Examples of the organometallic compound which is solid at room temperature include trimethylindium. 100 parts by weight of the organometallic compound is 100 parts by weight of the stainless steel filler.
It is desirable to fill more than parts by weight. If the amount is 100 parts by weight or less, the desired function cannot be obtained, and it becomes impossible to supply a stable concentration for a long time. Further, the filling amount of the organometallic compound that can be filled with respect to the capacity of the filling container 10 becomes small, which is uneconomical and not preferable.

【0022】次に、この固体有機金属化合物供給装置の
製造方法の一例を説明する。まず、十分洗浄した充填容
器10のノズル11を開け、ステンレス製充填物16を
入れる。ノズル11を閉めた後、内部を不活性ガス置換
する。好ましくは10torr以下の減圧にした後、不
活性ガスを導入する。その操作を2〜3回繰り返し、系
内に酸素などの不純物が残らないようにする。
Next, an example of a method for manufacturing this solid organometallic compound supply device will be described. First, the nozzle 11 of the well-washed filling container 10 is opened, and the stainless filler 16 is put therein. After closing the nozzle 11, the inside is replaced with an inert gas. After reducing the pressure to preferably 10 torr or less, an inert gas is introduced. The operation is repeated 2-3 times so that impurities such as oxygen do not remain in the system.

【0023】次に、有機金属化合物を充填容器10内に
入れる。この場合、不活性ガス中でノズル11を用いて
充填しても良いが、好ましくは、ノズル13と有機金属
化合物の入った他の容器(図示せず。)とを接続し、接
続部分を十分置換した後、バルブ12を開け、昇華を利
用して所定量充填する。その際、有機金属化合物の充填
量がステンレス製充填物100重量部に対して100重
量部以下の場合、充填容器10を回転させて有機金属化
合物を粒状化する際に所望の機能が得られないので、好
ましくない。
Next, the organometallic compound is placed in the filling container 10. In this case, the nozzle 11 may be filled in an inert gas, but preferably, the nozzle 13 is connected to another container (not shown) containing an organometallic compound, and the connecting portion is sufficiently filled. After the replacement, the valve 12 is opened and sublimation is used to fill a predetermined amount. At that time, when the filling amount of the organometallic compound is 100 parts by weight or less with respect to 100 parts by weight of the stainless steel filler, a desired function cannot be obtained when the filling container 10 is rotated to granulate the organometallic compound. Therefore, it is not preferable.

【0024】その後、充填容器10を有機金属化合物の
融点以上に加熱する。加熱の方法は特に限定されるもの
ではなく、オイルバス、恒温槽等を用いて加熱すればよ
い。例えば有機金属化合物がトリメチルインジウムであ
る場合は、融点以上である90〜110℃程度で良い。
Then, the filling container 10 is heated to a temperature above the melting point of the organometallic compound. The heating method is not particularly limited, and heating may be performed using an oil bath, a constant temperature bath or the like. For example, when the organic metal compound is trimethylindium, the temperature may be about 90 to 110 ° C., which is higher than the melting point.

【0025】所定の温度に達した後、充填容器10を回
転させながら冷却することにより、有機金属化合物が固
化した粒状有機金属化合物17で充填容器10を満た
す。充填容器10の回転は、ポットミル回転台等を用い
て充填容器10を円筒容器(図示せず。)内に固定し、
円筒容器をそのまま回転台上で回転させながら充填容器
10を冷却する。その際の回転の速度は50〜100r
pmが好ましい。50rpm以下または100rpm以
上では、充填容器10の内部の外周部付近に有機金属化
合物が偏折してしまうので所望の特性が得られず、好ま
しくない。なお、充填容器10は強制的に冷却しても良
いが、回転させながら自然放冷しても十分である。
After the predetermined temperature is reached, the filling container 10 is filled with the granular organometallic compound 17 in which the organometallic compound is solidified by cooling the filling container 10 while rotating. The rotation of the filling container 10 is performed by fixing the filling container 10 in a cylindrical container (not shown) using a pot mill rotating table or the like,
The filling container 10 is cooled while rotating the cylindrical container on the rotary table as it is. The rotation speed at that time is 50 to 100 r
pm is preferred. At 50 rpm or less or 100 rpm or more, the organometallic compound is unevenly distributed in the vicinity of the outer peripheral portion inside the filling container 10, and thus desired characteristics cannot be obtained, which is not preferable. The filling container 10 may be forcibly cooled, but it is sufficient to naturally cool it while rotating it.

