JPH08298128A - Solid-state high polymer electrolytic fuel cell - Google Patents

Solid-state high polymer electrolytic fuel cell

Info

Publication number
JPH08298128A
JPH08298128A JP7103950A JP10395095A JPH08298128A JP H08298128 A JPH08298128 A JP H08298128A JP 7103950 A JP7103950 A JP 7103950A JP 10395095 A JP10395095 A JP 10395095A JP H08298128 A JPH08298128 A JP H08298128A
Authority
JP
Japan
Prior art keywords
exchange membrane
ion exchange
layer
membrane layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7103950A
Other languages
Japanese (ja)
Inventor
Masaru Yoshitake
優 吉武
Naoki Yoshida
直樹 吉田
Toyoaki Ishizaki
豊暁 石崎
Tetsuji Shimodaira
哲司 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7103950A priority Critical patent/JPH08298128A/en
Publication of JPH08298128A publication Critical patent/JPH08298128A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a fuel cell of high output having high open electromotive force and terminal voltage by forming an ion exchange membrane as a specific double layer ion exchange membrane, in the fuel cell forming the ion exchange membrane as a solid-state high polymer electrolyte. CONSTITUTION: An ion exchange membrane is formed as a double layer ion exchange membrane comprising at least three layers, anode side ion exchange membrane layer, ion exchange membrane layer containing a catalyst (example; platinum) of promoting reaction of producing H2 O from H2 gas and O2 gas to preferably have 0.1 to 500mg/cm<3> this catalytic amount and a cathode side ion exchange membrane layer. Further, water content of the anode side ion exchange membrane layer is preferably set larger than water content of the cathode side ion exchange membrane layer by 5 to 50wt.% particularly by 10 to 30wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり、地球環境への悪影響がほとん
どない発電システムとして注目されている。とりわけ、
固体高分子電解質型は近年の研究の急速な進展により、
高出力密度化が可能になっており、小型、低温作動とい
う特徴とあわせて車載用電源等への実用化が大きく期待
されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has been attracting attention as a power generation system that has a reaction product of only water in principle and has little adverse effect on the global environment. Above all,
Due to the rapid progress of research in recent years, the solid polymer electrolyte type has
High output density is possible, and it is highly expected that it will be put to practical use as a vehicle-mounted power source, etc., in addition to its features of small size and low temperature operation.

【0003】本用途に用いられる固体高分子電解質とし
ては、通常厚さ50〜200μmのプロトン伝導性イオ
ン交換膜が用いられ、特にスルホン酸基を有するパーフ
ルオロカーボン重合体からなるイオン交換膜が基本特性
に優れ広く検討されている。固体高分子電解質型燃料電
池では、このイオン交換膜の両面にガス拡散性の電極層
を形成し、燃料である水素と酸化剤となる酸素又は空気
をそれぞれアノード(水素極)及びカソード(酸素極)
に供給することにより発電を行う。
As the solid polymer electrolyte used in this application, a proton conductive ion exchange membrane having a thickness of 50 to 200 μm is usually used, and an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is a basic characteristic. Has been widely and widely studied. In a solid polymer electrolyte fuel cell, gas diffusion electrode layers are formed on both sides of this ion exchange membrane, and hydrogen as a fuel and oxygen or air as an oxidant are supplied to an anode (hydrogen electrode) and a cathode (oxygen electrode), respectively. )
To generate electricity.

【0004】[0004]

【発明が解決しようとする課題】この場合、水素ガスは
アノードで反応するが、その一部は未反応のまま系外に
排出され、さらにその一部はイオン交換膜を透過してカ
ソード側へ漏洩する。同様に、酸素ガスの一部はカソー
ド側からイオン交換膜を透過してアノード側へ漏洩す
る。この現象はガスのクロスオーバーと呼ばれ、電極に
供給した水素ガス又は酸素ガスとイオン交換膜の反対側
から漏れ込んだ酸素ガス又は水素ガスが電極上で反応す
ることによりそれぞれの電極の作動電位がシフトし、セ
ル電圧の低下を引き起こす。
In this case, hydrogen gas reacts at the anode, but a part of it is discharged unreacted out of the system, and a part of it further permeates the ion-exchange membrane to the cathode side. Leak. Similarly, part of the oxygen gas permeates the ion exchange membrane from the cathode side and leaks to the anode side. This phenomenon is called gas crossover, and the hydrogen gas or oxygen gas supplied to the electrodes and the oxygen gas or hydrogen gas leaking from the opposite side of the ion exchange membrane react on the electrodes to cause the operating potential of each electrode. Shift, causing a drop in cell voltage.

【0005】また、電解質膜であるイオン交換膜の含水
率及び膜厚と、電気抵抗及びガスの透過性との間には関
連がある。すなわち、イオン交換膜の含水率が高いほ
ど、電気抵抗は小さく、ガスの透過性は高くなる傾向に
ある。イオン交換膜の膜厚が大きいほど、電気抵抗は大
きく、ガスの透過性は低くなる傾向にある。
Further, there is a relation between the water content and the film thickness of the ion exchange membrane which is the electrolyte membrane, and the electrical resistance and the gas permeability. That is, the higher the water content of the ion exchange membrane, the smaller the electric resistance and the higher the gas permeability. The larger the thickness of the ion exchange membrane, the larger the electric resistance and the lower the gas permeability.

