JPH08295565A - Production of silicon carbide material - Google Patents

Production of silicon carbide material

Info

Publication number
JPH08295565A
JPH08295565A JP7102319A JP10231995A JPH08295565A JP H08295565 A JPH08295565 A JP H08295565A JP 7102319 A JP7102319 A JP 7102319A JP 10231995 A JP10231995 A JP 10231995A JP H08295565 A JPH08295565 A JP H08295565A
Authority
JP
Japan
Prior art keywords
silicon carbide
fiber
metal
temperature
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7102319A
Other languages
Japanese (ja)
Inventor
Kaoru Okada
薫 岡田
Keihachirou Nakajima
慶八郎 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP7102319A priority Critical patent/JPH08295565A/en
Publication of JPH08295565A publication Critical patent/JPH08295565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a silicon carbide material having superior strength and suitable for use as the reinforcing fibers of a composite material, a heat insulator, a filter material, etc., and to especially obtain a silicon carbide material having a fibrous, sheetlike or three-dimensional structure. CONSTITUTION: This silicon carbide material is made of a fibrous, sheetlike or three-dimensional structure having 100-3,000m<2> /g specific surface area. A porous carbon material contg. at least one kind of metal selected from among B, Al, Si, Ti, Y and Mg or at least one kind of metallic compd. selected from among oxides, hydrides, hydroxides, alkoxides, nitrides and halides of the metals is allowed to react with gaseous SiO at 800-2,000 deg.C and the resultant metal- or metallic compd.-contg. silicon carbide material is heated at 800-2,200 deg.C in an atmosphere not practically contg. oxygen or in a gaseous atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合材料の強化繊維、
断熱材、フィルタ−材料等として好適な、優れた強度を
有する炭化珪素材料、とりわけ繊維状、シート状及び三
次元構造体を有する強度の優れた炭化珪素材料の製造方
法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a reinforcing fiber of a composite material,
The present invention relates to a method for producing a silicon carbide material having excellent strength, which is suitable as a heat insulating material, a filter material, and the like, and in particular, a silicon carbide material having excellent fibrous, sheet-like and three-dimensional structures.

【0002】[0002]

【従来の技術】特開平1−131016号公報には、極
微粒子の集合体から成り、比表面積が少なくとも100
2/gである炭化珪素の細粒を、特に石油化学用触媒
の担体及び1000℃にも達し得る高温触媒反応用の担
体として製造する目的で、一酸化珪素SiOの気体を炭
素と反応させる工程を含み、第1反応域においてSiO
2+Siの混合物を0.1〜1.5hPaの圧力下で1
100〜1400℃に加熱することによりSiO気体を
生成し、第2反応域において、比表面積が少なくとも2
00m2/gである分割状態の反応性炭素と前記SiO
気体を温度1100〜1400℃で接触させることから
なる炭化珪素の製造方法が開示されている。このような
炭化珪素は、化学反応の触媒のための担体として用いら
れるため、できるだけ比表面積を大きくし、それを長時
間持続しようとするものである。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 1-131016 discloses a pole.
It consists of aggregates of fine particles and has a specific surface area of at least 100.
m2/ G of silicon carbide fine particles, especially for petrochemical catalysts
Carrier and high temperature catalytic reaction that can reach 1000 ° C
For the purpose of manufacturing as a body, the gas of silicon monoxide SiO is carbonized.
SiO in the first reaction zone, including the step of reacting with SiO.
2+ Si mixture under pressure of 0.1-1.5 hPa 1
By heating to 100 to 1400 ° C, SiO gas is removed.
And has a specific surface area of at least 2 in the second reaction zone.
00m2/ G of the divided reactive carbon and the SiO
Since the gas is contacted at a temperature of 1100 to 1400 ° C
A method for producing silicon carbide is disclosed. like this
Silicon carbide has not been used as a carrier for catalysis of chemical reactions.
Therefore, increase the specific surface area as much as possible and
It is intended to last for a while.

【0003】更に、特開昭60−231820号公報に
は、炭素繊維を一酸化珪素(SiO)ガスと加熱反応さ
せて炭素繊維の表面を炭化珪素で被覆する方法が開示さ
れている。しかしながら、この方法では炭素繊維のごく
表面にしか炭化珪素が付着せず、従って内部まで完全に
炭化珪素化された繊維が得られず、高温度において耐酸
化性に劣るという問題があった。この問題を解決するた
めに本発明者等は、細孔径が数オングストロームから数
百オングストロームの均一な細孔を繊維内部に含む、比
表面積が100〜2500m2 /gで繊維径が5〜10
0μmの多孔質炭素繊維と一酸化珪素ガスとを800〜
2000℃の温度で反応させる方法を提案した(特開平
6−192917号公報)。
Further, Japanese Patent Application Laid-Open No. 60-231820 discloses a method in which carbon fibers are heated and reacted with silicon monoxide (SiO) gas to coat the surfaces of the carbon fibers with silicon carbide. However, this method has a problem that silicon carbide adheres only to the very surface of the carbon fiber, and thus a fiber completely siliconized to the inside cannot be obtained, and the oxidation resistance is poor at high temperature. In order to solve this problem, the present inventors have found that the inside of the fiber contains uniform pores having a pore size of several angstroms to several hundred angstroms, a specific surface area of 100 to 2500 m 2 / g, and a fiber diameter of 5 to 10 m 2.
800 μm of 0 μm porous carbon fiber and silicon monoxide gas
A method of reacting at a temperature of 2000 ° C. was proposed (Japanese Patent Laid-Open No. 6-192917).

【0004】前記の多孔質炭素繊維の一つに活性炭繊維
があるが、この活性炭繊維を製造する方法としては、レ
ーヨンのようなセルロース系繊維を原料とする方法(特
公昭61−58567号公報)、アクリル系繊維を原料
とする方法(特開昭61−282430号公報)、石油
ピッチを紡糸して得られた繊維を原料とする方法(特開
昭60−199922号公報)、フェノール系樹脂繊維
を原料とする方法(特公昭57−43647号公報等)
等を挙げることができ、これらはともに不活性ガス雰囲
気中で脱水炭化温度200〜400℃に加熱して得られ
る炭素繊維を、水蒸気、酸素、炭酸ガス、その他の酸化
性ガスと接触させながら、前記脱水炭化温度より高い4
50〜1000℃で加熱するという賦活処理を施して活
性炭繊維とされている。しかしながら、前記多孔質炭素
繊維と一酸化珪素ガスとの反応により得られる繊維は、
実質的に炭化珪素からなる炭化珪素繊維であるものの、
強度が低く実用に際して支障をきたしていた。
One of the above-mentioned porous carbon fibers is activated carbon fiber. As a method for producing this activated carbon fiber, a method using a cellulosic fiber such as rayon as a raw material (Japanese Patent Publication No. 61-58567). , A method using an acrylic fiber as a raw material (JP-A-61-28430), a method using a fiber obtained by spinning petroleum pitch as a raw material (JP-A-60-199922), a phenolic resin fiber A method of using as a raw material (Japanese Patent Publication No. 57-43647, etc.)
And the like, both of which, while contacting the carbon fiber obtained by heating the dehydration carbonization temperature of 200 to 400 ° C. in an inert gas atmosphere with steam, oxygen, carbon dioxide gas, and other oxidizing gas, 4 higher than the dehydration carbonization temperature
Activated carbon fibers are obtained by performing activation treatment of heating at 50 to 1000 ° C. However, the fiber obtained by the reaction between the porous carbon fiber and silicon monoxide gas is
Although it is a silicon carbide fiber consisting essentially of silicon carbide,
The strength was low and it was difficult for practical use.

【0005】そのため本発明者等は、この問題を解決す
べく鋭意努力を重ね、前記の方法で得られた炭化珪素繊
維を酸素ガス、窒素ガス等のガス雰囲気中で加熱処理を
行うことにより強度が向上することを見い出したものの
(特開平7ー18520号公報、特願平6ー73425
号)、実用に供するには強度が十分ではなかった。一
方、従来より、炭化珪素粉末をホットプレスで焼結する
ときにFe、Al、Cr、B等の金属を、特にB(ボロ
ン)とC(炭素)を助剤として微量添加すると、炭化珪
素粒子の焼結性が高まり、高温で強度の高い焼結体が得
られることが知られている(炭化珪素セラミックス、1
55〜173、1988年、内田老鶴圃社発行)。しか
しながら、この方法では分散性に問題があり、繊細状材
料に適用できないという問題がある。
Therefore, the inventors of the present invention have made diligent efforts to solve this problem, and heat-treat the silicon carbide fiber obtained by the above method in a gas atmosphere such as oxygen gas or nitrogen gas to obtain strength. Although it has been found that the above-mentioned characteristics are improved (Japanese Patent Application Laid-Open No. 7-18520, Japanese Patent Application No. 6-73425).
No.), the strength was not sufficient for practical use. On the other hand, conventionally, when a metal such as Fe, Al, Cr, or B, particularly B (boron) and C (carbon), is added in a trace amount when the silicon carbide powder is sintered by hot pressing, the silicon carbide particles are It is known that the sinterability of slag is increased and a sintered body having high strength can be obtained at high temperature (silicon carbide ceramics, 1
55-173, 1988, issued by Uchida Otsuruho Co., Ltd.). However, this method has a problem in dispersibility and cannot be applied to a delicate material.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、かかる
現状に鑑み、炭化珪素材料、とりわけ繊維状、シ−ト状
および三次元構造体を有する炭化珪素材料の強度を改善
する方法について鋭意検討した結果、炭化珪素材料の原
料として用いる多孔質炭素材料に予め金属或いは金属化
合物を含有させておいて炭化珪素化を行うと、そして得
られた炭化珪素材料を更に酸素を実質的に含まない雰囲
気、不活性ガス、或いは窒素ガス雰囲気中で加熱する
と、繊維状、シート状および三次元構造体において、従
来の炭化珪素材料が有する強度に関する上記問題点を解
決し、従来の水準よりさらに優れた引張り強度が発現す
ることを見出し、本発明を完成させるに至った。本発明
の目的は、多孔質炭素材料を用いて炭化珪素材料を製造
する方法において、従来にはない更に優れた強度を有す
る炭化珪素材料を製造する方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above situation, the inventors of the present invention have been keen on a method of improving the strength of silicon carbide materials, particularly silicon carbide materials having fibrous, sheet-like and three-dimensional structures. As a result of examination, when a porous carbon material used as a raw material of a silicon carbide material is made to contain silicon or a metal compound in advance and then siliconized, the obtained silicon carbide material is substantially free of oxygen. When heated in an atmosphere, an inert gas, or a nitrogen gas atmosphere, the above-mentioned problems regarding the strength of the conventional silicon carbide material in the fibrous, sheet-shaped and three-dimensional structures are solved, and it is superior to the conventional level. It was found that tensile strength was developed, and the present invention was completed. It is an object of the present invention to provide a method for producing a silicon carbide material using a porous carbon material, the method providing a silicon carbide material having more excellent strength than ever before.

【0007】[0007]

【課題を解決するための手段】本発明の第一は、比表面
積が100〜3000m2 /gの多孔質炭素材料と、一
酸化珪素ガスとを、800〜2000℃の温度で反応さ
せて得られる炭化珪素材料の製造方法において、前記多
孔質炭素材料に、金属或いは金属化合物を予め含有させ
ることを特徴とする炭化珪素材料の製造方法であり、本
発明の第二は、該炭化珪素材料を、酸素を実質的に含ま
ない雰囲気或いはガス雰囲気中で800〜2200℃の
温度で加熱を行うことを特徴とする本発明第一に記載の
炭化珪素材料の製造方法である。本発明の第三は、前記
多孔質炭素材料が、多孔質炭素繊維、多孔質炭素繊維か
らなるシート、前記シートからなる三次元構造体、多孔
質炭素繊維からなる三次元構造体から選ばれた1種であ
ることを特徴とする本発明第一或いは第二に記載の炭化
珪素材料の製造方法である。本発明の第四は、前記金属
が、ボロン(B)、アルミニウム(Al)、シリコン
(Si)、チタン(Ti)、イットリウム(Y)、マグ
ネシウム(Mg)から選ばれた少なくとも1つであるこ
とを特徴とする本発明の第一、第二或いは第三に記載の
炭化珪素材料の製造方法である。本発明の第五は、前記
金属化合物が、本発明第四に記載の金属の酸化物、水素
化物、水酸化物、アルコキシド、窒化物、ハロゲン化物
から選ばれた少なくとも1つであることを特徴とする本
発明第一、第二或いは第三に記載の炭化珪素材料の製造
方法である。
The first aspect of the present invention is obtained by reacting a porous carbon material having a specific surface area of 100 to 3000 m 2 / g with a silicon monoxide gas at a temperature of 800 to 2000 ° C. In the method for producing a silicon carbide material, the porous carbon material is preliminarily contained with a metal or a metal compound, and the second aspect of the present invention provides the method for producing a silicon carbide material. The method for producing a silicon carbide material according to the first aspect of the present invention is characterized in that heating is performed at a temperature of 800 to 2200 ° C. in an atmosphere or a gas atmosphere that does not substantially contain oxygen. In a third aspect of the present invention, the porous carbon material is selected from a porous carbon fiber, a sheet made of porous carbon fiber, a three-dimensional structure made of the sheet, and a three-dimensional structure made of porous carbon fiber. The method for producing a silicon carbide material according to the first or second aspect of the present invention is characterized in that it is one kind. A fourth aspect of the present invention is that the metal is at least one selected from boron (B), aluminum (Al), silicon (Si), titanium (Ti), yttrium (Y), and magnesium (Mg). The method for producing a silicon carbide material according to the first, second or third aspect of the present invention is characterized by: A fifth aspect of the present invention is characterized in that the metal compound is at least one selected from the oxides, hydrides, hydroxides, alkoxides, nitrides and halides of the metals described in the fourth aspect of the present invention. The method for producing a silicon carbide material according to the first, second or third aspect of the present invention.