【0026】[0026]

【作用】上記の如く構成された固体有機金属供給装置
は、有機金属化合物が粒状の固形物として充填容器内に
十分に分散して満たされるので、エピタキシャル成長用
材料として有用な常温で固体の有機金属化合物を無駄な
く長期的に安定した濃度で供給することができる。
In the solid organometallic supply device configured as described above, since the organometallic compound is sufficiently dispersed and filled in the filling container as a granular solid, the organometallic compound which is solid at room temperature and is useful as a material for epitaxial growth. The compound can be supplied at a stable concentration for a long time without waste.

【0027】[0027]

【実施例】以下、本発明に係る固体有機金属化合物供給
装置の実施例を挙げて詳細に説明する。
EXAMPLES Hereinafter, examples of the solid organometallic compound supply device according to the present invention will be described in detail.

【0028】実施例1 100メッシュのステンレス金網を3mm×15mmに
切断した後、直径3mmφ程度になるように丸める。気
孔率が、約70体積%となるように径方向に押しつぶし
たものを100g用意し、ステンレス製充填物16とす
る。この時の容量は、約150mlであった。
Example 1 A 100-mesh stainless wire mesh was cut into a piece of 3 mm × 15 mm and then rolled into a diameter of about 3 mmφ. 100 g of a material crushed in the radial direction so that the porosity is about 70% by volume is prepared, and the stainless filler 16 is prepared. The volume at this time was about 150 ml.

【0029】図1に示すような、外径60.5mmφ、
本体高さ115mmLで内容積200mlの充填容器1
0を、十分に水洗、乾燥した後、ノズル11を開け、前
述のステンレス製充填物16をl00g充填し、ノズル
11を閉めた後に、ノズル13に真空ポンプを接続し、
0.1torrまで真空引きをした。その後、ノズル1
5よりへリウムガスを導入し、ガス置換を行った。この
操作を3回繰り返した後、ノズル13とトリメチルイン
ジウムの入った容器(図示せず。)を接続し、バルブ1
2を開け、昇華を利用して充填容器10内に移送充填し
た。充填量は110gであった。
As shown in FIG. 1, an outer diameter of 60.5 mmφ,
Filling container 1 with a body height of 115 mmL and an internal volume of 200 ml
0 was thoroughly washed with water and dried, then the nozzle 11 was opened, 100 g of the above-mentioned stainless steel filler 16 was charged, the nozzle 11 was closed, and then a vacuum pump was connected to the nozzle 13.
A vacuum was drawn up to 0.1 torr. Then nozzle 1
Helium gas was introduced from 5 to perform gas replacement. After repeating this operation three times, the nozzle 13 was connected to a container (not shown) containing trimethylindium, and the valve 1
2 was opened, and sublimation was used to transfer and fill the filling container 10. The filling amount was 110 g.

【0030】その後、オイルバス中に充填容器10を浸
して100℃に加熱し、0.5hr保持した後、充填容
器10を取り出して円筒容器(図示せず。)内に固定し
た。これをポットミル回転台(図示せず。)にのせ、充
填容器10を60rpmで3hr回転させた。その後、
充填容器10を取り出した。このようにして固体有機金
属化合物供給装置を製造した。
After that, the filling container 10 was immersed in an oil bath, heated to 100 ° C. and held for 0.5 hr, and then the filling container 10 was taken out and fixed in a cylindrical container (not shown). This was placed on a pot mill rotary table (not shown), and the filling container 10 was rotated at 60 rpm for 3 hours. afterwards,
The filling container 10 was taken out. Thus, the solid organometallic compound supply device was manufactured.