【0006】固体高分子電解質型燃料電池の高出力化の
ためには、電解質であるイオン交換膜には電気抵抗が小
さく、かつガスの透過によるクロスオーバー現象が小さ
いことが要求されるが、従来提案されているイオン交換
膜はいずれもこれらを同時に満足するものではない。
In order to increase the output of a solid polymer electrolyte fuel cell, the ion exchange membrane as an electrolyte is required to have a low electric resistance and a small crossover phenomenon due to gas permeation. None of the proposed ion exchange membranes satisfy these at the same time.

【0007】従来、このクロスオーバー現象によるセル
電圧の低下を抑制するために電解質膜として、2枚のイ
オン交換膜を使用し、この膜間にスパッタリングによる
白金層の触媒層を存在させ、この触媒層で膜中を透過す
る水素と酸素を反応させて消費することにより反対側の
電極に到達するガス量を低減する方法(特開平6−10
3992等)が提案されているが、性能的に未だ充分な
ものとはいえない。
Conventionally, in order to suppress a decrease in cell voltage due to the crossover phenomenon, two ion exchange membranes are used as an electrolyte membrane, and a platinum catalyst layer is formed by sputtering between the membranes. A method of reducing the amount of gas reaching the electrode on the opposite side by reacting and consuming hydrogen and oxygen that permeate through the film in a layer (JP-A-6-10).
3992) has been proposed, but the performance is still insufficient.

【0008】[0008]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、イオン交換膜を固体高分
子電解質とする燃料電池において、上記イオン交換膜
が、アノード側イオン交換膜層(1)と、水素ガスと酸
素ガスから水を生成する反応を促進する触媒を含有する
イオン交換膜層(2)と、カソード側イオン交換膜層
(3)との少なくとも3層からなる複層イオン交換膜で
あることを特徴とする固体高分子電解質型燃料電池を提
供する。
The present invention has been made to solve the above-mentioned problems. In a fuel cell using an ion exchange membrane as a solid polymer electrolyte, the ion exchange membrane is an ion exchange membrane on the anode side. A composite comprising at least three layers, a layer (1), an ion exchange membrane layer (2) containing a catalyst that promotes a reaction for producing water from hydrogen gas and oxygen gas, and a cathode side ion exchange membrane layer (3). Provided is a solid polymer electrolyte fuel cell, which is a layered ion exchange membrane.

【0009】本発明で使用される複層イオン交換膜にお
いて、アノード側イオン交換膜層(1)の含水率は、カ
ソード側イオン交換膜層の含水率よりも大きい場合、特
に優れた性能を有する。その場合前者の含水率は後者に
比して、好ましくは5〜50重量%、特には10〜30
重量%大きくするのが好ましい。一方、イオン交換膜層
(2)の含水率は、カソード側イオン交換膜層(3)と
同等以上であるのが好ましい。これらイオン交換膜層
(1)、(2)、(3)の含水率は30〜110重量
%、特には35〜95重量%に制御するのが好ましい。
In the multi-layer ion exchange membrane used in the present invention, when the water content of the anode side ion exchange membrane layer (1) is higher than the water content of the cathode side ion exchange membrane layer, it has particularly excellent performance. . In that case, the water content of the former is preferably 5 to 50% by weight, particularly 10 to 30%, as compared with the latter.
It is preferable to increase the weight percentage. On the other hand, the water content of the ion exchange membrane layer (2) is preferably equal to or higher than that of the cathode side ion exchange membrane layer (3). The water content of these ion exchange membrane layers (1), (2) and (3) is preferably controlled to 30 to 110% by weight, particularly 35 to 95% by weight.

【0010】本発明でイオン交換膜層の含水率△Wは以
下のように定義される。
In the present invention, the water content ΔW of the ion exchange membrane layer is defined as follows.

【0011】[0011]

【数1】△W=(W1 /W2 −1)×100(重量%) W1 :90℃、純水中、24時間浸漬後の膜重量、 W2 :W1を測定後、100℃にて16時間真空乾燥後
の膜重量。
[Formula 1] ΔW = (W 1 / W 2 −1) × 100 (wt%) W 1 : 90 ° C., film weight after immersion in pure water for 24 hours, W 2 : W1 is measured, then 100 ° C. The film weight after vacuum drying for 16 hours.

【0012】本発明の複層イオン交換膜におけるアノー
ド側イオン交換膜層(1)とカソード側イオン交換膜層
(3)との間に形成されるイオン交換膜層(2)に含有
される水素ガスと酸素ガスから水を生成する反応を促進
する触媒は、好ましくは固体触媒であり、金属、金属酸
化物、複合酸化物である。これらは、好ましくは0.5
〜500nmの微粒子であるが、適宜の担体に担持させ
た担持触媒としても使用される。
Hydrogen contained in the ion exchange membrane layer (2) formed between the anode side ion exchange membrane layer (1) and the cathode side ion exchange membrane layer (3) in the multilayer ion exchange membrane of the present invention. The catalyst that promotes the reaction of producing water from gas and oxygen gas is preferably a solid catalyst, and is a metal, a metal oxide, or a composite oxide. These are preferably 0.5
Although it is a fine particle of ˜500 nm, it is also used as a supported catalyst supported on an appropriate carrier.