【0008】本発明における繊維或いは繊維状物質と
は、繊維径が5〜100μmの連続長繊維(フィラメン
ト、ヤーン)或いは1〜100mmの短繊維を意味し、
繊維径としては前記以外のものでも使用可能であるが、
繊維径が0.5〜1μmでアスペクト比が20〜100
で特徴づけられるウィスカーのような微小な繊維状物質
は含まれない。本発明におけるシートとは、前記繊維状
物質からなる平面的な広がりを持つものを意味し、これ
には、例えば、連続長繊維(フィラメント、ヤ−ン)を
縦横に配して織ることによって得られる布状のもの、或
いは適当な長さの短繊維を乾式法や湿式法によってシー
ト化したもの(フェルト、シ−ト、マット等)が含まれ
る。更に、それらをシ−ト化する際に、粒状及び粉末状
のものを加えることも差し支えない。又、特公平2−2
3505号公報に開示されているように、炭素繊維を製
造するための有機繊維とパルプを混合し、抄紙して得ら
れるシ−トに、炭素質粉末を懸濁した有機高分子溶液を
含浸させ、乾燥後不活性ガス雰囲気中で800℃以上の
温度で焼成して炭化させて得られる多孔質炭素板も本発
明で用いることができる。
The fiber or fibrous substance in the present invention means a continuous long fiber (filament or yarn) having a fiber diameter of 5 to 100 μm or a short fiber of 1 to 100 mm,
Fiber diameters other than those mentioned above can be used,
Fiber diameter is 0.5-1 μm and aspect ratio is 20-100
It does not contain fine fibrous substances such as whiskers characterized by. The sheet in the present invention means a sheet made of the above-mentioned fibrous substance and having a planar spread, and for example, it is obtained by arranging continuous long fibers (filaments, yarns) in the warp and weft directions. Included is a cloth-like material or a short fiber having an appropriate length formed into a sheet by a dry method or a wet method (felt, sheet, mat, etc.). Further, when they are made into sheets, it is possible to add granular and powdery ones. In addition, Tokuhei 2-2
As disclosed in Japanese Patent No. 3505, a sheet obtained by mixing organic fiber and pulp for producing carbon fiber and making paper is impregnated with an organic polymer solution in which carbonaceous powder is suspended. A porous carbon plate obtained by baking after drying and firing at a temperature of 800 ° C. or higher in an inert gas atmosphere can also be used in the present invention.

【0009】更に、本発明における三次元構造体とは、
粒状及び粉末状物質、繊維状物質或いは繊維状物質から
なるシートから構成され、立体的な形状を有するものを
意味し、これには、例えば、前記シ−ト状のものを貼り
付け加工して立体化したものおよび粒状、粉末状及び繊
維状物質のものを三次元的に立体加工したものが含まれ
る。本発明に用いるシート状或いは三次元構造体を有す
る多孔質炭素材料は、該材料が活性炭繊維から構成され
る場合、前記活性炭繊維をシート或いは三次元構造体重
量の少なくとも10%含むことが望ましい。前記活性炭
繊維の含有率が10%よりも少ないと、炭化珪素化した
際に、得られる炭化珪素材料中に含まれる炭化珪素繊維
の量が十分ではなくなり、期待された性能が得られなく
なる。本発明に用いられる多孔質炭素繊維、シート及び
三次元構造体は、特開平6ー192917号公報に開示
されている公知の方法をそのまま応用して得ることがで
きる。
Further, the three-dimensional structure in the present invention is
A granular or powdery substance, a fibrous substance, or a sheet made of a fibrous substance, having a three-dimensional shape is meant, and for example, the sheet-like substance is pasted and processed. It includes three-dimensionalized ones and three-dimensionally three-dimensionally processed ones of granular, powdery and fibrous substances. The porous carbon material having a sheet-like or three-dimensional structure used in the present invention preferably contains the activated carbon fiber at least 10% by weight of the sheet or the three-dimensional structure when the material is composed of activated carbon fiber. When the content of the activated carbon fibers is less than 10%, the amount of silicon carbide fibers contained in the obtained silicon carbide material becomes insufficient when silicon carbide is formed, and the expected performance cannot be obtained. The porous carbon fiber, sheet and three-dimensional structure used in the present invention can be obtained by directly applying the known method disclosed in JP-A-6-192917.

【0010】本発明の炭化珪素材料は、その原料である
多孔質炭素材料に、予め金属或いは金属化合物を含有さ
せておき、次いで一酸化珪素(SiO)と反応させて得
られる。更に、得られた金属或いは金属化合物を含有す
る炭化珪素材料は、任意に酸素を実質的に含有しない雰
囲気、不活性ガス或いは窒素ガス雰囲気中で加熱され
る。即ち、本発明では出発原料である多孔質の活性炭素
材料に予め第三成分として金属或いは金属化合物を均一
に含有させておき、該多孔質炭素材料を一酸化珪素と反
応させることにより炭化珪素化する際に金属或いは金属
酸化物が炭化珪素と結合し、それによって炭化珪素材料
の強度が向上する。更に、任意に得られた炭化珪素材料
に、実質的に酸素を含有しない減圧雰囲気、酸素と窒素
を含有しないガス雰囲気或いは酸素を含まない窒素ガス
雰囲気において加熱処理を施すことにより、炭化珪素の
焼結を補助し、或いは更に促進することで、最終的に得
られる炭化珪素材料の強度がより一層向上する。
The silicon carbide material of the present invention is obtained by preliminarily containing a metal or a metal compound in the porous carbon material as a raw material thereof, and then reacting it with silicon monoxide (SiO). Further, the obtained silicon carbide material containing a metal or a metal compound is optionally heated in an atmosphere containing substantially no oxygen, an inert gas atmosphere or a nitrogen gas atmosphere. That is, in the present invention, a porous activated carbon material as a starting material is made to contain a metal or a metal compound uniformly as a third component in advance, and the porous carbon material is reacted with silicon monoxide to form silicon carbide. During the process, the metal or metal oxide is bonded to silicon carbide, which improves the strength of the silicon carbide material. Further, the obtained silicon carbide material is subjected to a heat treatment in a reduced pressure atmosphere containing substantially no oxygen, a gas atmosphere containing no oxygen and nitrogen, or a nitrogen gas atmosphere containing no oxygen to burn silicon carbide. By assisting or further promoting the binding, the strength of the finally obtained silicon carbide material is further improved.

【0011】本発明で、金属或いは金属化合物を含有す
る多孔質炭素材料は、100〜3000m2 /gの比表
面積を有し、かつその多孔質炭素の内部に金属或いは金
属化合物を含有している材料である。多孔質炭素材料
は、前記の比表面積を有していれば、公知の賦活処理に
よる如何なる製造方法による活性炭素材料でも、賦活処
理によらない他の方法で製造されたものでも差し支えな
いが、繊維状のもの又は繊維を含むシート或いは三次元
構造体は、アクリル系繊維を原料とするもの又はフェノ
−ル系樹脂繊維を原料とするものが好適である。又、前
記多孔質炭素材料は、前記の金属或いは金属化合物を含
有しておれば、金属或いは金属化合物が多孔質炭素の表
面、細孔の内部或いは細孔壁の内部のいずれか或いはそ
の2つ以上の部分にまたがって含有されていても差し支
えない。即ち、本発明では金属或いは金属化合物が多孔
質炭素のどの部位に含有されていてもよく、特に限定さ
れない。
In the present invention, the porous carbon material containing a metal or a metal compound has a specific surface area of 100 to 3000 m 2 / g, and the metal or the metal compound is contained inside the porous carbon. It is a material. Porous carbon material, as long as it has the specific surface area, may be an activated carbon material by any production method by known activation treatment, or may be produced by another method not by activation treatment, fiber The sheet or the three-dimensional structure containing fibers or fibers is preferably made of acrylic fiber as a raw material or phenolic resin fiber as a raw material. Further, if the porous carbon material contains the above-mentioned metal or metal compound, the metal or metal compound is either on the surface of the porous carbon, inside the pores or inside the pore walls, or two of them. It may be contained over the above parts. That is, in the present invention, the metal or the metal compound may be contained in any part of the porous carbon and is not particularly limited.

【0012】本発明に用いる繊維状、シート状或いは三
次元構造体を有する多孔質炭素材料に含まれる金属或い
は金属化合物の含有量は、金属単体の場合、その金属が
全炭素材料重量の10重量%以下、又金属化合物の場
合、その金属化合物が全炭素材料重量の20重量%以下
である。金属或いは金属化合物は、前記の範囲を越えて
多く含まれると、得られる炭化珪素材料が炭化珪素とし
ての性質を失うとか、炭化珪素の著しい粒成長が起こ
り、得られる炭化珪素材料の強度が逆に低下する場合が
ある。又、このような金属或いは金属化合物の含有量の
下限は、金属の形態、種類によって異なるが、0.01
重量%にある。本発明に用いる多孔質炭素材料に含有さ
れる金属としては、ボロン(B)、アルミニウム(A
l)、シリコン(Si)、チタン(Ti)、イットリウ
ム(Y)、マグネシウム(Mg)を挙げることができ、
これらの中から少なくとも1種が選ばれて用いられる。
又、本発明に用いる多孔質炭素材料に含有される金属化
合物としては、前記金属の酸化物、水素化物、水酸化
物、アルコキシド、窒化物、ハロゲン化物を挙げること
ができ、前記金属の場合と同様これらの金属化合物から
選ばれた少なくとも1種が用いられる。更に、前記金属
と金属化合物を組合わせて一緒に用いることも差し支え
ない。
The content of the metal or metal compound contained in the porous carbon material having the fibrous, sheet-like or three-dimensional structure used in the present invention is 10 weight% of the total carbon material weight when the metal is a simple substance. %, And in the case of a metal compound, the metal compound is 20% by weight or less based on the total weight of the carbon material. If the amount of metal or metal compound exceeds the above range, the obtained silicon carbide material loses its properties as silicon carbide or significant grain growth of silicon carbide occurs, and the strength of the obtained silicon carbide material is reversed. It may decrease to. The lower limit of the content of such metal or metal compound varies depending on the form and type of metal, but is 0.01
% By weight. The metal contained in the porous carbon material used in the present invention includes boron (B), aluminum (A
l), silicon (Si), titanium (Ti), yttrium (Y), magnesium (Mg),
At least one of these is selected and used.
Further, examples of the metal compound contained in the porous carbon material used in the present invention include oxides, hydrides, hydroxides, alkoxides, nitrides, and halides of the above metals. Similarly, at least one selected from these metal compounds is used. Further, the metal and the metal compound may be combined and used together.

【0013】本発明に用いる多孔質炭素材料の多孔質の
細孔内や材料表面に金属或いは金属化合物を含有させる
場合、例えば多孔質炭素材料を目的の金属或いは金属化
合物を含む水溶液に浸漬した後、余分な溶液を脱液して
除去し、乾燥する方法、目的の金属或いは金属化合物を
含むガスと多孔質炭素材料とを接触させて、多孔質炭素
材料の細孔内に吸着させる方法等があるが、金属或いは
金属化合物を含有させる方法には特に前記の方法に限定
されるものではない。多孔質炭素材料に含有させた金属
或いは金属化合物は、含有させた後に加水分解、酸化、
還元等の化学変化を受けさせてもよい。特に、多孔質炭
素材料の細孔の内部にのみ金属或いは金属化合物を含有
させる方法として、多孔質炭素(活性炭)と金属アルコ
キシドを、密閉した容器内或いは乾燥気流中に別々に置
き、金属アルコキシドの蒸気を発生させ、次いで該蒸気
を多孔質炭素に吸着させた後、更に水蒸気と接触させ
て、吸着された金属アルコキシドを加水分解することに
より金属酸化物とし、金属酸化物を含有した多孔質炭素
を製造する方法(特願平7−49716号)が好適に使
用できる。
When a metal or metal compound is contained in the porous pores of the porous carbon material used in the present invention or on the surface of the material, for example, after the porous carbon material is immersed in an aqueous solution containing the target metal or metal compound. , A method of removing the excess solution by removing the liquid and drying it, a method of bringing the gas containing the target metal or metal compound into contact with the porous carbon material, and adsorbing it in the pores of the porous carbon material. However, the method of incorporating the metal or the metal compound is not particularly limited to the above method. The metal or metal compound contained in the porous carbon material is hydrolyzed, oxidized, or
It may be subjected to chemical changes such as reduction. In particular, as a method of containing a metal or a metal compound only inside the pores of a porous carbon material, porous carbon (activated carbon) and a metal alkoxide are separately placed in a closed container or in a dry air stream, and the metal alkoxide Porous carbon containing metal oxides is generated by generating steam, adsorbing the steam on the porous carbon, and then contacting it with water vapor to hydrolyze the adsorbed metal alkoxide to form a metal oxide. The method (Japanese Patent Application No. 7-49716) can be preferably used.