【0031】次いで、この装置による有機金属化合物の
安定供給が可能であるか試験を行った。すなわち、この
トリメチルインジウムの入った充填容器10を恒温槽
(図示せず。)内に取り付け、この充填容器10にノズ
ル13より高純度へリウムを通してトリメチルインジウ
ムをガス化し、ノズル15より得られたガス相をガス濃
度計(アプリオリ社製、図示せず。)にて測定した。図
2は、フィード量(トリメチルインジウムの全充填量に
対する割合)とトリメチルインジウムの濃度との関係を
示す。図2に示すように、本実施例の装置によれば、長
時間濃度が安定して供給できることが判り、安定性に優
れることが確認された。
Next, it was tested whether or not the organometallic compound could be stably supplied by this apparatus. That is, the filling container 10 containing the trimethylindium is installed in a thermostat (not shown), and high-purity helium is passed from the nozzle 13 into the filling container 10 to gasify the trimethylindium. The phases were measured with a gas densitometer (manufactured by Aprioli, not shown). FIG. 2 shows the relationship between the feed amount (ratio to the total filling amount of trimethylindium) and the concentration of trimethylindium. As shown in FIG. 2, it was confirmed that the apparatus of the present example can stably supply the concentration for a long time, and it was confirmed that the apparatus has excellent stability.

【0032】実施例2 実施例1における有機金属化合物の充填量をステンレス
製充填物100gに対して120gとした以外は実施例
1と同様に調製した。実施例1と同様に試験したとこ
ろ、実施例1と同様に長時間濃度が安定して供給でき、
安定性に優れることが確認された。
Example 2 Example 2 was prepared in the same manner as in Example 1 except that the amount of the organometallic compound used in Example 1 was 120 g based on 100 g of the stainless steel filler. When tested in the same manner as in Example 1, as in Example 1, the concentration can be stably supplied for a long time,
It was confirmed that the stability was excellent.

【0033】実施例3 実施例1における有機金属化合物の充填量をステンレス
製充填物100gに対して130gとした以外は実施例
1と同様に調製した。実施例1と同様に試験したとこ
ろ、実施例1と同様に長時間濃度が安定して供給でき、
安定性に優れることが確認された。
Example 3 The procedure of Example 1 was repeated, except that the amount of the organometallic compound used in Example 1 was 130 g relative to 100 g of the stainless steel filler. When tested in the same manner as in Example 1, as in Example 1, the concentration can be stably supplied for a long time,
It was confirmed that the stability was excellent.

【0034】比較例1 実施例1における有機金属化合物を加熱、融解及び、回
転処理を行わなかったこと以外は実施例1と同様に調製
した。実施例1と同様に試験したところ、図2に示すと
おり、長時間の使用に絶えないものであった。
Comparative Example 1 The organometallic compound in Example 1 was prepared in the same manner as in Example 1 except that heating, melting and rotation treatment were not performed. When tested in the same manner as in Example 1, as shown in FIG. 2, it was continuously used for a long time.

【0035】比較例2 実施例1における有機金属化合物の充填量をステンレス
製充填物100gに対して50gとした以外は実施例1
と同様に調製した。実施例1と同様に試験したところ、
比較例1とよく似た結果となり、長時間の使用に絶えな
いものであった。
Comparative Example 2 Example 1 except that the filling amount of the organometallic compound in Example 1 was 50 g per 100 g of the stainless steel filling.
Prepared as in. When tested in the same manner as in Example 1,
The result was very similar to that of Comparative Example 1, and it could be used for a long time.

【0036】比較例3 実施例1における気孔率が約70体積%となるように調
整したステンレス製充填物に代えて、市販のディクソン
パッキン(気孔率約94体積%)を用いた以外は実施例
1と同様に調製した。実施例1と同様に試験したとこ
ろ、図2に示すとおり安定性に欠け、長時間の使用に絶
えないものであった。
Comparative Example 3 Example 3 was replaced with a commercially available Dickson packing (porosity about 94% by volume) in place of the stainless steel filler adjusted to have a porosity of about 70% by volume in Example 1. Prepared as in 1. When tested in the same manner as in Example 1, it lacked stability as shown in FIG. 2 and could not be used for a long time.