【0013】担体としては、炭素、金属酸化物、複合酸
化物等が用いられる。触媒としては使用環境下で触媒活
性及び耐食性が優れている白金族金属、その合金、酸化
物又は、複合酸化物が好ましい。これら触媒は、イオン
交換膜層(2)中において分散されており、イオン交換
膜を形成するイオン交換樹脂により被覆された状態で存
在するのが好ましい。
As the carrier, carbon, metal oxide, complex oxide and the like are used. As the catalyst, a platinum group metal, an alloy thereof, an oxide, or a complex oxide, which has excellent catalytic activity and corrosion resistance under the use environment, is preferable. These catalysts are preferably dispersed in the ion exchange membrane layer (2) and are preferably present in a state of being covered with the ion exchange resin forming the ion exchange membrane.

【0014】本発明でイオン交換膜層(2)において、
触媒の存在量は重要であり、触媒の存在量(担体使用の
場合は担体を除く)は、0.1〜500mg/cm3
特には1.0〜250mg/cm3 、が好ましい。上記
範囲より小さい場合には、触媒添加効果が小さく、一
方、大きい場合にも触媒添加効果はそれ以上に増大せ
ず、逆にイオン交換膜層の電気抵抗の増加を招く。
In the present invention, in the ion exchange membrane layer (2),
The abundance of the catalyst is important, and the abundance of the catalyst (excluding the carrier when using a carrier) is 0.1 to 500 mg / cm 3 ,
Particularly, 1.0 to 250 mg / cm 3 is preferable. When it is smaller than the above range, the effect of adding the catalyst is small, while when it is large, the effect of adding the catalyst is not further increased, but on the contrary, the electric resistance of the ion exchange membrane layer is increased.

【0015】触媒が特に上記担持触媒の場合などは、特
にその嵩が問題になるので、イオン交換膜層(2)中の
触媒は、イオン交換膜層(2)中、50体積%以下、特
には30体積%以下、であるのが好ましい。上記範囲外
の場合には層中のイオン交換樹脂の比率が小さくなるた
め電気抵抗が増大し、電池の出力が低下する。
When the catalyst is the above-mentioned supported catalyst in particular, its bulk becomes a problem. Therefore, the amount of the catalyst in the ion exchange membrane layer (2) is 50% by volume or less, especially in the ion exchange membrane layer (2). Is preferably 30% by volume or less. When the amount is out of the above range, the ratio of the ion exchange resin in the layer decreases, so that the electric resistance increases and the output of the battery decreases.

【0016】本発明の複層イオン交換膜の厚さは、全厚
として30〜300μm、特には50〜250μmが好
ましい。上記範囲より小さい場合には、膜強度及び電極
接合等における膜取扱い性が低下し、一方、大きい場合
には膜抵抗が上昇し、電池の出力が低下する。
The total thickness of the multi-layered ion exchange membrane of the present invention is preferably 30 to 300 μm, particularly preferably 50 to 250 μm. When it is less than the above range, the membrane strength and the handleability of the membrane such as electrode bonding are deteriorated, while when it is larger, the membrane resistance is increased and the output of the battery is decreased.

【0017】複層イオン交換膜において、イオン交換膜
層(1)、(2)、(3)の各厚みは同じである必要は
ない。むしろアノード側イオン交換膜層(1)は、カソ
ード側イオン交換膜層(3)よりも好ましくは5〜20
0μm大きい厚みを有するのが性能上好ましい。一方、
中間のイオン交換膜層(2)は、上記2つの層よりも小
さくされ、好ましくは2〜30μmとされる。
In the multi-layer ion exchange membrane, the ion exchange membrane layers (1), (2) and (3) do not have to have the same thickness. Rather, the anode side ion exchange membrane layer (1) is more preferably 5 to 20 than the cathode side ion exchange membrane layer (3).
It is preferable in terms of performance to have a thickness larger by 0 μm. on the other hand,
The intermediate ion exchange membrane layer (2) is made smaller than the above two layers, preferably 2 to 30 μm.

【0018】本発明の複層イオン交換膜を構成する上記
イオン交換膜層(1)、(2)、(3)は、好ましくは
スルホン酸基を有するフルオロカーボン重合体からな
る。かかるフルオロカーボン重合体としては、CF2
CF2 とCF2 =CF−(OCF2 CFX)m −Oq
(CF2n −A(式中mは0〜3の整数、nは0〜1
2の整数、qは0又は1、XはF又はCF3 、Aはスル
ホン酸型官能基)で表されるフルオロビニル化合物との
パーフルオロカーボン共重合体が好ましい。
The ion exchange membrane layers (1), (2) and (3) constituting the multi-layered ion exchange membrane of the present invention are preferably made of a fluorocarbon polymer having a sulfonic acid group. As such a fluorocarbon polymer, CF 2 =
CF 2 and CF 2 = CF- (OCF 2 CFX ) m -O q -
(CF 2) n -A (wherein m is an integer of from 0 to 3, n represents 0 to 1
A perfluorocarbon copolymer with a fluorovinyl compound represented by an integer of 2, q is 0 or 1, X is F or CF 3 , and A is a sulfonic acid type functional group is preferable.

【0019】上記フルオロビニル化合物の好ましい例と
しては、化1の各化合物などが挙げられる。
Preferred examples of the fluorovinyl compound include the compounds of Chemical formula 1 and the like.