【0014】また、多孔質炭素材料の細孔壁の内部に金
属或いは金属化合物を含有させる方法は、例えば、炭化
する前の有機化合物からなるポリマーの段階で、そのポ
リマー中に目的とする金属を単体で含有させる、或いは
金属化合物の形で混入させた後加水分解、中和、熱分
解、酸化、還元等により目的の金属単体或いは別の金属
化合物に変化させる、或いは有機化合物のポリマーを繊
維状、シート状或いは三次元構造体に成型した状態で、
目的の金属を含む金属化合物を液体状或いは気体状でそ
の成形物に作用させて含有させた後、炭素化、賦活とい
う工程を経て多孔質炭素中に金属化合物を含有させても
よい。或いはこのようにして金属化合物を含有させた
後、更に前記のような化学反応を施すことにより、前記
炭素の中に目的の金属或いは金属化合物を含有する方法
であってもよい。例えば、ノボラック樹脂に金属ボロン
を添加し、よく混ぜておき、紡糸した後、炭化と賦活を
行えば、細孔壁の内部にボロンを含有する多孔質炭素繊
維を得ることができる。本発明のための多孔質炭素材料
の細孔の内部、材料表面或いは細孔壁の内部に、金属或
いは金属化合物を含有させる方法は、勿論前記の方法に
限定されるものではない。
The method of incorporating a metal or metal compound into the inside of the pore walls of the porous carbon material is, for example, at the stage of a polymer consisting of an organic compound before carbonization, in which the target metal is added to the polymer. It is contained as a simple substance, or mixed in the form of a metal compound, and then converted to the target metal simple substance or another metal compound by hydrolysis, neutralization, thermal decomposition, oxidation, reduction, etc., or a polymer of an organic compound is fibrous. , In the form of a sheet or a three-dimensional structure,
After the metal compound containing the target metal is allowed to act on the molded product in a liquid state or in a gaseous state and contained therein, the metal compound may be contained in the porous carbon through the steps of carbonization and activation. Alternatively, a method may be used in which the target metal or metal compound is contained in the carbon by further carrying out the chemical reaction as described above after containing the metal compound in this way. For example, if metallic boron is added to a novolac resin, mixed well, spun, carbonized and activated, a porous carbon fiber containing boron inside the pore walls can be obtained. The method of incorporating the metal or the metal compound into the pores of the porous carbon material, the material surface or the pore wall of the present invention is not limited to the above method.

【0015】前記した金属或いは金属化合物を含有する
多孔質炭素材料は、特開平6ー192917号公報に開
示されている公知の方法によって炭化珪素化される。即
ち、前記多孔質炭素材料は、一酸化珪素ガスと温度80
0〜2000℃で反応させて炭化珪素材料が得られる。
この場合に用いられる一酸化珪素ガスとしては、一酸化
珪素や二酸化珪素の塊或いは粉末、或いは珪素と一酸化
珪素や珪素と二酸化珪素の微粒子をよく混合したものを
供給源として10-6〜10Pa(パスカル)の減圧下、
ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)
等の不活性ガス雰囲気中で、或いは窒素(N2)ガス気
流中で、500〜2000℃に加熱して発生させたもの
が反応炉中に導かれて、反応のために用いられる。一
方、一酸化珪素ガスの供給源となる前記混合物と多孔質
炭素材料の特定量を同じ加熱炉内に置き、加熱すること
によってガスの発生と炭化珪素化を同時に行っても良
い。その場合、一酸化珪素を発生する前記物質の重量は
多孔質炭素材料の質量に対して1.5〜30倍量で用い
られ、加熱炉内での双方の距離をなるべく小さくするこ
とが望ましい。
The above-mentioned porous carbon material containing a metal or a metal compound is converted into silicon carbide by a known method disclosed in JP-A-6-192917. That is, the porous carbon material is composed of silicon monoxide gas and a temperature of 80%.
A silicon carbide material is obtained by reacting at 0 to 2000 ° C.
As the silicon monoxide gas used in this case, a mass or powder of silicon monoxide or silicon dioxide, or a mixture of silicon and silicon monoxide or fine particles of silicon and silicon dioxide well mixed, is used as a supply source and is 10 −6 to 10 Pa. Under reduced pressure of (Pascal),
Helium (He), Neon (Ne), Argon (Ar)
What is generated by heating to 500 to 2000 ° C. in an inert gas atmosphere such as or in a nitrogen (N 2 ) gas stream is introduced into the reaction furnace and used for the reaction. On the other hand, a certain amount of the mixture serving as a supply source of silicon monoxide gas and a specific amount of the porous carbon material may be placed in the same heating furnace and heated to simultaneously generate gas and silicon carbide. In that case, the weight of the substance that generates silicon monoxide is used in an amount of 1.5 to 30 times the mass of the porous carbon material, and it is desirable that the distance between the two in the heating furnace be as small as possible.

【0016】つまり、同じ炉内に一酸化珪素ガスの供給
源と多孔質炭素材料を置いて加熱する場合、発生する一
酸化珪素ガスの濃度を高く維持しながら前記炭素と反応
させるためには、双方を近接させ、しかも一緒に覆うこ
とができる何らかの覆いをかぶせて、発生した一酸化珪
素ガスが逃げることなくなるべく多く多孔質炭素材料に
接触するようにすることが反応率を高める上で有効であ
る。この場合、覆いの材質はアルミナのように耐熱性が
あり、緻密で通気性のないものが好適である。本発明法
においては、珪素化反応は、内加熱式、外加熱式、又は
誘導加熱式の減圧下や常圧下のガス雰囲気或いはガス気
流中で焼成が可能な加熱炉で、炉材はアルミナ、マグネ
シア、ジルコニア、ムライト、炭素、高融点金属等の材
質が用いられたものが好適に使用できる。炭化珪素化反
応は、前記炉内をガスを用いない減圧下、又はHe、N
e、Ar等の不活性ガスを用いた減圧下、或いはN2
スを用いた減圧下に維持して行い、ここでいう減圧とは
10-3〜102Pa、好ましくは10ー2〜10Paの圧
力である。
That is, when a supply source of silicon monoxide gas and a porous carbon material are placed in the same furnace and heated, in order to react with the carbon while maintaining a high concentration of the generated silicon monoxide gas, It is effective to increase the reaction rate by bringing both of them close to each other and by covering them with some kind of cover so that the generated silicon monoxide gas is in contact with the porous carbon material as much as possible so as not to escape. is there. In this case, it is preferable that the material of the cover be heat-resistant, dense, and non-permeable, such as alumina. In the method of the present invention, the silicidation reaction is an internal heating type, an external heating type, or an induction heating type heating furnace capable of firing in a gas atmosphere or gas stream under reduced pressure or normal pressure, and the furnace material is alumina, Materials made of materials such as magnesia, zirconia, mullite, carbon and refractory metals can be preferably used. The silicon carbide conversion reaction is carried out under reduced pressure without using gas in the furnace, or He, N
e, under reduced pressure using an inert gas such as Ar, or N 2 performed and kept under reduced pressure using a gas, 10 -3 to 10 2 Pa and vacuum here, preferably 10 over 2 10 Pa Is the pressure of.

【0017】炭化珪素化を行わせる時の炉の温度は80
0〜2000℃、好ましくは1000〜1800℃であ
る。炉の温度が800℃未満のように低いと多孔質炭素
材料の炭素と一酸化珪素との反応が不十分で多孔質炭素
材料の内部まで完全に炭化珪素化されず、温度が200
0℃を超えて高くなると、生成した炭化珪素が粒成長
し、強度が低下して炭化珪素材料が破損し易くなるので
適さない。加熱炉における昇温速度は、特に限定されな
いが、50〜1500℃/時間で行われ、最高温度にお
ける保持時間は、1分〜20時間、好ましくは30分〜
10時間の範囲で適宜選択して用いられる。保持時間が
1分未満のように短いと反応が不十分となり、炭素材料
内部まで完全に炭化珪素化されず、保持時間が20時間
より長いと、高い温度の場合と同様に、生成した炭化珪
素が粒成長し、強度が低下して炭化珪素材料が壊れ易く
なるので適さない。又、不必要に反応時間を長くするこ
とは、エネルギ−を無駄に消費することになり不経済で
もある。又、より強度の高い炭化珪素材料を得るために
は、多孔質炭素材料と一酸化珪素を反応させる際に、材
料を緊張状態にしておくことが望ましい。特に材料が繊
維や繊維を含むシート或いは三次元構造体の場合、緊張
させることによる強度向上の効果が高い。例えば長繊維
の場合、多孔質炭素繊維を緊張させて両端を接着剤やお
もりで固定したり、一端を固定し、もう一端におもりを
つけて繊維を緊張させるのが好ましい。
The temperature of the furnace at which silicon carbide is formed is 80
The temperature is 0 to 2000 ° C, preferably 1000 to 1800 ° C. If the temperature of the furnace is as low as less than 800 ° C., the reaction between the carbon of the porous carbon material and silicon monoxide is insufficient and the inside of the porous carbon material is not completely converted to silicon carbide, and the temperature is 200 ° C.
If the temperature is higher than 0 ° C., the generated silicon carbide grains grow, the strength decreases, and the silicon carbide material is easily damaged, which is not suitable. The heating rate in the heating furnace is not particularly limited, but is performed at 50 to 1500 ° C./hour, and the holding time at the maximum temperature is 1 minute to 20 hours, preferably 30 minutes to
It is appropriately selected and used within a range of 10 hours. If the holding time is short such as less than 1 minute, the reaction becomes insufficient and the inside of the carbon material is not completely converted to silicon carbide. If the holding time is longer than 20 hours, the generated silicon carbide is generated as in the case of high temperature. Are not suitable because the grains grow and the strength decreases and the silicon carbide material is easily broken. Further, unnecessarily lengthening the reaction time is wasteful of energy and is uneconomical. Further, in order to obtain a silicon carbide material having higher strength, it is desirable to keep the material in a tension state when reacting the porous carbon material and silicon monoxide. In particular, when the material is a fiber, a sheet containing fibers, or a three-dimensional structure, the effect of improving strength by tensioning is high. For example, in the case of long fibers, it is preferable to tension the porous carbon fibers and fix both ends with an adhesive or a weight, or fix one end and attach a weight to the other end to tension the fibers.

【0018】以上説明したようにして金属或いは金属化
合物を含有する多孔質炭素材料と一酸化珪素を反応させ
て得られた炭化珪素材料は、金属或いは金属化合物を含
有しない炭化珪素材料に比べて高い強度を有するが、更
に金属或いは金属化合物を含有する前記炭化珪素材料
を、実質的に酸素を含まない雰囲気中で加熱処理を行う
ことにより、より一層高い強度を発現させることができ
る。この加熱処理のための温度は、800〜2200
℃、好ましくは1000〜2100℃である。温度が8
00℃未満では、金属或いは金属化合物と炭化珪素との
焼結が進まず、炭化珪素材料の強度が向上せず、温度が
2200℃を超えて高くなると炭化珪素材料を構成する
結晶或いは粒子が粗大に粒成長し、又炭化珪素が熱分解
し重量減少が起こるため、炭化珪素材料の強度の著しい
低下を招き適さない。加熱処理に用いられる炉は、前記
珪素化を行う場合と同様の炉を用いることができる。
The silicon carbide material obtained by reacting the porous carbon material containing the metal or the metal compound with silicon monoxide as described above is higher than the silicon carbide material containing no metal or the metal compound. By subjecting the silicon carbide material, which has strength, but further contains a metal or a metal compound, to heat treatment in an atmosphere that does not substantially contain oxygen, it is possible to exhibit even higher strength. The temperature for this heat treatment is 800-2200.
C., preferably 1000 to 2100.degree. Temperature is 8
If the temperature is lower than 00 ° C., the sintering of the metal or metal compound and silicon carbide does not proceed, and the strength of the silicon carbide material does not improve. If the temperature exceeds 2200 ° C., the crystals or particles constituting the silicon carbide material become coarse. Grains grow into particles, and the silicon carbide is thermally decomposed to cause a weight reduction, resulting in a significant decrease in the strength of the silicon carbide material, which is not suitable. As the furnace used for the heat treatment, the same furnace as in the case of performing the silicidation can be used.