【0037】比較例4 実施例1における円筒容器の回転速度を150rpmに
て3hr回転させたこと以外は実施例1と同様に調製し
た。実施例1と同様に試験したところ、比較例3とよく
似た結果となり、安定性に欠け、長時間の使用に絶えな
いものであった。
Comparative Example 4 Preparation was performed in the same manner as in Example 1 except that the cylindrical container in Example 1 was rotated at 150 rpm for 3 hours. When tested in the same manner as in Example 1, the results were very similar to those in Comparative Example 3, lacking in stability, and could not be used for a long time.

【0038】比較例5 実施例1における有機金属化合物の充填量をステンレス
製充填物100gに対して100gとした以外は実施例
1と同様に調製した。実施例1と同様に試験したとこ
ろ、比較例3とよく似た結果となり、安定性に欠け、長
時間の使用に絶えないものであった。
Comparative Example 5 The procedure of Example 1 was repeated, except that the amount of the organometallic compound used in Example 1 was 100 g based on 100 g of the stainless steel filler. When tested in the same manner as in Example 1, the results were very similar to those in Comparative Example 3, lacking in stability, and could not be used for a long time.

【0039】[0039]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、有機金属化合物が粒状の固形物として充填容器
内に十分に分散して満たすことができ、キャリヤガスと
固体の有機金属化合物との接触状態を均一に保つことが
できる。従って、エピタキシャル成長用材料として有用
な常温で固体の有機金属化合物を、無駄なく、充填容器
自体を不必要に大きくすることなく長期的に安定した濃
度で供給することができるという効果を奏する。
As is apparent from the above description, according to the present invention, the organometallic compound can be sufficiently dispersed and filled in the filling container as a granular solid, and the carrier gas and the solid organometallic compound can be filled. The contact state with the compound can be kept uniform. Therefore, it is possible to supply the organometallic compound, which is useful as a material for epitaxial growth, and which is solid at room temperature at a stable concentration for a long time without waste and without unnecessarily increasing the size of the filling container itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体有機金属化合物供給装置の一例を
示す断面図である。
FIG. 1 is a sectional view showing an example of a solid organometallic compound supply device of the present invention.

【図2】固体有機金属化合物供給装置からガス化して供
給される有機金属化合物の濃度変化を示すグラフであ
る。
FIG. 2 is a graph showing changes in the concentration of an organometallic compound gasified and supplied from a solid organometallic compound supply device.

【符号の説明】[Explanation of symbols]

10 充填容器 11 ノズル 12 バルブ 13 ノズル 14 バルブ 15 ノズル 16 ステンレス製充填物 17 粒状有機金属化合物 10 Filling Container 11 Nozzle 12 Valve 13 Nozzle 14 Valve 15 Nozzle 16 Stainless Steel Filling Material 17 Granular Organometallic Compound