【0020】[0020]

【化1】CF2 =CFO(CF21-8 −SO2 F、 CF2 =CFOCF2 CF(CF3 )0(CF21-8
−SO2 F、 CF2 =CF(CF20-8 −SO2 F、 CF2 =CF(OCF2 CF(CF3 ))1-5 −(CF
22 SO2 F。
Embedded image CF 2 ═CFO (CF 2 ) 1-8 —SO 2 F, CF 2 ═CFOCF 2 CF (CF 3 ) 0 (CF 2 ) 1-8
-SO 2 F, CF 2 = CF (CF 2) 0-8 -SO 2 F, CF 2 = CF (OCF 2 CF (CF 3)) 1-5 - (CF
2 ) 2 SO 2 F.

【0021】なお、上記フルオロカーボン重合体を構成
する単量体に加えて、ヘキサフルオロプロピレン、クロ
ロトリフルオロエチレン等のパーフルオロオレフィン、
パーフルオロアルキルビニルエーテル等を共重合させる
こともできる。
In addition to the monomers constituting the fluorocarbon polymer, perfluoroolefins such as hexafluoropropylene and chlorotrifluoroethylene,
It is also possible to copolymerize perfluoroalkyl vinyl ether or the like.

【0022】上記イオン交換膜層(1)、(2)、
(3)からなる複層イオン交換膜は、フィブリル状、織
布状、又は不織布状のフルオロカーボン重合体で補強す
ることもできる。
The ion exchange membrane layers (1), (2),
The multi-layered ion exchange membrane composed of (3) can also be reinforced with a fibril-like, woven-like or non-woven-like fluorocarbon polymer.

【0023】上記複層イオン交換膜は、アノード側イオ
ン交換膜層(1)、触媒を含有するイオン交換膜層
(2)、及びカソード側イオン交換膜層(3)をそれぞ
れ別々にフィルム状に成形し、好ましくは120〜23
0℃、0.5〜30kg/cmにてホットプレス法等
により密着、積層させることにより製造できる。
The multi-layered ion-exchange membrane comprises an anode-side ion-exchange membrane layer (1), a catalyst-containing ion-exchange membrane layer (2), and a cathode-side ion-exchange membrane layer (3) which are separately formed into a film. Molded, preferably 120-23
It can be manufactured by adhering and stacking at 0 ° C. and 0.5 to 30 kg / cm 2 by a hot pressing method or the like.

【0024】また、アノード側イオン交換膜層(1)又
はカソード側イオン交換膜層(3)の片面に塗布法、ス
プレー法、印刷法等により触媒を含有するイオン交換膜
層(2)を形成後、もう一方のイオン交換膜層(3)又
は(1)を上記イオン交換膜層(2)を挟むように積層
させ、ホットプレス法等によっても製造できる。
An ion exchange membrane layer (2) containing a catalyst is formed on one side of the anode side ion exchange membrane layer (1) or the cathode side ion exchange membrane layer (3) by a coating method, a spray method, a printing method or the like. After that, the other ion exchange membrane layer (3) or (1) is laminated so as to sandwich the above ion exchange membrane layer (2), and it can also be produced by a hot pressing method or the like.

【0025】上記複層イオン交換膜には、通常の既知の
方法に従ってその表面にガス拡散電極を接合し、次いで
カーボンペーパー等の集電体を取り付ける。電極及び集
電体を表面に有する複層イオン交換膜は、燃料ガス(水
素ガス)又は酸化剤ガス(酸素ガス)の通路となる溝が
形成された一対の導電性の室枠に挟み込むことにより、
燃料電池として組み立てられる。
A gas diffusion electrode is bonded to the surface of the multi-layered ion-exchange membrane according to a commonly known method, and then a collector such as carbon paper is attached. By sandwiching the multi-layer ion-exchange membrane having electrodes and current collectors on the surface, it is sandwiched between a pair of conductive chamber frames in which grooves serving as passages for fuel gas (hydrogen gas) or oxidant gas (oxygen gas) are formed. ,
It is assembled as a fuel cell.

【0026】本発明で使用されるガス拡散電極は特に限
定されない。例えば、白金担持カーボンブラック粉末を
ポリテトラフルオロエチレンなどの撥水性樹脂結着材で
保持させた多孔質シートが使用でき、該多孔質シートは
スルホン酸型パーフルオロカーボン重合体やその重合体
で被覆された微粒子を含んでもよい。この多孔質シート
はガス拡散電極としてホットプレス法等により固体高分
子型電解質たる上記イオン交換膜に接合される。
The gas diffusion electrode used in the present invention is not particularly limited. For example, a porous sheet obtained by holding platinum-supporting carbon black powder with a water-repellent resin binder such as polytetrafluoroethylene can be used, and the porous sheet is coated with a sulfonic acid type perfluorocarbon polymer or a polymer thereof. Fine particles may be included. This porous sheet is bonded as a gas diffusion electrode to the ion exchange membrane, which is a solid polymer electrolyte, by a hot pressing method or the like.

【0027】また別の例では、イオン交換膜又は集電体
を形成するカーボンペーパー等の両面又は片面に、塗布
法、スプレー法又は印刷法等により白金担持カーボン粒
子とスルホン酸型パーフルオロカーボン重合体の混合物
からなるガス拡散電極の層を形成し、これらを、好まし
くは120〜350℃、2〜100kg/cm2 にてホ
ットプレス法等により密着させることで、表面に電極層
を有するイオン交換膜又は集電体が製造できる。
In another example, platinum-supporting carbon particles and a sulfonic acid-type perfluorocarbon polymer are formed on both sides or one side of a carbon paper or the like forming an ion exchange membrane or a current collector by a coating method, a spray method or a printing method. An ion exchange membrane having an electrode layer on the surface thereof is formed by forming a layer of a gas diffusion electrode comprising a mixture of the above and adhering them by a hot pressing method or the like, preferably at 120 to 350 ° C. and 2 to 100 kg / cm 2 . Alternatively, a current collector can be manufactured.