【0019】加熱処理時の実質的に酸素を含まない雰囲
気としては、真空ポンプで102Pa以下の極めて低い
圧力まで減圧した雰囲気、He、Ne、Ar等の大気圧
或いは加圧下の不活性ガス気流中或いはN2ガス気流中
を挙げることができ、その場合の酸素の含有量は0.1
容量%以下である。金属或いは金属化合物を含有しない
炭化珪素材料に、酸素と窒素を実質的に含まない雰囲気
或いはガス雰囲気中で加熱処理を施すと炭化珪素の結晶
や微粒子が成長して、かえって強度が顕著に低下する
が、本発明の場合、酸素と窒素を実質的に含まない雰囲
気においても加熱によって結晶や微粒子は成長せず、強
度の顕著な向上が得られる。前記ガスは、加熱温度を維
持した加熱炉内に金属或いは金属化合物を含有する炭化
珪素材料を置き、大気圧下或いは加圧下で炉内に導入
し、炭化珪素材料中を通過させられる。大気圧下或いは
加圧下で前記ガスを炉内に流入させる場合は、炉の体積
によって使用するガス流量は変わるが、炉内のガスが一
時間当り数回から数百回入れ替わるような流量で流入さ
せることが好ましい。このガスの流量が少なすぎると、
金属或いは金属化合物による炭化珪素の焼結が進まず、
加熱処理による効果が十分に発現しなくなり、ガスの流
量が多すぎても、処理効果は頭打ちとなり、不経済であ
る。前記雰囲気中或いはガス気流中で加熱処理を行う時
間は、処理温度、ガス流量、圧力等の条件の組合せによ
って異なり一概に限定できないが、処理温度に到達後、
数秒から数十時間、好ましくは5〜600分である。処
理時間が短いと、炭化珪素材料に十分熱が伝わらず、炭
化珪素材料の温度が十分上昇しないため、熱処理の効果
が十分発現しないし、長い処理時間は、生産性を低下さ
せ、或いは得られる炭化珪素の結晶や微粒子を成長さ
せ、逆に炭化珪素材料の強度が低下するため適さない。
The atmosphere containing substantially no oxygen during the heat treatment is an atmosphere decompressed by a vacuum pump to an extremely low pressure of 10 2 Pa or less, an inert gas such as He, Ne, Ar or the like under atmospheric pressure or under pressure. In a stream of air or in a stream of N 2 gas, the oxygen content in that case is 0.1.
Volume% or less. When a silicon carbide material containing no metal or metal compound is subjected to a heat treatment in an atmosphere or a gas atmosphere which does not substantially contain oxygen and nitrogen, silicon carbide crystals and fine particles grow and the strength decreases conspicuously. However, in the case of the present invention, crystals and fine particles do not grow by heating even in an atmosphere substantially containing oxygen and nitrogen, and a marked improvement in strength can be obtained. The gas is placed in a silicon carbide material containing a metal or a metal compound in a heating furnace that maintains a heating temperature, introduced into the furnace under atmospheric pressure or under pressure, and passed through the silicon carbide material. When the above gas is introduced into the furnace under atmospheric pressure or under pressure, the flow rate of the gas used varies depending on the volume of the furnace, but the flow rate of the gas in the furnace changes from several times to several hundred times per hour. Preferably. If the flow rate of this gas is too low,
Sintering of silicon carbide with metal or metal compound does not proceed,
The effect of the heat treatment is not sufficiently exhibited, and even if the flow rate of the gas is too high, the effect of the treatment reaches the ceiling and is uneconomical. The time for performing the heat treatment in the atmosphere or in the gas stream cannot be unconditionally limited because it varies depending on the combination of conditions such as treatment temperature, gas flow rate, and pressure, but after reaching the treatment temperature,
It is several seconds to several tens of hours, preferably 5 to 600 minutes. If the treatment time is short, heat is not sufficiently transmitted to the silicon carbide material, and the temperature of the silicon carbide material does not rise sufficiently, so that the heat treatment effect is not sufficiently exhibited, and a long treatment time decreases the productivity or is obtained. It is not suitable because it grows silicon carbide crystals and fine particles, and conversely reduces the strength of the silicon carbide material.

【0020】又、前記加熱炉における昇温速度は、特に
限定されないが、10〜12000℃/時間の範囲から
選択して用いられる。加熱処理は、前記の温度範囲内で
2段階に分けて行うと効果的である。即ち、温度が10
00〜1500℃の範囲においては、昇温速度を遅くす
るか、或いは前記温度範囲内でやや長めの処理時間と
し、反応の後半に1500〜2200℃の処理温度を適
用すると、金属或いは金属化合物のより少ない含有量で
炭化珪素の焼結が効率よく行える。加熱処理温度が10
00℃未満と1500℃を越える場合では、加熱炉に用
いられている炉材の熱膨張による衝撃が生じない範囲内
で速い方が好ましく、昇温速度があまりに遅い場合は、
温度が1000℃未満の場合、効率が悪く生産性が上が
らないし、温度が1500℃の場合は、所定の温度に到
達するまでに時間がかかり、炭化珪素材料が長い時間所
定の温度に近い高温に曝されるため、所望の効果が得ら
れなくなるし、効率も悪くなるので避ける必要がある。
更に、別の方法としては、予め1000〜1500℃の
範囲の所望の温度に加熱された炉と1500〜2200
℃の範囲の所望の温度に加熱された炉の2種類の加熱炉
を用意しておき、それぞれの温度において必要な時間だ
け加熱してもよい。又、より強度の高い炭化珪素材料を
得るためには、加熱処理を行う場合にも、多孔質炭素材
料と一酸化珪素を反応させる際と同様、炭化珪素材料を
緊張状態にしておくことが望ましい。特に材料が炭化珪
素繊維やそれから構成されるシート或いは三次元構造体
の場合、緊張させることによる強度向上の効果が高い。
The heating rate in the heating furnace is not particularly limited, but it is selected from the range of 10 to 12000 ° C./hour and used. It is effective to perform the heat treatment in two steps within the above temperature range. That is, the temperature is 10
In the range of 00 to 1500 ° C., if the temperature rising rate is slowed or the treatment time is set to be slightly longer in the above temperature range and a treatment temperature of 1500 to 2200 ° C. is applied in the latter half of the reaction, the metal or metal compound Sintering of silicon carbide can be efficiently performed with a smaller content. Heat treatment temperature is 10
When the temperature is less than 00 ° C. and exceeds 1500 ° C., it is preferable that the temperature is as high as possible within the range in which the thermal expansion of the furnace material used in the heating furnace does not cause impact, and if the rate of temperature rise is too slow,
If the temperature is lower than 1000 ° C, the efficiency is poor and the productivity does not rise. If the temperature is 1500 ° C, it takes time to reach the predetermined temperature, and the silicon carbide material is kept at a high temperature close to the predetermined temperature for a long time. Since it is exposed, the desired effect cannot be obtained, and the efficiency becomes poor, so it is necessary to avoid it.
Further, as another method, a furnace preheated to a desired temperature in the range of 1000 to 1500 ° C. and 1500 to 2200 are used.
It is also possible to prepare two types of heating furnaces that are heated to a desired temperature in the range of ° C and heat at each temperature for a necessary time. Further, in order to obtain a silicon carbide material having higher strength, it is desirable to keep the silicon carbide material in a tension state even when the heat treatment is performed, as in the case of reacting the porous carbon material and silicon monoxide. . In particular, when the material is silicon carbide fiber, a sheet made of the same, or a three-dimensional structure, the effect of improving strength by tensioning is high.

【0021】以上詳細に説明した如く、本発明によれ
ば、金属単体或いは金属化合物を多孔質炭素材料に予め
含有させることにより、炭化珪素化の間に、或いは実質
的に酸素を含有しない雰囲気下で加熱する間に、炭化珪
素と金属或いは金属化合物の間である種の結合が均一に
生じ、この結合により強度がより一層高くなり、実用的
に優れた炭化珪素材料を製造することができる。
As described in detail above, according to the present invention, by pre-containing the elemental metal or the metal compound in the porous carbon material, during the silicon carbide conversion or in the atmosphere containing substantially no oxygen. During the heating, certain bonds are uniformly generated between the silicon carbide and the metal or the metal compound, and this bond further increases the strength, and a practically excellent silicon carbide material can be manufactured.

【0022】[0022]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、本発明は勿論これらに限定されるものでは
ない。なお、実施例及び比較例において%とあるのは、
特に断らない限り重量%を表す。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the examples and comparative examples,% means
Unless otherwise specified, it represents% by weight.

【0023】実施例1 比表面積が1000m2 /gのフェノール系活性炭繊維
(繊維径10μm、長さ100mm、商品名:カイノー
ル活性炭繊維、日本カイノール社製)の長繊維束0.5
gを、熱風循環式乾燥器中で温度105℃で12時間乾
燥させた。次に、200ml容のガラス製の蓋の開閉が
可能なセパラブルフラスコの底部から20mmの位置
に、150メッシュの支柱を有する金網を置き、フラス
コ底部に金属アルコキシドとしてトリエトキシボラン
(B(OC253)(アルドリッチ社製)5gを入
れ、別のガラス容器に入れた前記の乾燥済み活性炭繊維
をそのガラス容器ごと蓋をしないで金網の上にのせ、ト
リエトキシボランと直接接触しないようにし、直ちにセ
パラブルフラスコの蓋をした。その後、アスピレーター
で、セパラブルフラスコ内部をトリエトキシボランが沸
騰しない程度に減圧し、20℃の恒温室で3時間静置し
た。
Example 1 Long fiber bundle 0.5 of phenolic activated carbon fiber having a specific surface area of 1000 m 2 / g (fiber diameter 10 μm, length 100 mm, trade name: Kynol activated carbon fiber, manufactured by Nippon Kynol Co., Ltd.)
g was dried in a hot air circulation dryer at a temperature of 105 ° C. for 12 hours. Next, a wire net having a 150-mesh support was placed at a position 20 mm from the bottom of a separable flask capable of opening and closing a 200-ml glass lid, and triethoxyborane (B (OC 2 H 5 ) 3 ) (made by Aldrich) 5g was put, and the above-mentioned dried activated carbon fiber put in another glass container was placed on the wire net without the lid of the glass container so as not to come into direct contact with triethoxyborane. Then, the separable flask was immediately capped. Then, the inside of the separable flask was depressurized by an aspirator to the extent that triethoxyborane did not boil, and the flask was allowed to stand in a thermostatic chamber at 20 ° C. for 3 hours.

【0024】その後、前記と同様内部に金網を備えた別
の200ml容セパラブルフラスコの底部に純水10m
lを入れたものを用意し、前記のトリエトキシボランを
吸着させた活性炭繊維をガラス容器ごと前記のセパラブ
ルフラスコから取り出して、用意したセパラブルフラス
コの金網の上に水と直接接触しないように置いた。その
後直ちに蓋をして、このセパラブルフラスコを20℃の
恒温室で2時間静置して、加水分解を行った。反応終了
後の繊維は、反応を行う前と外観上の変化はなく、繊維
同士の融着も見られなかったが、この繊維を電気炉で温
度350℃にて3時間加熱させた後重量を測定したとこ
ろ、反応前の乾燥重量に比べて、3%増加していた。こ
の繊維を空気中900℃で1時間加熱して灰化したもの
を、臭化カリウム錠剤法により赤外吸収スペクトル(I
R)を測定した結果、繊維に担持されていた物質はボロ
ンの酸化物であることがわかった。重量増加から、ボロ
ン酸化物の全活性炭重量当りの含有量は、3.0%に相
当することが分かった。
Then, 10 m of pure water was added to the bottom of another 200 ml separable flask equipped with a wire net in the same manner as above.
1 was prepared, and the activated carbon fiber adsorbed with triethoxyborane was taken out of the separable flask together with the glass container so as not to come into direct contact with water on the wire mesh of the prepared separable flask. placed. Immediately thereafter, the lid was closed, and this separable flask was allowed to stand in a thermostatic chamber at 20 ° C. for 2 hours for hydrolysis. After the reaction, the fiber had no change in appearance from that before the reaction and no fusion of the fibers was observed, but the weight of the fiber after heating in an electric furnace at a temperature of 350 ° C. for 3 hours was measured. When measured, it was increased by 3% compared to the dry weight before the reaction. This fiber was heated in air at 900 ° C. for 1 hour to be ashed, and the infrared absorption spectrum (I
As a result of measuring R), it was found that the substance supported on the fiber was an oxide of boron. From the weight increase, it was found that the content of boron oxide based on the total weight of activated carbon was 3.0%.

【0025】次に、このボロン酸化物を含有する活性炭
繊維0.1gを、アルミナ製の板の上にのせ両端にそれ
ぞれ5gのおもりをのせることにより固定した。アルミ
ナ製のタンマン管の底部に粒状の一酸化ケイ素(試薬、
純度99.9%、和光純薬工業社製)1gを、開口部に
近いところに前記活性炭繊維を入れ、モリブデンからな
るシートを開口部にかぶせた。このタンマン管を60φ
のアルミナ製の炉心管を備えた管状炉中に入れて1Pa
まで減圧し、400℃/hrの昇温速度で1300℃ま
で昇温し、その温度を2時間保持して炭化珪素化を行っ
た後、室温まで自然冷却した。得られた繊維を臭化カリ
ウム錠剤法によって赤外吸収スペクトルを調べたとこ
ろ、900cm-1付近に炭化珪素の吸収がみられ、また
X線回折装置を用いて結晶の回折角度を調べたところ、
CuKα2θ=35.7度にピークが見られたことか
ら、この繊維は結晶質の炭化珪素からなることがわかっ
た。
Next, 0.1 g of this activated carbon fiber containing boron oxide was placed on an alumina plate and fixed by placing 5 g of weight on each end. At the bottom of the alumina Tamman tube, granular silicon monoxide (reagent,
1 g of a product having a purity of 99.9% and manufactured by Wako Pure Chemical Industries, Ltd. was added to the activated carbon fiber near the opening, and a molybdenum sheet was covered on the opening. This Tammann tube is 60φ
1 Pa in a tubular furnace equipped with a core tube made of alumina
After that, the temperature was reduced to 1,300 ° C. at a heating rate of 400 ° C./hr, the temperature was maintained for 2 hours to perform silicon carbide conversion, and then naturally cooled to room temperature. When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, absorption of silicon carbide was observed at around 900 cm −1 , and the diffraction angle of the crystal was examined using an X-ray diffractometer.
Since a peak was observed at CuKα2θ = 35.7 degrees, it was found that this fiber was made of crystalline silicon carbide.