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 35/00 7202−4G C30B 35/00 H01L 21/205 H01L 21/205 (72)発明者 金子 功 新潟県中頸城郡頸城村大字西福島28番地の 1 信越化学工業株式会社合成技術研究所 内 (72)発明者 佐藤 幸平 新潟県中頸城郡頸城村大字西福島28番地の 1 信越化学工業株式会社合成技術研究所 内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C30B 35/00 7202-4G C30B 35/00 H01L 21/205 H01L 21/205 (72) Inventor Kaneko Achievement 28, Nishi-Fukushima, Kubiki-mura, Nakakubiki-gun, Niigata Prefecture Shin-Etsu Chemical Co., Ltd. Synthetic Technology Laboratory (72) Inventor Kohei Sato 1-28, Nishi-Fukushima, Kubiki-mura, Nakakubiki-gun, Niigata Prefecture 1 Shin-Etsu Chemical Co., Ltd. Company Synthetic Technology Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 充填容器内に、気孔率を50〜80体積
%に調整したステンレス製充填物を該充填容器の全容量
に対し50〜80体積%となるように充填し、さらに常
温で固体の有機金属化合物を粒状の固形物として充填し
たことを特徴とする固体有機金属化合物供給装置。
1. A filling container is filled with a stainless filler having a porosity adjusted to 50 to 80% by volume so as to be 50 to 80% by volume with respect to the total volume of the filling container, and further solid at room temperature. A solid organometallic compound supply device, characterized in that the organometallic compound of (1) is filled as a granular solid.
【請求項2】 常温で固体の有機金属化合物をステンレ
ス製充填物100重量部に対して100重量部より多く
充填することを特徴とする請求項1記載の固体有機金属
化合物供給装置。
2. The solid organometallic compound supply device according to claim 1, wherein the organometallic compound which is solid at room temperature is filled in an amount of more than 100 parts by weight based on 100 parts by weight of the stainless steel filler.
【請求項3】 常温で固体の有機金属化合物がトリメチ
ルインジウムであることを特徴とする請求項1記載の固
体有機金属化合物供給装置。
3. The solid organometallic compound supply device according to claim 1, wherein the organometallic compound which is solid at room temperature is trimethylindium.
【請求項4】 充填容器内に、気孔率を50〜80体積
%に調整したステンレス製充填物を該充填容器の全容量
に対し50〜80体積%となるように充填した後、常温
で固体の有機金属化合物を入れ、該有機金属化合物の融
点以上に該充填容器を加熱して充填容器内の有機金属化
合物を融解した後、該充填容器を回転させながら冷却す
ることにより、充填容器内に前記有機金属化合物を粒状
の固形物として満たすことを特徴とする固体金属化合物
供給装置の製造方法。
4. A filling container is filled with a stainless filler having a porosity adjusted to 50 to 80% by volume so as to be 50 to 80% by volume with respect to the total volume of the filling container, and then solid at room temperature. Of the organometallic compound, and heating the filling container above the melting point of the organometallic compound to melt the organometallic compound in the filling container, and then cooling while rotating the filling container, A method for manufacturing a solid metal compound supply device, which comprises filling the organometallic compound as a granular solid.
【請求項5】 常温で固体の有機金属化合物をステンレ
ス製充填物100重量部に対して100重量部より多く
充填することを特徴とする請求項4記載の固体有機金属
化合物供給装置の製造方法。
5. The method for producing a solid organometallic compound supply device according to claim 4, wherein the organometallic compound which is solid at room temperature is filled in an amount of more than 100 parts by weight with respect to 100 parts by weight of the stainless steel filler.
【請求項6】 常温で固体の有機金属化合物がトリメチ
ルインジウムであることを特徴とする請求項4記載の固
体有機金属化合物供給装置の製造方法。
6. The method for manufacturing a solid organometallic compound supply device according to claim 4, wherein the organometallic compound which is solid at room temperature is trimethylindium.
【請求項7】 充填容器を回転させながら冷却する際の
容器の回転数が50〜l00rpmであることを特徴と
する請求項4記載の固体有機金属化合物供給装置の製造
方法。
7. The method for producing a solid organometallic compound supply device according to claim 4, wherein the number of rotations of the container when cooling the filling container while cooling is 50 to 100 rpm.
JP7946396A 1995-03-09 1996-03-07 Solid organometallic compound supply apparatus and method for producing the same Expired - Fee Related JP2964313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7946396A JP2964313B2 (en) 1995-03-09 1996-03-07 Solid organometallic compound supply apparatus and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-78164 1995-03-09
JP7816495 1995-03-09
JP7946396A JP2964313B2 (en) 1995-03-09 1996-03-07 Solid organometallic compound supply apparatus and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08299778A true JPH08299778A (en) 1996-11-19
JP2964313B2 JP2964313B2 (en) 1999-10-18

Family

ID=26419245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7946396A Expired - Fee Related JP2964313B2 (en) 1995-03-09 1996-03-07 Solid organometallic compound supply apparatus and method for producing the same

Country Status (1)

Country Link
JP (1) JP2964313B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134741A (en) * 2002-06-17 2004-04-30 Asm Internatl Nv Control system for sublimation of reactant
JP2007053186A (en) * 2005-08-17 2007-03-01 Sumitomo Chemical Co Ltd Organic metal compound supplying vessel
GB2443531A (en) * 2006-10-30 2008-05-07 Sumitomo Chemical Co Method of vaporizing solid organometallic compound
JP2008300712A (en) * 2007-06-01 2008-12-11 Shin Etsu Chem Co Ltd Method for filling solid organic metal compound
US7601225B2 (en) 2002-06-17 2009-10-13 Asm International N.V. System for controlling the sublimation of reactants
KR101029894B1 (en) * 2003-07-08 2011-04-18 토소 화인켐 가부시키가이샤 Container and method for filling solid organometallic compound
KR101358204B1 (en) * 2003-07-11 2014-02-05 토소 화인켐 가부시키가이샤 Method and container for filling solid organometallic compound
CN106861557A (en) * 2017-04-24 2017-06-20 中国科学技术大学 A kind of volatilization device for CVD Solid Sources