【0028】次いで、かかるイオン交換膜層又は集電体
に、それぞれ集電体又はイオン交換膜層が接合される。
Next, the current collector or the ion exchange membrane layer is bonded to the ion exchange membrane layer or the current collector, respectively.

【0029】[0029]

【作用】本発明では、開放起電力及び端子電圧の点で良
好な燃料電池が得られ、その機構は以下のように考えら
れる。イオン交換膜を電解質とする固体高分子型燃料電
池では、以下の反応に従って化学エネルギーが電気エネ
ルギーに変換される。
In the present invention, a fuel cell excellent in terms of open electromotive force and terminal voltage can be obtained, and its mechanism is considered as follows. In a polymer electrolyte fuel cell using an ion exchange membrane as an electrolyte, chemical energy is converted into electric energy according to the following reaction.

【0030】[0030]

【化2】アノード:H2 →2H+ +2e、 カソード:1/2O2 +2H+ +2e→H2 O。Embedded image Anode: H 2 → 2H + + 2e, cathode: 1 / 2O 2 + 2H + + 2e → H 2 O.

【0031】上記反応で使用される水素ガス及び酸素ガ
スは、前記クロスオーバー現象により、イオン交換膜内
をそれぞれカソード方向及びアノード方向に移動し、電
極上で反応することにより、セル電圧の低下を引き起こ
す。本発明では、複層イオン交換膜が、中間層としてイ
オン交換膜層(2)を有することにより、上記クロスオ
ーバー現象を膜性能を低下させることなく阻止できる。
The hydrogen gas and oxygen gas used in the above reaction move in the ion exchange membrane toward the cathode and the anode, respectively, due to the crossover phenomenon, and react on the electrodes to lower the cell voltage. cause. In the present invention, since the multi-layered ion exchange membrane has the ion exchange membrane layer (2) as the intermediate layer, the crossover phenomenon can be prevented without deteriorating the membrane performance.

【0032】すなわち、本発明では、上記クロスオーバ
ー現象を阻止する触媒はイオン交換膜中にそれほど大量
に存在させる必要がないことを見出し、触媒となる白金
族金属などの触媒は、分散された状態で、かつイオン交
換樹脂で被覆された状態でイオン交換膜層(2)中に存
在するため、イオン交換膜中を通過するプロトンの移動
を実質上妨げることなく、クロスオーバー現象を阻止で
きる。
That is, in the present invention, it has been found that the catalyst for preventing the above-mentioned crossover phenomenon does not need to be present in a large amount in the ion exchange membrane, and the catalyst such as platinum group metal to be used as the catalyst is in a dispersed state. Moreover, since it exists in the ion exchange membrane layer (2) in a state of being covered with the ion exchange resin, the crossover phenomenon can be prevented without substantially hindering the migration of protons passing through the ion exchange membrane.

【0033】さらに本発明におけるプロトンの移動を妨
げない上記クロスオーバー現象の阻止は、イオン交換膜
の含水率を大きくして、水素ガス及び酸素ガスのイオン
交換膜内の透過性を大きくした場合も達成しうることが
判明した。かくして、反応により生成する水のために高
含水率状態となるイオン交換膜のカソード側イオン交換
膜層(3)に比べて、相対的に低い含水率を補うため
に、アノード側に高い含水率を有するイオン交換膜層
(1)を有する複層イオン交換膜でも達成しうる。
In order to prevent the above-mentioned crossover phenomenon which does not hinder the movement of protons in the present invention, also when the water content of the ion exchange membrane is increased and the permeability of hydrogen gas and oxygen gas in the ion exchange membrane is increased. It turned out to be achievable. Thus, in order to compensate for the relatively low water content compared to the ion exchange membrane layer (3) on the cathode side of the ion exchange membrane, which has a high water content state due to the water generated by the reaction, the water content on the anode side is high. A multi-layer ion exchange membrane having the ion exchange membrane layer (1) having

【0034】これらにより、クロスオーバー現象を防止
し、高いプロトン移動性及び低い電気抵抗という相反す
る特性を満足することが可能となり、結果として、燃料
電池の高出力化が達成される。
By these, it becomes possible to prevent the crossover phenomenon and to satisfy the contradictory characteristics of high proton mobility and low electric resistance, and as a result, high output of the fuel cell is achieved.

【0035】[0035]

【実施例】以下に本発明の具体的態様を実施例(例1、
例3、例5)及び比較例(例2、例4)により説明する
が、本発明はこれらに限定されない。
EXAMPLES Specific embodiments of the present invention will be described below with reference to Examples (Example 1,
Examples 3 and 5) and comparative examples (Examples 2 and 4) will be described, but the present invention is not limited thereto.

【0036】[例1]CF2 =CF2 とCF2 =CFO
CF2 CF(CF3 )OCF2 CF2 SO2Fとの共重
合体からなるイオン交換容量1.1ミリ当量/g乾燥樹
脂、及び1.0ミリ当量/g乾燥樹脂の2種類の共重合
体を用意した。前者の共重合体を220℃で押出製膜
し、厚さ45μmのフィルム(1)を得た。次に、後者
の共重合体を220℃で押出製膜し、厚さ45μmのフ
ィルム(3)を得た。さらに、前者の共重合体に40%
白金担持カーボンブラック粉末を10体積%の割合で添
加し混練したものを220℃で押出製膜し、厚さ20μ
m、白金含有量25mg/cm3 のフィルム(2)を得
た。
[Example 1] CF 2 = CF 2 and CF 2 = CFO
Ion exchange capacity consisting of a copolymer with CF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F 1.1 meq / g dry resin and 1.0 meq / g dry resin I prepared a coalesce. The former copolymer was extrusion-molded at 220 ° C. to obtain a film (1) having a thickness of 45 μm. Next, the latter copolymer was extrusion-molded at 220 ° C. to obtain a film (3) having a thickness of 45 μm. Furthermore, the former copolymer is 40%
Platinum-supporting carbon black powder was added at a ratio of 10% by volume and kneaded to form an extrusion film at 220 ° C., and a thickness of 20 μ
A film (2) having m and a platinum content of 25 mg / cm 3 was obtained.

【0037】上記の3種類の共重合体フィルム(1)、
(2)、(3)を、フィルム(2)を中央にして220
℃でロールを用いて積層し、ジメチルスルホキシド30
重量%と水酸化カリウム15重量%との混合水溶液中で
加水分解し、水洗した後、1規定の塩酸中に浸漬した。
次に積層膜を水洗し、その四辺を専用治具で拘束した後
60℃で1時間乾燥し、複層イオン交換膜を得た。共重
合体フィルム(1)、(2)及び共重合体フィルム
(3)の90℃の純水中の含水率はそれぞれ、70重量
%、50重量%であった。
The above three types of copolymer films (1),
220 (2) and (3) with the film (2) in the center
Laminated using rolls at ℃, dimethyl sulfoxide 30
It was hydrolyzed in a mixed aqueous solution of 15% by weight of potassium hydroxide and 15% by weight of potassium hydroxide, washed with water, and then immersed in 1N hydrochloric acid.
Next, the laminated membrane was washed with water, its four sides were restrained by dedicated jigs, and then dried at 60 ° C. for 1 hour to obtain a multilayer ion exchange membrane. The water contents of the copolymer films (1) and (2) and the copolymer film (3) in pure water at 90 ° C. were 70% by weight and 50% by weight, respectively.

【0038】上記複層イオン交換膜をPTFE(ポリテ
トラフルオロエチレン)製のガス透過性測定セルに組み
込み、ヒータでセルを85℃に保温し、共重合体フィル
ム(1)側に85℃の飽和水蒸気で加湿した常圧の水素
を供給し、共重合体フィルム(3)側に85℃の飽和水
蒸気で加湿した常圧の不活性ガス又は酸素を供給し、不
活性ガス又は酸素中に漏洩した水素の量をガスクロマト
グラフにより測定した。不活性ガス供給時の水素の透過
量は0.27マイクロリットル/cm2 /秒であるのに
対して、酸素供給時の水素の透過量は0.021マイク
ロリットル/cm2 /秒であり、水素透過量が減少し
た。
The above-mentioned multi-layered ion exchange membrane was incorporated into a gas permeability measuring cell made of PTFE (polytetrafluoroethylene), the cell was kept warm at 85 ° C. by a heater, and the copolymer film (1) side was saturated at 85 ° C. Normal pressure hydrogen moistened with steam was supplied, and normal pressure inert gas or oxygen moistened with saturated steam at 85 ° C. was supplied to the side of the copolymer film (3) to leak into the inert gas or oxygen. The amount of hydrogen was measured by gas chromatography. The permeation amount of hydrogen when the inert gas was supplied was 0.27 microliter / cm 2 / sec, whereas the permeation amount of hydrogen when oxygen was supplied was 0.021 microliter / cm 2 / sec, Hydrogen permeation decreased.

【0039】[例2]例1で使用した1.1ミリ当量/
g乾燥樹脂の共重合体を220℃で押出製膜し、厚さ6
5μmのフィルムを得た。
Example 2 1.1 milliequivalents used in Example 1 /
g A copolymer of dry resin was extruded at 220 ° C to form a film having a thickness of 6
A film of 5 μm was obtained.

【0040】このフィルムと例1で使用したイオン交換
容量1.0ミリ当量/g乾燥樹脂の共重合体フィルム
(3)とを220℃でロールを用いて積層し、これを例
1と同様に加水分解、塩酸浸漬、水洗次いで乾燥処理す
ることにより複層イオン交換膜を得た。この複層イオン
交換膜について、例1と同様な方法によりガスの水素の
透過量を測定した。不活性ガス供給時と酸素供給時で変
化はなく、水素の透過量は0.29マイクロリットル/
cm2 /秒であった。
This film and the ion exchange capacity 1.0 meq / g dry resin copolymer film (3) used in Example 1 were laminated at 220 ° C. using a roll, and this was laminated in the same manner as in Example 1. A multilayer ion exchange membrane was obtained by hydrolysis, immersion in hydrochloric acid, washing with water, and drying. With respect to this multilayer ion exchange membrane, the amount of hydrogen permeation of gas was measured by the same method as in Example 1. There is no change between the supply of inert gas and the supply of oxygen, and the permeation amount of hydrogen is 0.29 microliters /
It was cm 2 / sec.

【0041】[例3]例1で使用した複層イオン交換膜
の両面に、ガス拡散電極としてカーボンブラック60重
量部とPTFE40重量部とからなる厚さ約200μm
の白金担持ガス拡散電極(白金担持量0.5mg/cm
2 )を温度150℃、圧力10kg/cm2 で10秒間
の条件で、ホットプレス法により接合した。
Example 3 A gas diffusion electrode comprising 60 parts by weight of carbon black and 40 parts by weight of PTFE on both sides of the multilayer ion exchange membrane used in Example 1 and having a thickness of about 200 μm.
Platinum-supported gas diffusion electrode (platinum-supported amount 0.5 mg / cm
2 ) was joined by a hot pressing method under the conditions of a temperature of 150 ° C. and a pressure of 10 kg / cm 2 for 10 seconds.

【0042】複層イオン交換膜の共重合体フィルム
(1)側がアノード側に、一方、共重合体フィルム
(3)側がカソードになるように電池性能測定用セルに
組み込んで、開放起電力と発電性能を測定した。結果を
表1に示す。
The multi-layered ion-exchange membrane was incorporated into a cell for measuring battery performance so that the copolymer film (1) side was the anode side and the copolymer film (3) side was the cathode, and an open electromotive force and power generation were performed. The performance was measured. The results are shown in Table 1.

【0043】[例4]例2で使用した複層イオン交換膜
の両面に、例3と同様にしてガス拡散電極を接合した。
複層イオン交換膜の1.1ミリ当量/g乾燥樹脂の共重
合体フィルム側がアノード側に、一方、イオン交換容量
1.0ミリ当量/g乾燥樹脂の共重合体フィルム側がカ
ソード側になるように電池性能測定用セルに組み込ん
で、開放起電力と発電性能を測定した。結果を表1に示
す。
[Example 4] Gas diffusion electrodes were bonded to both surfaces of the multilayer ion-exchange membrane used in Example 2 in the same manner as in Example 3.
The multi-layer ion-exchange membrane has a 1.1 meq / g dry resin copolymer film side on the anode side, while an ion exchange capacity of 1.0 meq / g dry resin copolymer film side is on the cathode side. It was incorporated into a cell for battery performance measurement, and the open electromotive force and power generation performance were measured. The results are shown in Table 1.

【0044】[例5]例1で使用したイオン交換容量
1.0ミリ当量/g乾燥樹脂の共重合体フィルム(3)
2枚の間に例1で使用した共重合体フィルム(2)をサ
ンドイッチしたものを220℃でロールプレスし、例1
と同様に処理して複層イオン交換膜を得た。この複層イ
オン交換膜の両面に、例3と同様にしてガス拡散電極を
接合した。これを電池性能測定用セルに組み込んで、開
放起電力と発電性能を測定した。結果を表1に示す。
Example 5 Copolymer film (3) of the ion exchange capacity of 1.0 meq / g dry resin used in Example 1
A sandwich of the copolymer film (2) used in Example 1 between two sheets was roll-pressed at 220 ° C. to give Example 1
A multilayer ion exchange membrane was obtained by the same treatment as above. Gas diffusion electrodes were bonded to both surfaces of this multilayer ion exchange membrane in the same manner as in Example 3. By incorporating this into a cell for measuring battery performance, open electromotive force and power generation performance were measured. The results are shown in Table 1.

【0045】なお、例3、例4及び例5の電池性能の測
定は、セル温度70℃で、アノード及びカソードにそれ
ぞれ加湿した水素と空気を供給し、いずれも同じ条件下
で行った。端子電圧は、電流密度0.5A/cm2 にお
ける値を示す。
The battery performances of Examples 3, 4 and 5 were measured under the same conditions with a cell temperature of 70 ° C. and humidified hydrogen and air supplied to the anode and cathode, respectively. The terminal voltage shows a value at a current density of 0.5 A / cm 2 .

【0046】表1によると、複層イオン交換膜内にイオ
ン交換層(2)を含有する例3はこれを有しない例4に
比べて開放起電力が高く、また、アノード側に高含水率
のイオン交換膜層を有する例3は、アノード側とカソー
ド側の含水率が等しいイオン交換膜層を有する例5より
も発電時の端子電圧が高い。
According to Table 1, Example 3 containing the ion-exchange layer (2) in the multilayer ion-exchange membrane has a higher open electromotive force than Example 4 not having the ion-exchange layer (2) and has a high water content on the anode side. Example 3 having the ion exchange membrane layer of No. 2 has a higher terminal voltage during power generation than Example 5 having the ion exchange membrane layer having the same water content on the anode side and the cathode side.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明の固体高分子電解質型燃料電池
は、イオン交換膜層(2)における水素ガスと酸素ガス
との反応で生成する水による含水率の増大、アノード側
のイオン交換膜層(1)の高含水率、及びカソードで本
来生成する水による含水率の増大のために複層イオン交
換膜全体が高含水率になるため、膜を通じてプロトンの
移動量が大きくなり、高い開放起電力と端子電圧を有す
る高出力を達成できるだけでなく、イオン交換膜が常時
高含水率に保持されるため外界の湿度の変化の影響を受
けにくく、燃料電池の運転操作が容易になる。
EFFECT OF THE INVENTION The solid polymer electrolyte fuel cell of the present invention has an increased water content due to water produced by the reaction of hydrogen gas and oxygen gas in the ion exchange membrane layer (2), and the ion exchange membrane layer on the anode side. Due to the high water content of (1) and the increase of the water content due to the water originally generated at the cathode, the entire multi-layer ion-exchange membrane has a high water content, so that the amount of protons transferred through the membrane is large and the high opening rate. Not only can a high output having electric power and terminal voltage be achieved, but since the ion exchange membrane is always kept at a high water content, it is less susceptible to changes in humidity in the external environment, and the fuel cell operation becomes easier.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下平 哲司 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuji Shimohira 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】イオン交換膜を固体高分子電解質とする燃
料電池において、上記イオン交換膜が、アノード側イオ
ン交換膜層(1)と、水素ガスと酸素ガスから水を生成
する反応を促進する触媒を含有するイオン交換膜層
(2)と、カソード側イオン交換膜層(3)との少なく
とも3層からなる複層イオン交換膜であることを特徴と
する固体高分子電解質型燃料電池。
1. In a fuel cell using an ion exchange membrane as a solid polymer electrolyte, the ion exchange membrane promotes a reaction of producing water from hydrogen gas and oxygen gas with an anode side ion exchange membrane layer (1). A solid polymer electrolyte fuel cell, which is a multi-layer ion exchange membrane comprising at least three layers of a catalyst-containing ion exchange membrane layer (2) and a cathode side ion exchange membrane layer (3).
【請求項2】イオン交換膜層(2)中の触媒量が、0.
1〜500mg/cm3 である請求項1の固体高分子電
解質型燃料電池。
2. The amount of catalyst in the ion exchange membrane layer (2) is 0.
The solid polymer electrolyte fuel cell according to claim 1, which has an amount of 1 to 500 mg / cm 3 .
【請求項3】アノード側イオン交換膜層(1)の含水率
が、カソード側イオン交換膜層(3)の含水率よりも5
〜50重量%大きい請求項1又は2の固体高分子電解質
型燃料電池。
3. The water content of the anode side ion exchange membrane layer (1) is 5 more than the water content of the cathode side ion exchange membrane layer (3).
The solid polymer electrolyte fuel cell according to claim 1 or 2, which is larger by 50% by weight.
JP7103950A 1995-04-27 1995-04-27 Solid-state high polymer electrolytic fuel cell Pending JPH08298128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7103950A JPH08298128A (en) 1995-04-27 1995-04-27 Solid-state high polymer electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7103950A JPH08298128A (en) 1995-04-27 1995-04-27 Solid-state high polymer electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH08298128A true JPH08298128A (en) 1996-11-12

Family

ID=14367706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7103950A Pending JPH08298128A (en) 1995-04-27 1995-04-27 Solid-state high polymer electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH08298128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091213A1 (en) * 2000-05-24 2001-11-29 Sony Corporation Electric energy generator and method for manufacturing the same
JP2005149859A (en) * 2003-11-13 2005-06-09 Toshiba Fuel Cell Power Systems Corp Fuel cell and its manufacturing method
JP2005285356A (en) * 2004-03-26 2005-10-13 Mitsubishi Electric Corp Membrane electrode assembly for fuel cell and its manufacturing method
JP2012123994A (en) * 2010-12-08 2012-06-28 Toyota Motor Corp Membrane electrode assembly and fuel cell using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091213A1 (en) * 2000-05-24 2001-11-29 Sony Corporation Electric energy generator and method for manufacturing the same
US7022425B2 (en) 2000-05-24 2006-04-04 Sony Corporation Electric energy generating apparatus and method of manufacturing the same
JP2005149859A (en) * 2003-11-13 2005-06-09 Toshiba Fuel Cell Power Systems Corp Fuel cell and its manufacturing method
JP2005285356A (en) * 2004-03-26 2005-10-13 Mitsubishi Electric Corp Membrane electrode assembly for fuel cell and its manufacturing method
JP2012123994A (en) * 2010-12-08 2012-06-28 Toyota Motor Corp Membrane electrode assembly and fuel cell using it

Similar Documents

Publication Publication Date Title
US7846614B2 (en) Electrode for solid polymer electrolyte fuel cell
JPH11288727A (en) Solid high polymer fuel cell film/electrode junction body
JP2001507166A (en) Multilayer membranes for fuel cells using directly supplied fuel
JP2000285933A (en) Fuel cell
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
KR20070100693A (en) Membrane and membrane electrode assembly with adhesion promotion layer
JP4887580B2 (en) Gas diffusion electrode and polymer electrolyte fuel cell having the same
US12018106B2 (en) Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP3382654B2 (en) Solid polymer electrolyte fuel cell
JP2000106202A (en) Fuel cell
JPH1140172A (en) Method for producing film-electrode joined body for fuel cell
JP3714766B2 (en) Electrode and membrane / electrode assembly for polymer electrolyte fuel cell
JPH11135136A (en) Solid poly electrolyte type fuel cell
JP3541466B2 (en) Improved solid polymer electrolyte fuel cell
JPH06295729A (en) High performance high polymer electrolyte type fuel cell
JP2001243964A (en) Solid polymer electrolyte fuel cell
JPH08298128A (en) Solid-state high polymer electrolytic fuel cell
JPH06203840A (en) Solid polyelectrolyte fuel cell
JP3382655B2 (en) Improved solid polymer electrolyte fuel cell
JPH09219206A (en) Electrochemical element
JP2002008678A (en) Solid polymer type fuel cell
JPH06231782A (en) Improved solid high polymer electrolytic type fuel cell
JP2002105129A (en) Solid polymer electrolyte, solid polymer electrolytic membrane using the same, solution for coating electrode catalyst, membrane/electrode joined product and fuel battery