【0026】更に、得られた繊維を、空気中で1000
℃、1時間加熱したが、重量減少は全く見られなかった
ので未反応の炭素は無いことが判明した。得られた繊維
の引張り強度を測定したところ、1500MPaであっ
た。得られた炭化珪素化された繊維の一部を、グラファ
イトの板の上にのせ両端にそれぞれ5gのおもりをのせ
て固定したものを、50φの炉心管を持つグラファイト
炉に入れ、500ml/分の流量でアルゴンガス(純度
99.999容量%)を流しながら、1200℃まで3
0分で昇温し(2400℃/時間)、その温度を300
分間保持した後、1800℃まで30分で昇温し(12
00℃/時間)、その温度を60分間保持した後、室温
まで冷却した。使用したアルゴンガスの総流量は、加熱
炉の容積の200倍であった。得られた繊維の引張り強
度を測定したところ、2000MPaであった。
Further, the obtained fiber is treated with 1000 in air.
After heating at ℃ for 1 hour, no weight loss was observed, so it was revealed that there was no unreacted carbon. When the tensile strength of the obtained fiber was measured, it was 1500 MPa. A part of the obtained silicon carbide fiber was placed on a graphite plate and fixed with 5 g of weight on each end, and then placed in a graphite furnace having a core tube of 50φ and 500 ml / min. While flowing argon gas (purity 99.999% by volume) at a flow rate, up to 1200 ° C. 3
The temperature was raised in 0 minutes (2400 ° C / hour) and the temperature was raised to 300
After holding for 1 minute, the temperature is raised to 1800 ° C in 30 minutes (12
The temperature was held for 60 minutes, and then cooled to room temperature. The total flow rate of the argon gas used was 200 times the volume of the heating furnace. When the tensile strength of the obtained fiber was measured, it was 2000 MPa.

【0027】本発明で用いた比表面積及び引張り強度を
測定するための試験法は、次の通りである。 試験法 (1)多孔質炭素材料の比表面積 低温窒素吸着法にてBET多点法を用いて測定した。 (2)引張り強度 JIS R−7601の方法に従い、室温にて引張り試
験機(テンシロン;東洋ボールドウィン社製)を用いて
測定した。
The test methods used to measure the specific surface area and tensile strength used in the present invention are as follows. Test Method (1) Specific Surface Area of Porous Carbon Material The specific surface area was measured by the low temperature nitrogen adsorption method using the BET multipoint method. (2) Tensile Strength According to the method of JIS R-7601, the tensile strength was measured at room temperature using a tensile tester (Tensilon; manufactured by Toyo Baldwin).

【0028】比較例1 実施例1で用いたのと同じ比表面積が1000m2 /g
の乾燥済みフェノール系活性炭繊維の長繊維束0.1g
を用い、トリエトキシボランを用いないこと以外は、実
施例1と同様にして炭化珪素化を行った。得られた繊維
を臭化カリウム錠剤法によって赤外吸収スペクトルを調
べたところ、900cm-1付近に炭化珪素の吸収がみら
れ、またX線回折装置を用いて結晶の回折角度を調べた
ところ、CuKα2θ=35.7度にピークが見られた
ことから、この繊維は結晶質の炭化珪素からなることが
わかった。更に、得られた繊維を、空気中で1000
℃、1時間加熱したが、重量減少は全く見られなかった
ので未反応の炭素は存在しないことが判明した。得られ
た繊維の引張り強度を測定したところ、800MPaで
あった。その後、炭化珪素繊維を、実施例1と同様にし
てアルゴンガス(純度99.999容量%)中で加熱し
たところ、得られた繊維は、加熱処理前の繊維と比べて
若干結晶の粗大化が生じているのが観察され、繊維の引
張り強度は400MPaに低下していた。
Comparative Example 1 The same specific surface area as used in Example 1 is 1000 m 2 / g
0.1g long fiber bundle of dried phenol-based activated carbon fiber
Was used, and silicon carbide was formed in the same manner as in Example 1 except that triethoxyborane was not used. When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, absorption of silicon carbide was observed at around 900 cm −1 , and the diffraction angle of the crystal was examined using an X-ray diffractometer. Since a peak was observed at CuKα2θ = 35.7 degrees, it was found that this fiber was made of crystalline silicon carbide. Further, the obtained fiber is heated to 1000 in air.
After heating for 1 hour at 0 ° C., no weight loss was observed and it was found that there was no unreacted carbon. When the tensile strength of the obtained fiber was measured, it was 800 MPa. Then, the silicon carbide fiber was heated in an argon gas (purity 99.999% by volume) in the same manner as in Example 1, and the obtained fiber was slightly coarsened as compared with the fiber before the heat treatment. It was observed that the tensile strength of the fiber had dropped to 400 MPa.

【0029】実施例2 比表面積が700m2 /gのポリアクリロニトリル樹脂
を原料とする活性炭繊維を用いたこと以外は、実施例1
と同様にして熱風循環式乾燥器に入れ、温度105℃で
12時間乾燥させた。この活性炭繊維0.1gを用いた
こと以外は、実施例1と同様にして活性炭繊維にトリエ
トキシボランを吸着、加水分解を行った。反応後の繊維
は、反応を行う前と比べて外観上の変化はなく、繊維相
互の融着も見られなかった。この繊維を電気炉中350
℃で3時間加熱した後の重量を測定したところ反応前の
乾燥重量に比べて2.5%増加していた。この繊維を空
気中900℃で1時間加熱して灰化したものを、臭化カ
リウム錠剤法により赤外吸収スペクトル(IR)を測定
した結果、このフェルトに担持されていた物質はボロン
の酸化物であることがわかった。ボロン酸化物の全活性
炭重量当りの含有量は2.5%であった。次に、このボ
ロン酸化物を含有する活性炭繊維0.1gと一酸化ケイ
素1gを用いた以外は、実施例1と同様にして炭化珪素
化を行った。
Example 2 Example 1 was repeated except that an activated carbon fiber made of a polyacrylonitrile resin having a specific surface area of 700 m 2 / g was used as a raw material.
It was put in a hot air circulation type dryer in the same manner as above and dried at a temperature of 105 ° C. for 12 hours. Triethoxyborane was adsorbed and hydrolyzed on the activated carbon fiber in the same manner as in Example 1 except that 0.1 g of this activated carbon fiber was used. The fibers after the reaction did not change in appearance as compared with those before the reaction, and fusion between the fibers was not observed. This fiber in an electric furnace 350
When the weight after heating for 3 hours at ℃ was measured, it was increased by 2.5% compared to the dry weight before the reaction. Infrared absorption spectrum (IR) of the fiber which had been ashed by heating this fiber at 900 ° C. for 1 hour in air was measured by the potassium bromide tablet method. As a result, the substance supported on this felt was a boron oxide. I found out. The content of boron oxide based on the total weight of activated carbon was 2.5%. Next, silicon carbide was formed in the same manner as in Example 1 except that 0.1 g of activated carbon fiber containing boron oxide and 1 g of silicon monoxide were used.

【0030】得られた繊維を臭化カリウム錠剤法によっ
て赤外吸収スペクトルを調べたところ、900cm-1
近に炭化珪素の吸収がみられ、またX線回折装置を用い
て結晶の回折角度を調べたところ、CuKα2θ=3
5.7度にピークが見られたことから、この繊維は結晶
質の炭化珪素からなることがわかった。更に、得られた
繊維を、空気中で1000℃、1時間加熱したが、重量
減少は全く見られなかった。又、得られた繊維の引張り
強度を測定したところ、1600MPaであった。更
に、この炭化珪素化された繊維を用いた以外は、実施例
1と同様にして、加熱処理を行った。得られた繊維のX
線回折分析を実施例1と同様に測定したところ、この繊
維は炭化珪素からなることがわかった。又、この繊維の
引張り強度を測定したところ、2100MPaであっ
た。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, absorption of silicon carbide was observed at around 900 cm -1 , and the diffraction angle of the crystal was examined by using an X-ray diffractometer. CuKα2θ = 3
Since the peak was observed at 5.7 degrees, it was found that this fiber was composed of crystalline silicon carbide. Furthermore, the obtained fiber was heated in air at 1000 ° C. for 1 hour, but no weight loss was observed. The tensile strength of the obtained fiber was measured and found to be 1600 MPa. Furthermore, a heat treatment was performed in the same manner as in Example 1 except that this silicon carbide fiber was used. X of the obtained fiber
When the line diffraction analysis was carried out in the same manner as in Example 1, it was found that this fiber was composed of silicon carbide. The tensile strength of this fiber was measured and found to be 2100 MPa.

【0031】比較例2 比表面積が700m2 /gのポリアクリロニトリル樹脂
を原料とする活性炭繊維を用いたこと及びトリエトキシ
ボランを用いなかったこと以外は、実施例1と同様にし
て活性炭繊維を炭化珪素化した。得られた繊維は炭化珪
素からなり、また引張強度は、1000MPaであっ
た。更に、この炭化珪素化された繊維の一部を、グラフ
ァイトの板の上にのせ、両端にそれぞれ5gのおもりを
のせて固定したものを、50φの炉心管を有するグラフ
ァイト炉に入れ、500ml/分の流量で窒素ガス(純
度99.999容量%)を流しながら、1200℃まで
30分で昇温し(2400℃/時間)、その温度を30
0分間保持した後1600℃まで20分で昇温し(12
00℃/時間)、その温度を60分間保持し、その後室
温まで冷却した。使用した窒素ガスの総流量は、加熱炉
の容積の200倍であった。得られた繊維の引張り強度
を測定したところ、1300MPaであった。
Comparative Example 2 Activated carbon fibers were carbonized in the same manner as in Example 1 except that activated carbon fibers made of polyacrylonitrile resin having a specific surface area of 700 m 2 / g were used as raw materials and triethoxyborane was not used. Siliconized. The fiber obtained was made of silicon carbide and had a tensile strength of 1000 MPa. Further, a portion of this silicon carbide fiber was placed on a graphite plate, and a weight of 5 g was placed on each end of the graphite plate, and the fiber was placed in a graphite furnace having a 50φ core tube. While flowing nitrogen gas (purity 99.999% by volume) at a flow rate of, the temperature was raised to 1200 ° C. in 30 minutes (2400 ° C./hour), and the temperature was raised to 30
After holding for 0 minutes, the temperature was raised to 1600 ° C in 20 minutes (12
(00 ° C./hour), the temperature was maintained for 60 minutes, and then cooled to room temperature. The total flow rate of nitrogen gas used was 200 times the volume of the heating furnace. When the tensile strength of the obtained fiber was measured, it was 1300 MPa.

【0032】実施例3 金属アルコキシドとしてテトラエトキシシラン(和光純
薬工業社製)を用いたこと以外は、実施例1と同様にし
て、活性炭繊維に金属アルコキシドを吸着させ、加水分
解を行い、シリコン金属の酸化物を活性炭繊維に含有さ
せた。 反応終了後の繊維は、反応を行う前と外観上の
変化はなく、繊維同士の融着も見られなかったが、この
繊維を熱風循環式乾燥器で温度105℃にて12時間乾
燥させた後重量を測定したところ、最初に乾燥させた時
の重量に比べて、30%増加していた。この繊維の一部
を空気中900℃で1時間加熱して灰化したものを、臭
化カリウム錠剤法により赤外吸収スペクトル(IR)を
測定した結果、繊維に担持されていた物質はシリコンの
酸化物であることがわかった。灰化した残りの物質の重
量から、シリコン酸化物の全活性炭重量当りの含有量
は、4.0%に相当することが分かった。次に、このシ
リコンの酸化物を担持した活性炭繊維を用いたこと以外
は、実施例1と同様にして、繊維の炭化珪素化を行っ
た。
Example 3 In the same manner as in Example 1 except that tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the metal alkoxide, the metal alkoxide was adsorbed on the activated carbon fiber and hydrolyzed to obtain silicon. A metal oxide was included in the activated carbon fiber. After the reaction, the fibers had no change in appearance from those before the reaction and no fusion of the fibers was observed, but the fibers were dried with a hot air circulation dryer at a temperature of 105 ° C. for 12 hours. When the rear weight was measured, it was increased by 30% as compared with the weight when first dried. An infrared absorption spectrum (IR) was measured by the potassium bromide tablet method for a portion of this fiber which had been heated in air at 900 ° C. for 1 hour to be incinerated. As a result, the substance supported on the fiber was silicon. It was found to be an oxide. From the weight of the remaining ashed material, it was found that the content of silicon oxide based on the total weight of activated carbon was equivalent to 4.0%. Next, the fibers were siliconized in the same manner as in Example 1 except that the activated carbon fibers supporting the silicon oxide were used.

【0033】得られた繊維を臭化カリウム錠剤法によっ
て赤外吸収スペクトルを調べたところ、900cm-1
近に炭化珪素の吸収がみられ、またX線回折装置を用い
て結晶の回折角度を調べたところ、CuKα2θ=3
5.7度にピークが見られたことから、この繊維は結晶
質の炭化珪素からなることがわかった。更に、得られた
繊維を、空気中で1000℃、1時間加熱したが、重量
減少は全く見られなかった。又、得られた繊維の引張り
強度を測定したところ、1600MPaであった。続い
て、得られた繊維の0.07gをグラファイトの板の上
にのせ両端にそれぞれ5gのおもりをのせて固定したも
のを、50φの炉心管を持つグラファイト炉に入れ、5
00ml/分の流量の窒素ガス(純度99.999容量
%)を流しながら、1200℃まで30分で昇温し(2
400℃/時間)、その温度を300分間保持した後、
1600℃まで20分(1200℃/時間)で昇温し
(1200℃/時間)、その温度を3時間保持した後、
室温まで冷却した。用いた窒素ガスの総流量は、グラフ
ァイト炉の容積の250倍であった。この熱処理後の繊
維の引張強度を測定したところ、2000MPaであっ
た。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, absorption of silicon carbide was found at around 900 cm -1 , and the diffraction angle of the crystal was examined by using an X-ray diffractometer. CuKα2θ = 3
Since the peak was observed at 5.7 degrees, it was found that this fiber was composed of crystalline silicon carbide. Furthermore, the obtained fiber was heated in air at 1000 ° C. for 1 hour, but no weight loss was observed. The tensile strength of the obtained fiber was measured and found to be 1600 MPa. Subsequently, 0.07 g of the obtained fiber was placed on a graphite plate, and 5 g of weight was placed on each end of the graphite plate and fixed, and then placed in a graphite furnace having a 50φ core tube.
While flowing nitrogen gas (purity 99.999% by volume) at a flow rate of 00 ml / min, the temperature was raised to 1200 ° C. in 30 minutes (2
400 ° C./hour), after holding that temperature for 300 minutes,
After raising the temperature to 1600 ° C. in 20 minutes (1200 ° C./hour) (1200 ° C./hour) and maintaining the temperature for 3 hours,
Cooled to room temperature. The total flow rate of nitrogen gas used was 250 times the volume of the graphite furnace. When the tensile strength of the fiber after this heat treatment was measured, it was 2000 MPa.

【0034】実施例4 金属アルコキシドとしてチタンイソプロポキシド(和光
純薬工業社製)を用いたこと以外は、実施例1と同様に
して、活性炭繊維に金属アルコキシドを吸着させ、加水
分解を行い、チタン金属の酸化物を活性炭繊維に含有さ
せた。反応終了後の繊維は、反応を行う前と外観上の変
化はなく、繊維同士の融着も見られなかったが、この繊
維を電気炉で温度500℃にて1時間加熱した後重量を
測定したところ、反応前の乾燥重量に比べて、3.5%
増加していた。この繊維を空気中900℃で1時間加熱
して灰化したものを、蛍光X線法およびX線回折法によ
り分析した結果、繊維に含有されていた物質はチタンの
酸化物であることが分かった。重量増加から、チタン酸
化物の全活性炭重量当りの含有量は、3.5%に相当す
ることが分かった。次に、このチタンの酸化物を含有す
る活性炭繊維を用いたこと以外は、実施例1と同様にし
て、繊維の炭化珪素化を行った。
Example 4 In the same manner as in Example 1 except that titanium isopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the metal alkoxide, the metal alkoxide was adsorbed on the activated carbon fiber and hydrolyzed, An oxide of titanium metal was included in the activated carbon fiber. The appearance of the fiber after the reaction was the same as that before the reaction and the fusion of the fibers was not observed, but the weight was measured after heating the fiber in an electric furnace at a temperature of 500 ° C for 1 hour. When compared, 3.5% compared to the dry weight before reaction
Was increasing. This fiber was heated in air at 900 ° C. for 1 hour to be incinerated, and the result of analysis by a fluorescent X-ray method and an X-ray diffraction method revealed that the substance contained in the fiber was an oxide of titanium. It was From the weight increase, it was found that the content of titanium oxide based on the total weight of activated carbon was 3.5%. Next, the fibers were siliconized in the same manner as in Example 1 except that the activated carbon fibers containing the oxide of titanium were used.

【0035】得られた繊維を臭化カリウム錠剤法によっ
て赤外吸収スペクトルを調べたところ、900cm-1
近に炭化珪素の吸収がみられ、またX線回折装置を用い
て結晶の回折角度を調べたところ、CuKα2θ=3
5.7度にピークが見られたことから、この繊維は結晶
質の炭化珪素からなることが分かった。更に、得られた
繊維を、空気中で1000℃、1時間加熱したが、重量
減少は全く見られなかった。また、得られた繊維の引張
り強度を測定したところ、1600MPaであった。更
に、チタンの酸化物を含有する炭化珪素繊維を用いたこ
と及び加熱処理条件を1200℃で300分、1900
℃で60分とした以外は、実施例1と同様にして加熱処
理を行った。得られた繊維の引張強度を測定したとこ
ろ、2100MPaであった。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, absorption of silicon carbide was observed at around 900 cm -1 , and the diffraction angle of the crystal was examined using an X-ray diffractometer. CuKα2θ = 3
Since the peak was observed at 5.7 degrees, it was found that this fiber was composed of crystalline silicon carbide. Furthermore, the obtained fiber was heated in air at 1000 ° C. for 1 hour, but no weight loss was observed. The tensile strength of the obtained fiber was measured and found to be 1600 MPa. Furthermore, the silicon carbide fiber containing the oxide of titanium was used, and the heat treatment condition was 1200 ° C. for 300 minutes, 1900
The heat treatment was performed in the same manner as in Example 1 except that the temperature was 60 minutes. When the tensile strength of the obtained fiber was measured, it was 2100 MPa.

【0036】実施例5 横型の筒状反応容器に、実施例1で用いた活性炭繊維
0.5gと、金属アルコキシドとして固形のアルミニウ
ムイソプロポキシド(和光純薬工業社製)5gとを、乾
燥窒素(純度99.9容量%)を前記反応容器内に導入
して流す際に、アルミニウムイソプロポキシドが上流、
活性炭繊維が下流になるように、又両者が混合しないよ
うに載置した。筒状反応容器内に前記乾燥窒素を50m
l/分の流量で流しながら、前記反応容器の外側に巻い
たヒーターにより、アルミニウムイソプロポキシドと活
性炭繊維を150℃に加熱、3時間保持し、発生したア
ルミニウムイソプロポキシドの蒸気を、乾燥窒素の気流
で運び下流の活性炭に吸着させた。冷却後この活性炭繊
維を取り出し、実施例1と同様にして活性炭繊維に吸着
された金属アルコキシドの加水分解を行い、アルミニウ
ムの酸化物を活性炭に含有させた。反応終了後の繊維
は、反応を行う前と外観上の変化はなく、繊維同士の融
着も見られなかったが、この繊維を熱風循環式乾燥器で
温度105℃にて12時間加熱した後重量を測定したと
ころ、反応前の乾燥重量に比べて、20%増加してい
た。この繊維の一部を空気中1200℃で1時間加熱し
て灰化したものを、臭化カリウム錠剤法により赤外吸収
スペクトルを測定した結果及びX線回折法による分析の
結果から、繊維に担持されていた物質はアルミニウムの
酸化物であることが判明した。灰化した残りの物質の重
量から、アルミニウム酸化物の全活性炭重量当りの含有
量は、3.0%に相当することが分かった。
Example 5 In a horizontal tubular reaction vessel, 0.5 g of the activated carbon fiber used in Example 1 and 5 g of solid aluminum isopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) as a metal alkoxide were placed in dry nitrogen. When introducing (purity 99.9% by volume) into the reaction vessel, aluminum isopropoxide is upstream,
The activated carbon fibers were placed so that they were on the downstream side and they were not mixed. 50m of the dry nitrogen in a cylindrical reaction vessel
While flowing at a flow rate of 1 / min, aluminum isopropoxide and activated carbon fibers were heated to 150 ° C. by a heater wound on the outside of the reaction vessel and held for 3 hours. It was carried by a stream of air and adsorbed on activated carbon downstream. After cooling, the activated carbon fiber was taken out and the metal alkoxide adsorbed on the activated carbon fiber was hydrolyzed in the same manner as in Example 1 to contain an oxide of aluminum in the activated carbon. After the reaction, the fibers had no change in appearance from those before the reaction and no fusion of the fibers was observed, but after heating the fibers at a temperature of 105 ° C. for 12 hours with a hot air circulation dryer. When the weight was measured, it was increased by 20% compared to the dry weight before the reaction. A part of this fiber was heated in air at 1200 ° C. for 1 hour to be incinerated, and the result was measured by infrared absorption spectrum by potassium bromide tablet method and analysis result by X-ray diffraction method. The substance that was identified was found to be an oxide of aluminum. From the weight of the remaining ashed material, the content of aluminum oxide per total activated carbon weight was found to correspond to 3.0%.

【0037】次に、このアルミニウムの酸化物を担持し
た活性炭繊維を用いたこと以外は、実施例1と同様にし
て、繊維の炭化珪素化を行った。得られた繊維を臭化カ
リウム錠剤法によって赤外吸収スペクトルを調べたとこ
ろ、900cm-1付近に炭化珪素の吸収がみられ、また
X線回折装置を用いて結晶の回折角度を調べたところ、
CuKα2θ=35.7度にピークが見られたことか
ら、この繊維は結晶質の炭化珪素からなることがわかっ
た。更に、得られた繊維を、空気中で1000℃、1時
間加熱したが、重量減少は全く見られなかった。また、
得られた繊維の引張り強度を測定したところ、1700
MPaであった。更に、アルミニウムの酸化物を含有す
る炭化珪素繊維を用いたこと以外は、実施例3と同様に
して加熱処理を行った。得られた繊維の引張強度を測定
したところ、2100MPaであった。
Then, the fibers were siliconized in the same manner as in Example 1 except that the activated carbon fibers carrying the aluminum oxide were used. When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, absorption of silicon carbide was observed at around 900 cm −1 , and the diffraction angle of the crystal was examined using an X-ray diffractometer.
Since a peak was observed at CuKα2θ = 35.7 degrees, it was found that this fiber was made of crystalline silicon carbide. Furthermore, the obtained fiber was heated in air at 1000 ° C. for 1 hour, but no weight loss was observed. Also,
The tensile strength of the obtained fiber was measured to be 1700.
It was MPa. Furthermore, the heat treatment was performed in the same manner as in Example 3 except that silicon carbide fibers containing an oxide of aluminum were used. When the tensile strength of the obtained fiber was measured, it was 2100 MPa.

【0038】実施例6 フェノール6.5kg、固形分濃度44%のホルマリン
3.4kg及びシュウ酸20gを10リットル容量のセ
パラブルフラスコに入れて、攪拌しながら20℃から1
00℃まで5時間で昇温し、この温度を1時間保持し
た。その後、20mmHgの減圧下で加熱して3時間で
180℃まで昇温し、水分、未反応物及び低沸点化合物
を除去した。得られたノボラック樹脂の溶融軟化温度は
125℃であった。得られた樹脂2kgを150℃に加
熱溶融したところへ、金属ボロン粉末4gを加え、よく
混合した後、口数120、孔径0.20mmφの紡糸用
口金を用いて145℃で紡糸し、700m/分の速度で
捲取り、未硬化ノボラック繊維を得た。得られた未硬化
ノボラック繊維を18%の塩酸と13%のホルムアルデ
ヒドからなる混合水溶液に20℃で浸漬し、2時間で9
7℃まで徐々に昇温後、95〜98℃の温度で5時間保
持した。こうして得られた繊維を5%のアンモニア水溶
液に浸漬し、75℃の温度で3時間処理して硬化させ
た。
Example 6 6.5 kg of phenol, 3.4 kg of formalin having a solid content of 44% and 20 g of oxalic acid were placed in a separable flask having a capacity of 10 liter, and stirred at 20 ° C. to 1 ° C.
The temperature was raised to 00 ° C. in 5 hours, and this temperature was maintained for 1 hour. Then, it heated under reduced pressure of 20 mmHg and heated up to 180 degreeC in 3 hours, and removed water, an unreacted substance, and a low boiling point compound. The melt softening temperature of the obtained novolak resin was 125 ° C. After 2 kg of the obtained resin was heated and melted at 150 ° C., 4 g of metal boron powder was added and mixed well, and then spun at 145 ° C. using a spinneret having a number of holes of 120 and a hole diameter of 0.20 mmφ at 700 m / min. It was wound up at a speed of to obtain an uncured novolac fiber. The uncured novolac fiber obtained is immersed in a mixed aqueous solution of 18% hydrochloric acid and 13% formaldehyde at 20 ° C.
After gradually raising the temperature to 7 ° C, the temperature was maintained at 95 to 98 ° C for 5 hours. The fibers thus obtained were immersed in a 5% aqueous ammonia solution and treated at a temperature of 75 ° C. for 3 hours to be cured.

【0039】得られた硬化ノボラック繊維10gを60
φのアルミナ製の炉心管を備えた管状炉内に静置し、管
の一端から500ml/分の流量で窒素ガス(純度9
9.9容量%)を流しながら150℃まで昇温した後、
流量を390ml/分に下げた窒素ガスを予め70℃に
加熱した熱水中に通過させて得られた76.5容量%の
窒素と23.5容量%の水蒸気からなる混合ガスを、窒
素に代えて炉心管内に流しながら、700℃まで1時間
で昇温し、その後再び流量500ml/分の窒素ガスの
みに切換え、800℃まで12分で昇温しその温度を3
0分間保持した後、冷却した。得られた多孔質炭素繊維
の比表面積は1000m2/gであり、金属ボロンを含
有させないノボラック樹脂を前記と同様の方法で賦活し
て得られた多孔質繊維の収率が40%であったことから
活性炭素繊維中に含有される金属ボロンの全活性炭重量
当りの含有率は、0.5%であった。次いで、この金属
ボロンを含む多孔質炭素繊維を用いたこと以外は、実施
例1と同様にして、繊維の炭化珪素化を行った。
10 g of the obtained cured novolac fiber was added to 60 g.
The tube was placed in a tubular furnace equipped with a φ-made alumina core tube, and nitrogen gas (purity 9
(9.9% by volume) and then heated up to 150 ° C.,
A mixed gas consisting of 76.5% by volume of nitrogen and 23.5% by volume of water vapor, which was obtained by passing nitrogen gas whose flow rate was reduced to 390 ml / min, through hot water previously heated to 70 ° C. was added to nitrogen. Instead, the temperature was raised to 700 ° C. in 1 hour while flowing into the core tube, and then the flow rate was changed to only 500 ml / min of nitrogen gas again, and the temperature was raised to 800 ° C. in 12 minutes to raise the temperature to 3
After holding for 0 minutes, it was cooled. The specific surface area of the obtained porous carbon fiber was 1000 m 2 / g, and the yield of the porous fiber obtained by activating the novolak resin containing no metal boron in the same manner as above was 40%. Therefore, the content ratio of metal boron contained in the activated carbon fiber was 0.5% based on the total weight of the activated carbon. Then, the fibers were siliconized in the same manner as in Example 1 except that the porous carbon fibers containing the metal boron were used.

【0040】得られた繊維を臭化カリウム錠剤法によっ
て赤外吸収スペクトルを調べたところ、900cm-1
近に炭化珪素の吸収がみられ、またX線回折装置を用い
て結晶の回折角度を調べたところ、CuKα2θ=3
5.7度にピークが見られたことから、この繊維は結晶
質の炭化珪素からなることがわかった。さらに、得られ
た繊維を、空気中で1000℃、1時間加熱したが、重
量減少は全く見られなかった。得られた繊維の引張り強
度を測定したところ、1600MPaであった。次に、
得られたボロン金属を含有する炭化珪素繊維0.07g
を用いたこと以外は実施例1と同様にして加熱処理を行
った。この加熱処理後の繊維の引張強度を測定したとこ
ろ、2000MPaであった。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, absorption of silicon carbide was observed at around 900 cm −1 , and the diffraction angle of the crystal was examined by using an X-ray diffractometer. CuKα2θ = 3
Since the peak was observed at 5.7 degrees, it was found that this fiber was composed of crystalline silicon carbide. Furthermore, when the obtained fiber was heated in air at 1000 ° C. for 1 hour, no weight loss was observed. When the tensile strength of the obtained fiber was measured, it was 1600 MPa. next,
0.07 g of the obtained silicon carbide fiber containing boron metal
The heat treatment was performed in the same manner as in Example 1 except that the above was used. When the tensile strength of the fiber after this heat treatment was measured, it was 2000 MPa.

【0041】実施例7 ノボラック樹脂2kgを150℃に加熱溶融したところ
へ、金属ボロン粉末2.4gとアルミナ(アルミニウム
酸化物、アルドリッチ社製)粉末8gを加えた以外は、
実施例6と同様にして、紡糸して繊維とし、硬化し、そ
の後炭化と多孔質化(賦活)を行って、金属ボロンとア
ルミナを含有する比表面積が1000m 2/gの多孔質
炭素繊維を得た。実施例6と同様にしてノボラック樹脂
からの多孔質炭素繊維の収率が40%であることから、
得られた多孔質繊維中の金属ボロンとアルミナの含有量
は、それぞれ全炭素繊維重量当り0.3%と1.0%で
あった。次に、この繊維を用いたこと以外は、実施例1
と同様にして、繊維の炭化珪素化を行った。得られた繊
維を臭化カリウム錠剤法によって赤外吸収スペクトルを
調べたところ、900cm-1付近に炭化珪素の吸収がみ
られ、またX線回折装置を用いて結晶の回折角度を調べ
たところ、CuKα2θ=35.7度にピークが見られ
たことから、この繊維は結晶質の炭化珪素からなること
がわかった。更に、得られた繊維を、空気中で1000
℃、1時間加熱したが、重量減少は全く見られなかっ
た。得られた繊維の引張り強度を測定したところ、16
00MPaであった。次に、金属ボロンとアルミナを含
有する炭化珪素繊維を用いたこと及び加熱条件を120
0℃で300分と1700℃で60分としたこと以外
は、実施例1と同様にして加熱処理を行った。この加熱
処理後の繊維の引張強度を測定したところ、2100M
Paであった。
Example 7 2 kg of novolak resin was heated and melted at 150 ° C.
To 2.4g of metallic boron powder and alumina (aluminum
Oxide, manufactured by Aldrich) except that 8 g of powder was added,
In the same manner as in Example 6, spun into fibers, cured, and
After carbonization and porosification (activation) are performed, metal boron and
1000m specific surface area containing Lumina 2/ G porous
Carbon fiber was obtained. Novolac resin as in Example 6
Since the yield of porous carbon fiber from is 40%,
Content of boron metal and alumina in the obtained porous fiber
Are 0.3% and 1.0% based on the total carbon fiber weight, respectively.
there were. Next, Example 1 except that this fiber was used.
The fibers were siliconized in the same manner as in. Obtained fiber
Infrared absorption spectrum of fiber was measured by potassium bromide tablet method.
When examined, 900 cm-1Absorption of silicon carbide
And the diffraction angle of the crystal was investigated using an X-ray diffractometer.
As a result, a peak was observed at CuKα2θ = 35.7 degrees.
Therefore, this fiber is made of crystalline silicon carbide.
I understood. Further, the obtained fiber is heated to 1000 in air.
After heating at ℃ for 1 hour, no weight loss was observed.
Was. The tensile strength of the obtained fiber was measured to be 16
It was 00 MPa. Next, include metal boron and alumina.
Using the silicon carbide fiber having
Other than that it was 300 minutes at 0 ° C and 60 minutes at 1700 ° C
Was heat-treated in the same manner as in Example 1. This heating
When the tensile strength of the treated fiber was measured, it was 2100M.
It was Pa.

【0042】実施例8 ノボラック樹脂2kgを150℃に加熱溶融したところ
へ、アルミナ粉末8g、イットリア(イットリウム酸化
物)粉末3.2g及びマグネシア(マグネシウム酸化
物)粉末4gを加えたこと以外は、実施例6と同様にし
て、紡糸して繊維とし、硬化し、その後炭化と多孔質化
を行って、アルミナ、イットリア及びマグネシアを含有
する比表面積が1000m2/gの多孔質炭素繊維を得
た。得られた繊維中のアルミナ、イットリア及びマグネ
シアの含有量は、それぞれ全炭素繊維重量当り1.0、
0.4及び0.5%である。次いで、この繊維を用いた
こと以外は、実施例1と同様にして繊維の炭化珪素化を
行った。得られた繊維を臭化カリウム錠剤法によって赤
外吸収スペクトルを調べたところ、900cm-1付近に
炭化珪素の吸収がみられ、またX線回折装置を用いて結
晶の回折角度を調べたところ、CuKα2θ=35.7
度にピークが見られたことから、この繊維は結晶質の炭
化珪素からなることがわかった。更に、得られた繊維
を、空気中で1000℃、1時間加熱したが、重量減少
は全く見られなかった。繊維の引張り強度を測定したと
ころ、1800MPaであった。次に、アルミナ、イッ
トリア及びマグネシアを含有する炭化珪素繊維を用いた
こと以外は、実施例3と同様にして加熱処理を行った。
この加熱処理後の繊維の引張強度を測定したところ、2
100MPaであった。
Example 8 Example 2 was conducted except that 2 kg of novolac resin was heated and melted at 150 ° C., and 8 g of alumina powder, 3.2 g of yttria (yttrium oxide) powder and 4 g of magnesia (magnesium oxide) powder were added. In the same manner as in Example 6, the fiber was spun into a fiber, cured, and then carbonized and made porous to obtain a porous carbon fiber containing alumina, yttria and magnesia and having a specific surface area of 1000 m 2 / g. The content of alumina, yttria and magnesia in the obtained fiber was 1.0 based on the total carbon fiber weight,
0.4 and 0.5%. Then, the fibers were siliconized in the same manner as in Example 1 except that this fiber was used. When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, absorption of silicon carbide was observed at around 900 cm −1 , and the diffraction angle of the crystal was examined using an X-ray diffractometer. CuKα2θ = 35.7
It was found that this fiber was composed of crystalline silicon carbide, because peaks were observed every time. Furthermore, the obtained fiber was heated in air at 1000 ° C. for 1 hour, but no weight loss was observed. When the tensile strength of the fiber was measured, it was 1800 MPa. Next, heat treatment was performed in the same manner as in Example 3 except that silicon carbide fibers containing alumina, yttria, and magnesia were used.
When the tensile strength of the fiber after this heat treatment was measured, it was 2
It was 100 MPa.

【0043】実施例9 比表面積が1000m2 /gのフェノール樹脂を原料と
する活性炭繊維からなるフェルト(クラレケミカル社
製、目付120g/m2)を熱風循環式乾燥器に入れ、
温度105℃で12時間乾燥させた。この活性炭繊維の
フェルト(大きさ5cmx5cm)を用いたこと以外
は、実施例1と同様にして活性炭繊維からなるフェルト
に金属アルコキシドとしてトリエトキシボランを吸着さ
せた後、加水分解を行った。この状態でのフェルトは、
反応を行う前と比べて外観上の変化はなく、繊維相互或
いは粒子相互の凝集は見られなかった。このフェルトを
電気炉中350℃で3時間加熱した後、重量を測定した
ところ反応前の乾燥重量に比べて3.0%増加してい
た。この繊維を空気中900℃で1時間加熱して灰化し
たものを、臭化カリウム錠剤法により赤外吸収スペクト
ル(IR)を測定した結果、このフェルトに担持されて
いた物質はボロンの酸化物であり、重量増加から、ボロ
ン酸化物の全活性炭重量当りの含有量は、3.0%に相
当することが分かった。次に、このボロンの酸化物を含
有する活性炭繊維のフェルトを用いたこと以外は、実施
例1と同様にして炭化珪素化を行い、更に、この炭化珪
素化されたフェルトを用いたこと以外は、実施例1と同
様にして加熱処理を行った。強度の測定は行わなかった
が、しっかりとした感触のフェルトであった。
Example 9 A felt (a unit weight of 120 g / m 2 by Kuraray Chemical Co., Ltd.) made of activated carbon fibers made of a phenol resin having a specific surface area of 1000 m 2 / g as a raw material was put in a hot air circulation dryer,
It was dried at a temperature of 105 ° C. for 12 hours. Triethoxyborane was adsorbed as a metal alkoxide on the felt made of activated carbon fibers in the same manner as in Example 1 except that the activated carbon fiber felt (size: 5 cm × 5 cm) was used, and then hydrolysis was performed. The felt in this state is
There was no change in appearance as compared with before the reaction, and no aggregation of fibers or particles was observed. After heating this felt in an electric furnace at 350 ° C. for 3 hours, the weight was measured and found to be 3.0% greater than the dry weight before the reaction. Infrared absorption spectrum (IR) of the fiber which had been ashed by heating this fiber at 900 ° C. for 1 hour in air was measured by the potassium bromide tablet method. As a result, the substance supported on this felt was a boron oxide. From the increase in weight, it was found that the content of boron oxide based on the total weight of activated carbon was 3.0%. Next, except that the felt of activated carbon fiber containing the oxide of boron was used, silicon carbide was formed in the same manner as in Example 1, and the felt made of silicon carbide was used. The heat treatment was performed in the same manner as in Example 1. Although the strength was not measured, the felt had a firm feel.

【0044】実施例10 比表面積が700m2 /gのフェノール樹脂を原料とす
る活性炭繊維を含有する炭素シート(日本カイノール社
製、坪量50g/m2、活性炭繊維含有率50%、炭素
含有率50%)をフェノール樹脂接着剤を用いて大きさ
20cmx20cm、厚さ2cm、一辺の長さが10m
mからなる六角のハニカム状三次元構造体に加工した。
次いで、これを熱風循環式乾燥器に入れ、温度105℃
で12時間乾燥させた。その後、上蓋が開閉可能な18
リットル容の金属製密閉容器の底部から50mmの高さ
の位置が確保できるように、支柱を有する150メッシ
ュの金網を設置し、該容器の底部に金属アルコキシドと
してトリエトキシボラン(B(OC253)(アルド
リッチ社製)100gを入れ、別のガラス製容器に入れ
た前記の乾燥済みのハニカム構造体2gをそのガラス容
器ごと蓋をしないで金網の上にのせ、トリエトキシボラ
ンと直接接触しないようにし、直ちに該容器の蓋をし
た。その後、アスピレーターで、該容器内部をトリエト
キシボランが沸騰しない程度に減圧し、20℃の恒温室
で3時間静置した。
Example 10 A carbon sheet containing activated carbon fibers made of a phenol resin having a specific surface area of 700 m 2 / g (manufactured by Nippon Kynol Co., Ltd., basis weight 50 g / m 2 , activated carbon fiber content 50%, carbon content rate). 50%) using a phenolic resin adhesive, size 20 cm x 20 cm, thickness 2 cm, side length 10 m
The hexagonal honeycomb-shaped three-dimensional structure made of m was processed.
Then, put this in a hot-air circulation type dryer, and keep the temperature at 105 ° C.
And dried for 12 hours. After that, the upper lid can be opened and closed 18
A 150-mesh wire net having columns was installed so that a height of 50 mm could be secured from the bottom of the metal closed vessel of liter volume, and triethoxyborane (B (OC 2 H 2 H 5 ) 3 ) 100 g (manufactured by Aldrich Co.) was placed, and 2 g of the dried honeycomb structure placed in another glass container was placed on the wire net together with the glass container without a lid, and directly with triethoxyborane. Avoid contact and immediately cap the container. Then, the inside of the container was depressurized with an aspirator to the extent that triethoxyborane did not boil, and the container was allowed to stand in a thermostatic chamber at 20 ° C. for 3 hours.

【0045】その後、この構造体を取り出し、純水30
0mlを底部に入れた上蓋が開閉可能な18リットル容
の金属製の密閉容器に、前記三次元構造体にトリエトキ
シボランを吸着させる場合と同様にして、水と前記構造
体が直接混合、接触しないようにして該構造体を金網の
上に乗せ、上蓋を閉じて、温度20℃の恒温室で2時間
静置して、加水分解を行った。反応終了後の構造体は、
反応を行う前と外観上の変化はなかった。この構造体を
電気炉に入れ、温度350℃にて3時間加熱した後重量
を測定したところ、反応前の乾燥重量に比べて3.0%
増加していた。この構造体の一部を空気中900℃で1
時間加熱して灰化したものを、臭化カリウム錠剤法によ
り赤外吸収スペクトル(IR)を測定した結果、構造体
に担持されていた物質はボロンの酸化物であり、重量増
加から、ボロン酸化物の全活性炭重量当りの含有量は、
3.0%に相当することが分かった次に、このボロンの
酸化物を含有するハニカム構造体0.5gと、一酸化ケ
イ素5gを用いたこと以外は、実施例1と同様にして構
造体の炭化珪素化を行った。さらに、この炭化珪素化さ
れたハニカム構造体を用いたこと以外は、実施例1と同
様にして加熱処理を行った。強度は、測定できなかった
が、非常にしっかりとしたハニカム三次元構造体が得ら
れた。
Then, this structure is taken out and purified water 30 is used.
Water and the structure are directly mixed and contacted in the same manner as in the case of adsorbing triethoxyborane on the three-dimensional structure in an 18 liter metal closed container with an upper lid that can be opened and closed with 0 ml in the bottom. The structure was placed on a wire net without doing so, the upper lid was closed, and the mixture was allowed to stand in a thermostatic chamber at a temperature of 20 ° C. for 2 hours for hydrolysis. The structure after the reaction is
There was no change in appearance from before the reaction. This structure was placed in an electric furnace, heated at a temperature of 350 ° C. for 3 hours, and then weighed. As a result, 3.0% of the dry weight before reaction was measured.
Was increasing. 1 part of this structure at 900 ° C in air
Infrared absorption spectrum (IR) was measured by the potassium bromide tablet method for the ashed product that had been heated for a period of time, and as a result, the substance supported by the structure was an oxide of boron, and due to the increase in weight, boron oxidation was observed. Content of the total activated carbon weight of the product,
Next, it was found that the amount corresponds to 3.0%. Then, the structure was obtained in the same manner as in Example 1 except that 0.5 g of the honeycomb structure containing the oxide of boron and 5 g of silicon monoxide were used. Was converted to silicon carbide. Further, heat treatment was performed in the same manner as in Example 1 except that this silicon carbide-made honeycomb structure was used. Although the strength could not be measured, a very solid honeycomb three-dimensional structure was obtained.

【0046】実施例及び比較例で得られた測定結果を表
1に示した。
Table 1 shows the measurement results obtained in the examples and comparative examples.

【0047】[0047]

【表1】 [Table 1]

【0048】本発明の金属或いは金属化合物を含有する
多孔質炭素繊維から製造された炭化珪素繊維は、実質的
に炭化珪素からなり、かつ金属や金属化合物を含有しな
い多孔質炭素繊維からのものと比較して、引張り強度が
向上する。金属或いは金属化合物を含有する多孔質炭素
繊維から製造された炭化珪素繊維を、更に実質的に酸素
を含有しない不活性ガス雰囲気中で加熱処理することに
より、強度は、より一層向上する(実施例1〜2と比較
例1〜2との比較)。金属或いは金属化合物を含有しな
い炭化珪素繊維は、窒素ガスを含まない雰囲気中で加熱
処理すると強度が損なわれた(比較例1)。本発明で
は、多孔質炭素材料に含有させる金属或いは金属化合物
は、ボロン、シリコン、チタン、アルミニウム、イット
リウム、マグネシウム及びそれらの化合物のいずれを用
いても、又それらをどのように組み合わせて用いても、
前記のような炭化珪素材料の強度向上効果が得られた
(実施例1〜8)。金属或いは金属化合物を含有させた
多孔質炭素材料を用いることにより、繊維状、シート状
或いは三次元構造体のように形状には関係なく、強度の
優れた炭化珪素材料として応用することができる(実施
例9〜10)。
The silicon carbide fiber produced from the porous carbon fiber containing the metal or the metal compound of the present invention is composed of the porous carbon fiber substantially consisting of silicon carbide and containing no metal or metal compound. In comparison, the tensile strength is improved. The strength is further improved by heat treating a silicon carbide fiber produced from a porous carbon fiber containing a metal or a metal compound in an inert gas atmosphere containing substantially no oxygen (Examples). 1 and 2 and Comparative Examples 1 and 2). The strength of silicon carbide fibers containing no metal or metal compound was impaired when heat-treated in an atmosphere containing no nitrogen gas (Comparative Example 1). In the present invention, the metal or metal compound contained in the porous carbon material may be any of boron, silicon, titanium, aluminum, yttrium, magnesium and their compounds, or any combination thereof. ,
The strength improving effect of the silicon carbide material as described above was obtained (Examples 1 to 8). By using a porous carbon material containing a metal or a metal compound, it can be applied as a silicon carbide material having excellent strength regardless of the shape such as a fibrous, sheet-shaped or three-dimensional structure ( Examples 9-10).

【0049】[0049]

【発明の効果】本発明は、炭化珪素材料を製造する際
に、多孔質炭素材料に予め金属或いは金属化合物を含有
させることにより、より強度の高い炭化珪素材料の製造
方法を提供するという効果を奏する。
INDUSTRIAL APPLICABILITY The present invention has the effect of providing a method for producing a silicon carbide material having higher strength by preliminarily containing a metal or a metal compound in the porous carbon material when producing the silicon carbide material. Play.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/56 101N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C04B 35/56 101N

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 比表面積が100〜3000m2 /gの
多孔質炭素材料と、一酸化珪素ガスとを、800〜20
00℃の温度で反応させて得られる炭化珪素材料の製造
方法において、前記多孔質炭素材料に、金属或いは金属
化合物を予め含有させることを特徴とする炭化珪素材料
の製造方法。
1. A porous carbon material having a specific surface area of 100 to 3000 m 2 / g and a silicon monoxide gas of 800 to 20.
A method for producing a silicon carbide material obtained by reacting at a temperature of 00 ° C., wherein the porous carbon material contains a metal or a metal compound in advance.
【請求項2】 該炭化珪素材料を、酸素を実質的に含ま
ない雰囲気或いはガス雰囲気中で800〜2200℃の
温度で加熱を行うことを特徴とする請求項1記載の炭化
珪素材料の製造方法。
2. The method for producing a silicon carbide material according to claim 1, wherein the silicon carbide material is heated at a temperature of 800 to 2200 ° C. in an atmosphere or a gas atmosphere that does not substantially contain oxygen. .
【請求項3】 前記多孔質炭素材料が、多孔質炭素繊
維、多孔質炭素繊維からなるシート、前記シートからな
る三次元構造体、多孔質炭素繊維からなる三次元構造体
から選ばれた1種であることを特徴とする請求項1或い
は2記載の炭化珪素材料の製造方法。
3. One kind of porous carbon material selected from a porous carbon fiber, a sheet made of porous carbon fiber, a three-dimensional structure made of the sheet, and a three-dimensional structure made of porous carbon fiber. The method for manufacturing a silicon carbide material according to claim 1, wherein
【請求項4】 前記金属が、ボロン(B)、アルミニウ
ム(Al)、シリコン(Si)、チタン(Ti)、イッ
トリウム(Y)、マグネシウム(Mg)から選ばれた少
なくとも1つであることを特徴とする請求項1、2或い
は3記載の炭化珪素材料の製造方法。
4. The metal is at least one selected from boron (B), aluminum (Al), silicon (Si), titanium (Ti), yttrium (Y), and magnesium (Mg). The method for producing a silicon carbide material according to claim 1, 2, or 3.
【請求項5】 前記金属化合物が、請求項4記載の金属
の酸化物、水素化物、水酸化物、アルコキシド、窒化
物、ハロゲン化物から選ばれた少なくとも1つであるこ
とを特徴とする請求項1、2或いは3記載の炭化珪素材
料の製造方法。
5. The metal compound is at least one selected from the oxides, hydrides, hydroxides, alkoxides, nitrides, and halides of the metal according to claim 4. 4. A method for manufacturing a silicon carbide material according to 1, 2 or 3.
JP7102319A 1995-04-26 1995-04-26 Production of silicon carbide material Pending JPH08295565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102319A JPH08295565A (en) 1995-04-26 1995-04-26 Production of silicon carbide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102319A JPH08295565A (en) 1995-04-26 1995-04-26 Production of silicon carbide material

Publications (1)

Publication Number Publication Date
JPH08295565A true JPH08295565A (en) 1996-11-12

Family

ID=14324260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102319A Pending JPH08295565A (en) 1995-04-26 1995-04-26 Production of silicon carbide material

Country Status (1)

Country Link
JP (1) JPH08295565A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158937A (en) * 1996-08-27 1998-06-16 Ube Ind Ltd Silicon carbide inorganic fiber and its production
KR100419779B1 (en) * 2001-02-23 2004-02-21 한국에너지기술연구원 Fabrication method of silicon carbide ceramics filter with high strength for dust collection
JP2011178625A (en) * 2010-03-02 2011-09-15 Jx Nippon Oil & Energy Corp Metal-supporting fibrous activated carbon and method for producing the same, and desulfurizing unit using the same and method for desulfurizing hydrocarbon oil
JP2016176961A (en) * 2010-06-16 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Solid interface joint with open pores for nuclear fuel rod
JP2020066812A (en) * 2018-10-23 2020-04-30 日本特殊陶業株式会社 Composite fiber and fiber bundle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158937A (en) * 1996-08-27 1998-06-16 Ube Ind Ltd Silicon carbide inorganic fiber and its production
KR100419779B1 (en) * 2001-02-23 2004-02-21 한국에너지기술연구원 Fabrication method of silicon carbide ceramics filter with high strength for dust collection
JP2011178625A (en) * 2010-03-02 2011-09-15 Jx Nippon Oil & Energy Corp Metal-supporting fibrous activated carbon and method for producing the same, and desulfurizing unit using the same and method for desulfurizing hydrocarbon oil
JP2016176961A (en) * 2010-06-16 2016-10-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Solid interface joint with open pores for nuclear fuel rod
JP2016186491A (en) * 2010-06-16 2016-10-27 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Solid interface joint with opening for nuclear control rod
JP2020066812A (en) * 2018-10-23 2020-04-30 日本特殊陶業株式会社 Composite fiber and fiber bundle

Similar Documents

Publication Publication Date Title
JP3042297B2 (en) Method for producing silicon carbide material
US5676918A (en) Method of producing silicon carbide fibers
US5922300A (en) Process for producing silicon carbide fibers
JP4612287B2 (en) Silicon carbide fiber substantially free of whiskers and method for producing the same
US6316051B2 (en) Process for producing silicon carbide fiber
TW402515B (en) High performance filters
EP0603888B1 (en) Method of producing silicon carbide fibers
JP2663819B2 (en) Manufacturing method of silicon carbide fiber
JP3760855B2 (en) Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber
Chen et al. Catalyst-free large-scale synthesis of composite SiC@ SiO 2/carbon nanofiber mats by blow-spinning
JPH08295565A (en) Production of silicon carbide material
JP4924709B2 (en) Silica-based composite oxide fiber, catalyst fiber using the same, and production method thereof
JPH1161573A (en) Production of silicon carbide fiber
JP2001158673A (en) Method for producing structure of porous silicon carbide fiber
JP3613961B2 (en) Method for producing silicon carbide fiber
JPH0797281A (en) Production of silicon carbide material
JP3300938B2 (en) Method for producing hollow fiber consisting essentially of silicon carbide and hollow fiber
JPH0718520A (en) Production of silicon carbide fiber
JPH1053924A (en) Production of silicon carbide fiber
SU680639A3 (en) Composition material
JPH09118566A (en) Production of silicon carbide fiber structure
JPH0142886B2 (en)
JP4203605B2 (en) Heat-resistant adsorption sheet and method for producing the same
JP2001010871A (en) Production of porous silicon carbide fiber structure
JP2001206785A (en) Method of producing silicon carbide porous body