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486794B2 (en) * 2002-06-17 2010-06-23 エーエスエム インターナショナル エヌ.ヴェー. Method for generating vapor from solid precursor, substrate processing system and mixture
JP2004134741A (en) * 2002-06-17 2004-04-30 Asm Internatl Nv Control system for sublimation of reactant
US7601225B2 (en) 2002-06-17 2009-10-13 Asm International N.V. System for controlling the sublimation of reactants
US7851019B2 (en) 2002-06-17 2010-12-14 Asm International N.V. Method for controlling the sublimation of reactants
KR101029894B1 (en) * 2003-07-08 2011-04-18 토소 화인켐 가부시키가이샤 Container and method for filling solid organometallic compound
KR101358204B1 (en) * 2003-07-11 2014-02-05 토소 화인켐 가부시키가이샤 Method and container for filling solid organometallic compound
JP4710481B2 (en) * 2005-08-17 2011-06-29 住友化学株式会社 Organometallic compound supply container
JP2007053186A (en) * 2005-08-17 2007-03-01 Sumitomo Chemical Co Ltd Organic metal compound supplying vessel
GB2443531B (en) * 2006-10-30 2010-03-17 Sumitomo Chemical Co Method of vaporizing solid organanometallic compound
GB2443531A (en) * 2006-10-30 2008-05-07 Sumitomo Chemical Co Method of vaporizing solid organometallic compound
US8021441B2 (en) 2006-10-30 2011-09-20 Sumitomo Chemical Company, Limited Method of vaporizing solid organometallic compound
JP2008300712A (en) * 2007-06-01 2008-12-11 Shin Etsu Chem Co Ltd Method for filling solid organic metal compound
CN106861557A (en) * 2017-04-24 2017-06-20 中国科学技术大学 A kind of volatilization device for CVD Solid Sources
CN106861557B (en) * 2017-04-24 2023-03-10 中国科学技术大学 Volatilization device for CVD solid source

Also Published As

Publication number Publication date
JP2964313B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
US6406539B1 (en) Process for producing silicon carbide single crystal and production apparatus therefor
EP0859879B1 (en) A method for epitaxially growing objects and a device for such a growth
US5964944A (en) Method of producing silicon carbide single crystal
EP0835336B1 (en) A device and a method for epitaxially growing objects by cvd
US5989305A (en) Feeder of a solid organometallic compound
US4588451A (en) Metal organic chemical vapor deposition of 111-v compounds on silicon
US7695565B2 (en) Sublimation chamber for phase controlled sublimation
US20100151194A1 (en) Polycrystalline group iii metal nitride with getter and method of making
JP4489446B2 (en) Method for producing gallium-containing nitride single crystal
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
KR20070084283A (en) Method for producing gan or algan crystals
WO1992001826A1 (en) Method and apparatus for making single crystal
JPH08299778A (en) Solid organometallic compound feeder and its production
US6797060B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH10279398A (en) Gallium arsenide single crystal and its production
JP4310880B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH06128094A (en) Production of silicon carbide single crystal
JP2000319098A (en) Method and apparatus for producing silicon carbide single crystal
JP4873169B2 (en) Filling method of solid organometallic compound
WO2001048277A1 (en) Method and apparatus for producing single crystal of silicon carbide
JPH06298600A (en) Method of growing sic single crystal
JP4222630B2 (en) Method for epitaxially growing objects and apparatus for performing such growth
KR850001945B1 (en) Method for producing semiconductor grade silicon
JP4748928B2 (en) Solid organometallic compound filling method and filling container
JPH02155226A (en) Manufacture of granular semiconductor diamond

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees